UNDER PEER REVIEW
Original Research Article

Hilbert structure of the Sobolev space $H^1(\Omega)$

Abstract

By studying the Hilbertian structure of the Sobolev space $H^1(\Omega)$, this article highlights the precision and power offered by this mathematical framework. Thanks to the introduction of a specific dot product and the associated completeness property, the Hilbertian structure facilitates the analysis of functions with derivative weaknesses, thus allowing an in-depth study of their convergence, continuity and orthogonality. These characteristics make the Sobolev space $H^1(\Omega)$ an essential tool for solving complex mathematical problems.

Keywords: Spaces of distributions $\mathcal{D}'(\Omega)$, Lebersgue spaces $L^2(\Omega)$, norm and scalar product, Hilbertian structure and Sobolev space $H^1(\Omega)$,

Introduction

Sobolev space $H^1(\Omega)$ is a functional space modeled by Lebesgue space $L^2(\Omega)$. As a mathematical framework for functions with weak derivatives, it reveals its full power when given a Hilbertian structure. This Hilbertian structure gives Sobolev space $H^1(\Omega)$ fundamental properties inherited from classical Hilbert spaces such as the definition of a scalar product and the completeness of the norm associated with it.

By studying the precise nature of this structure within Sobolev space $H^1(\Omega)$, this article will examine in detail the implications and advantages of this approach for the mathematical analysis of functions with weak derivatives.

Sobolev spaces $H^1(\Omega)$

1.Space $\mathcal{D}'(\Omega)$

1. Definitions and properties

Definition 1.1. Let be Ω an open de \mathbb{R}^n and $\mathcal{D}(\Omega)$ the space of infinitely differentiable functions with bounded support. We call distribution T on Ω , any linear and continuous form on $\mathcal{D}(\Omega)$.

(*i*)Linear T means: an application T of $\mathcal{D}(\Omega)$ in $\mathbb{R}(ou\ \mathbb{C})$ corresponding to a function $\varphi \in \mathcal{D}(\Omega)$, a number noted $\langle T, \varphi \rangle$ such that: for all $\varphi_1, \varphi_2 \in \mathcal{D}(\Omega)$ and $\alpha, \beta \in \mathbb{C}$, we have:

$$\langle T, \alpha \varphi_1 + \beta \varphi_2 \rangle = \alpha \langle T, \varphi_1 \rangle + \beta \langle T, \varphi_2 \rangle.$$

(2*i*)T continues means: if the sequence (φ_k) converges in $\mathcal{D}(\Omega)$ towards φ , then the sequence $(\langle T, \varphi_k \rangle)$ converges in the usual sense towards $\langle T, \varphi \rangle$.

We thus designate the space of distributions on Ω by $\mathcal{D}'(\Omega)$, which is the topological dual of the space $\mathcal{D}(\Omega)$.

Proposition 1.2. The space $\mathcal{D}'(\Omega)$ is a Banach space.

Evidence

 $\mathcal{D}'(\Omega)$ being a topological dual therefore $\mathcal{D}(\Omega)$, $\mathcal{D}(\Omega)$ becomes a Banach space.

Definition 1.3. We call derivative T' of a distribution T, the linear and continuous form defined by:

$$\langle T', \varphi \rangle = -\langle T, \varphi' \rangle, \forall \varphi \in \mathcal{D} (\Omega)$$

In general, the order derivative nof the distribution T is defined by the relation:

$$\langle T^{(n)}, \varphi \rangle = (-1)^n \langle T, \varphi^{(n)} \rangle, \forall \varphi \in \mathcal{D} (\Omega).$$

Proposition 1.4. If (T_k) is a sequence of distributions converging $\mathcal{D}'(\Omega)$ towards the distribution T then the sequence $\left(\frac{\partial T_k}{\partial x_i}\right)$ converge dans $\mathcal{D}'(\Omega)$ vers $\frac{\partial T}{\partial x_i}$

Evidence:[6], page 66

- 2. Space $L^2(\Omega)$
- 1. Definitions and properties

Definition 2.1. Let be Ω an open of \mathbb{R}^n .

We pose
$$L^2(\Omega) = \{f: \Omega \to \mathbb{R}: f \ intégrable \ et \ \int_{\Omega} |f(x)|^2 dx < +\infty \}$$

Definition 2.2. Scalar product and norm

We provide $L^2(\Omega)$ the scalar product $\langle ., . \rangle_{L^2(\Omega)}$ and the norm $\|.\|_{L^2(\Omega)}$ defined by:

$$\begin{split} \langle f,g\rangle_{L^2(\Omega)} &= \int_{\Omega} f(x)g(x)dx, \forall (f,g) \in [L^2(\Omega)]^2 \\ et \ \|f\|_{L^2(\Omega)} &= \sqrt{\langle f,f\rangle_{L^2(\Omega)}} = \left(\int_{\Omega} f^2(x)dx\right)^{1/2}, \forall f \in L^2(\Omega) \end{split}$$

Proposition 2.3. The space $(L^2(\Omega), \langle ., . \rangle_{L^2(\Omega)})$ is a Euclidean space.

Evidence. It is enough to show that $\langle ., . \rangle_{L^2(\Omega)}$ is a dot product on $L^2(\Omega)$.

(i). Bilinearity

 $\forall\, f,g,h\in L^2(\Omega)\; et\; \forall a,b\in\mathbb{R}$ we have :

$$\langle af + bg, h \rangle_{L^{2}(\Omega)} = \int_{\Omega} [af(x) + bg(x)]h(x)dx$$

$$= \int_{\Omega} [af(x)h(x) + bg(x)h(x)]dx$$

$$= a \int_{\Omega} f(x)h(x)dx + b \int_{\Omega} g(x)h(x)dx$$

$$= a \langle f, h \rangle_{L^{2}(\Omega)} + b \langle g, h \rangle_{L^{2}(\Omega)}$$

And also:

$$\langle f, ag + bh \rangle_{L^{2}(\Omega)} = \int_{\Omega} f(x)[ag(x) + bh(x)]dx$$

$$= \int_{\Omega} [af(x)g(x) + bf(x)h(x)]dx$$

$$= a \int_{\Omega} f(x)g(x)dx + b \int_{\Omega} f(x)h(x)dx$$

$$= a \langle f, g \rangle_{L^{2}(\Omega)} + b \langle f, h \rangle_{L^{2}(\Omega)}$$

This proves the bilinearity of $\langle .,. \rangle_{L^2(\Omega)}$

(2*i*)Symmetry of $\langle .,. \rangle_{L^2(\Omega)}$

 $\forall f, g \in L^2(\Omega)$, we have :

$$\langle f, g \rangle_{L^{2}(\Omega)} = \int_{\Omega} f(x)g(x)dx$$
$$= \int_{\Omega} g(x)h(x)dx$$
$$= \langle g, f \rangle_{L^{2}(\Omega)}$$

So the symmetry is verified

(3i)Positivity defined

$$\forall f \in L^2(\Omega)$$

Alors,
$$\langle f, f \rangle_{L^2(\Omega)} = \int_{\Omega} [f(x)]^2 dx$$

Since $[f(x)]^2$ is always positive or zero, the integral

$$\int_{\Omega} [f(x)]^2 dx \ge 0.$$

 $Donc, \langle f, f \rangle_{L^2(\Omega)} \ge 0.$

Moreover, if $\langle f, f \rangle_{L^2(\Omega)} = 0$, then $[f(x)]^2 = 0$ presque partout $sur \Omega$.

This implies that f(x) = 0 almost everywhere on Ω .

So, $\langle f, f \rangle_{L^2(\Omega)} = 0 \Leftrightarrow f = 0$ presque partout $sur \Omega$.

Therefore, the defined positivity is verified.

Under (i); (2i) et (3i), space $(L^2(\Omega), \langle .,. \rangle_{L^2(\Omega)})$ has a Euclidean space structure.

Proposition 2.4. The space $(L^2(\Omega), ||.||_{L^2(\Omega)})$ is a Banach space.

Evidence. Showing that $(L^2(\Omega), ||.||_{L^2(\Omega)})$ is a Banach space amounts to verifying the following two axioms:

- (i) $L^2(\Omega)$ is a complete vector space
- (2*i*)The standard $\|.\|_{L^2(\Omega)}$ on $L^2(\Omega)$ is complete.
- (i) $L^2(\Omega)$ is a complete vector space.

We show that each Cauchy sequence in $L^2(\Omega)$ converges to an element of $L^2(\Omega)$.

Consider (f_n) a Cauchy sequence in $L^2(\Omega)$. It means that

$$\forall \varepsilon > 0, \exists k \in \mathbb{N} \text{such as} \forall m,n \geq k, \ \|f_m - f_n\|_{L^2(\Omega)} \leq \varepsilon$$

As (f_n) is a Cauchy sequence, it is uniformly convergent almost everywhere to a function f. This implies that the sequence $(f_n(x))$ converges almost everywhere to f(x) when n tends to $+\infty$.

Let us show that f is in $L^2(\Omega)$. Since $||f_n - f||_{L^2(\Omega)} \to 0$, lorsque n tend vers $+ \infty$, then (f_n) also converges f to norm $L^2(\Omega)$,

C'est – à – dire que
$$\lim_{n\to+\infty}\int_{\Omega}|f_n(x)-f(x)|^2dx=0.$$

Therefore, f is in $L^2(\Omega)$, and therefore, $L^2(\Omega)$ is a complete vector space.

(2*i*)The standard $\|.\|_{L^2(\Omega)}$ sur $L^2(\Omega)$ is complete.

It suffices to show that any Cauchy sequence (f_n) in $L^2(\Omega)$ converges in $L^2(\Omega)$ under this norm.

As we have already established, any Cauchy sequence (f_n) in $L^2(\Omega)$ converges uniformly almost everywhere on Ω to a function f, and also converges on f to norm $L^2(\Omega)$.

Thus, the standard $\|.\|_{L^2(\Omega)}$ on $L^2(\Omega)$ is complete.

In conclusion, $(L^2(\Omega), ||.||_{L^2(\Omega)})$ is a Banach space.

3. Space $H^1(\Omega)$

Definitions and properties

Definition 3.1. Given Ω an open de \mathbb{R}^2 , we define the Sobolev space $H^1(\Omega)$ by:

$$H^1(\Omega) = \left\{ f \in L^2(\Omega) : \frac{\partial f}{\partial x_i} \in L^2(\Omega), \forall i = 1, 2 \right\}$$

with $\frac{\partial f}{\partial x_i}$ partial derivatives of f taken in the sense of distributions defined by:

$$\int_{\Omega} f \frac{\partial \varphi}{\partial x_i} dx_1 dx_2 = -\int_{\Omega} \frac{\partial f}{\partial x_i} \varphi dx_1 dx_2, \forall \varphi \in \mathcal{D}(\Omega)$$

Definition 3.2. The scalar product $\langle .,. \rangle$ and the norm $\|.\|$ on $H^1(\Omega)$ are defined by:

$$\langle f, g \rangle_{H^{1}(\Omega)} = \int_{\Omega} \left(fg + \frac{\partial f}{\partial x_{1}} \frac{\partial g}{\partial x_{1}} + \frac{\partial f}{\partial x_{2}} \frac{\partial g}{\partial x_{2}} \right) dx_{1} dx_{2}$$

$$\forall (f, g) \in [H^{1}(\Omega)]^{2}$$

$$et \ \|f\|_{H^{1}(\Omega)} = \left(\|f\|_{L^{2}(\Omega)}^{2} + \left\|\frac{\partial f}{\partial x_{1}}\right\|_{L^{2}(\Omega)}^{2} + \left\|\frac{\partial f}{\partial x_{2}}\right\|_{L^{2}(\Omega)}^{2}\right)^{1/2}$$

Proposition 3.3. The space $(H^1(\Omega), \langle ., . \rangle_{H^1(\Omega)})$ is a Euclidean space.

Evidence. The space $(H^1(\Omega), \langle .,. \rangle_{H^1(\Omega)})$ is a Euclidean space if $\langle .,. \rangle_{H^1(\Omega)}$ is a dot product on $H^1(\Omega) \times H^1(\Omega)$. A dot product is a positive definite symmetric bilinear form.

(*i*) Bilinearity of $\langle .,. \rangle_{H^1(\Omega)}$

$$\forall f_1, f_2, g_1, g_2 \in H^1(\Omega), \forall a, b, c, d \in \mathbb{R}: \langle af_1 + bf_2, cg_1 + dg_2 \rangle_{H^1(\Omega)}$$
$$= ac\langle f_1, g_1 \rangle + ad\langle f_1, g_2 \rangle + bc\langle f_2, g_1 \rangle + bd\langle f_2, g_2 \rangle$$

$$= \int_{\Omega} \left[(af_1 + bf_2)(cg_1 + dg_2) + \frac{\partial}{\partial x_1} (af_1 + bf_2) \frac{\partial}{\partial x_1} (ag_1 + dg_2) + \frac{\partial}{\partial x_2} (af_1 + bf_2) \frac{\partial}{\partial x_2} (cg_1 + dg_2) \right] dx_1 dx_2.$$

$$\begin{split} &= \int_{\Omega} \left[af_1 \cdot cg_1 + af_1 \cdot dg_2 + bf_2 \cdot cg_1 + bf_2 \cdot dg_2 + \left(a \frac{\partial f_1}{\partial x_1} + b \frac{\partial f_2}{\partial x_2} \right) \left(c \frac{\partial g_1}{\partial x_1} + d \frac{\partial g_2}{\partial x_1} \right) \right. \\ &\quad + \left(a \frac{\partial f_1}{\partial x_2} + b \frac{\partial f_2}{\partial x_2} \right) \left(c \frac{\partial g_1}{\partial x_2} + d \frac{\partial g_2}{\partial x_2} \right) \right] dx_1 dx_2. \\ &= \int_{\Omega} \left[acf_1 g_1 + adf_1 g_2 + bcf_2 g_1 + bdf_2 g_2 + ac \frac{\partial f_1}{\partial x_1} \frac{\partial g_1}{\partial x_1} + ad \frac{\partial f_1}{\partial x_1} \frac{\partial g_2}{\partial x_1} + bc \frac{\partial f_2}{\partial x_1} \frac{\partial g_1}{\partial x_1} + bc \frac{\partial f_2}{\partial x_1} \frac{\partial g_1}{\partial x_1} + bc \frac{\partial f_2}{\partial x_1} \frac{\partial g_1}{\partial x_1} \right. \\ &\quad + bd \frac{\partial f_2}{\partial x_1} \cdot \frac{\partial g_2}{\partial x_2} + ac \frac{\partial f_1}{\partial x_2} \frac{\partial g_1}{\partial x_2} + ad \frac{\partial f_1}{\partial x_2} \frac{\partial g_2}{\partial x_2} + bc \frac{\partial f_2}{\partial x_2} \frac{\partial g_1}{\partial x_2} \\ &\quad + bd \frac{\partial f_2}{\partial x_2} \cdot \frac{\partial g_2}{\partial x_2} \right] dx_1 dx_2. \\ &= \int_{\Omega} \left(ac f_1 g_1 + ac \frac{\partial f_1}{\partial x_1} \frac{\partial g_1}{\partial x_1} + ac \frac{\partial f_1}{\partial x_2} \frac{\partial g_1}{\partial x_2} \right) dx_1 dx_2 \\ &\quad + \int_{\Omega} \left(ad f_1 g_2 + ad \frac{\partial f_1}{\partial x_1} \frac{\partial g_2}{\partial x_1} + ad \frac{\partial f_1}{\partial x_2} \frac{\partial g_2}{\partial x_2} \right) dx_1 dx_2 \\ &\quad + \int_{\Omega} \left(bc f_2 g_1 + bc \frac{\partial f_2}{\partial x_1} \frac{\partial g_1}{\partial x_1} + bc \frac{\partial f_2}{\partial x_2} \frac{\partial g_1}{\partial x_2} \right) dx_1 dx_2 \\ &\quad + \int_{\Omega} \left(bd f_2 g_2 + bd \frac{\partial f_2}{\partial x_1} \frac{\partial g_2}{\partial x_1} + bd \frac{\partial f_2}{\partial x_2} \frac{\partial g_2}{\partial x_2} \right) dx_1 dx_2 \\ &\quad + ad \int_{\Omega} \left(f_1 g_2 + \frac{\partial f_1}{\partial x_1} \frac{\partial g_2}{\partial x_1} + \frac{\partial f_1}{\partial x_2} \frac{\partial g_2}{\partial x_2} \right) dx_1 dx_2 \\ &\quad + ad \int_{\Omega} \left(f_1 g_2 + \frac{\partial f_1}{\partial x_1} \frac{\partial g_2}{\partial x_1} + \frac{\partial f_1}{\partial x_2} \frac{\partial g_2}{\partial x_2} \right) dx_1 dx_2 \\ &\quad + ad \int_{\Omega} \left(f_1 g_2 + \frac{\partial f_1}{\partial x_1} \frac{\partial g_2}{\partial x_1} + \frac{\partial f_1}{\partial x_2} \frac{\partial g_2}{\partial x_2} \right) dx_1 dx_2 \\ &\quad + ad \int_{\Omega} \left(f_1 g_2 + \frac{\partial f_1}{\partial x_1} \frac{\partial g_2}{\partial x_1} + \frac{\partial f_1}{\partial x_2} \frac{\partial g_2}{\partial x_2} \right) dx_1 dx_2 \\ &\quad + ad \int_{\Omega} \left(f_1 g_2 + \frac{\partial f_1}{\partial x_1} \frac{\partial g_2}{\partial x_1} + \frac{\partial f_1}{\partial x_2} \frac{\partial g_2}{\partial x_2} \right) dx_1 dx_2 \\ &\quad + ad \int_{\Omega} \left(f_1 g_2 + \frac{\partial f_1}{\partial x_1} \frac{\partial g_2}{\partial x_1} + \frac{\partial f_1}{\partial x_2} \frac{\partial g_2}{\partial x_2} \right) dx_1 dx_2 \\ &\quad + ad \int_{\Omega} \left(f_1 g_2 + \frac{\partial f_1}{\partial x_1} \frac{\partial g_2}{\partial x_2} + \frac{\partial f_1}{\partial x_2} \frac{\partial g_2}{\partial x_2} \right) dx_1 dx_2 \\ &\quad + ad \int_{\Omega} \left(f_1 g_2 + \frac{\partial f_1}{\partial x_2} \frac{\partial g_2}{\partial x_2} \right) dx_1 dx_2 \\ &\quad + ad \int_{\Omega} \left(f_1 g_2 +$$

$$+bc \int_{\Omega} \left(f_2 g_1 + \frac{\partial f_2}{\partial x_1} \frac{\partial g_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} \frac{\partial g_1}{\partial x_2} \right) dx_1 dx_2$$

$$+bd \int_{\Omega} \left(f_2 g_2 + \frac{\partial f_2}{\partial x_1} \frac{\partial g_2}{\partial x_1} + \frac{\partial f_2}{\partial x_2} \frac{\partial g_2}{\partial x_2} \right) dx_1 dx_2$$

$$= ac\langle f_1, g_1 \rangle + ad\langle f_1, g_2 \rangle + bc\langle f_2, g_1 \rangle + bd\langle f_2, g_2 \rangle$$

Bilinearity is verified.

(2*i*)Symmetry of $\langle .,. \rangle_{H^1(\Omega)}$

In fact, $\forall f, g \in H^1(\Omega)$ we have:

$$\langle f, g \rangle_{H^1(\Omega)} = \int_{\Omega} \left(fg + \frac{\partial f}{\partial x_1} \frac{\partial g}{\partial x_1} + \frac{\partial f}{\partial x_2} \frac{\partial g}{\partial x_2} \right) dx_1 dx_2$$

$$= \int_{\Omega} \left(gf + \frac{\partial g}{\partial x_1} \frac{\partial f}{\partial x_1} + \frac{\partial g}{\partial x_2} \frac{\partial f}{\partial x_2} \right) dx_1 dx_2$$
$$= \langle g, f \rangle_{H^1(\Omega)}$$

This ensures the symmetry of $\langle .,. \rangle_{H^1(\Omega)}$

(3i)Positivity defined

 $\forall f \in H^1(\Omega)$ we have :

$$\langle f, f \rangle_{H^{1}(\Omega)} = \int_{\Omega} \left[f^{2} + \left(\frac{\partial f}{\partial x_{1}} \right)^{2} + \left(\frac{\partial f}{\partial x_{2}} \right)^{2} \right] dx_{1} dx_{2}$$
$$= \|f\|_{H^{1}(\Omega)}^{2} > 0$$

Which ensures the positivity of $\langle .,. \rangle_{H^1(\Omega)}$

 $\langle f, g \rangle_{H^1(\Omega)}$ is well defined on $H^1(\Omega)$

$$Car \langle f, f \rangle_{H^1(\Omega)} = 0 \Leftrightarrow f = 0 \text{ presque partout sur } \Omega.$$

$$On \ a: \langle f, f \rangle_{H^1(\Omega)} = 0 \iff \int_{\Omega} \left[f^2 + \left(\frac{\partial f}{\partial x_1} \right)^2 + \left(\frac{\partial f}{\partial x_2} \right)^2 \right] dx_1 dx_2 = 0$$

The integral of a positive function is zero when the integrand is zero almost everywhere on Ω . This means that f = 0 p. p sur Ω , $\frac{\partial f}{\partial x_1} = 0$. p. p sur Ω and

$$\frac{\partial f}{\partial x_2} = 0 \ p. \ p \ sur \ \Omega$$
. which implies that $f = 0 \ p. \ pon \Omega$.

We have shown that $\langle .,. \rangle$ is a scalar product on $H^1(\Omega)$, therefore $(H^1(\Omega), \langle .,. \rangle_{H^1(\Omega)})$ is a Euclidean space.

Proposition 3.4. The space $(H^1(\Omega), ||.||_{H^1(\Omega)})$ is a standardized space.

Evidence. $H^1(\Omega)$ is a norm space if $\|.\|_{H^1(\Omega)}$ is a norm on $H^1(\Omega)$.

$$||f||_{H^{1}(\Omega)} = \left(||f||_{L^{2}(\Omega)}^{2} + \left|\left|\frac{\partial f}{\partial x_{1}}\right|\right|_{L^{2}(\Omega)}^{2} + \left|\left|\frac{\partial f}{\partial x_{2}}\right|\right|_{L^{2}(\Omega)}^{2}\right)^{1/2}$$

Separation

$$||f||_{H^1(\Omega)} = 0 \Leftrightarrow f = 0 \ p. p. \Omega$$

$$||f||_{H^{1}(\Omega)} = 0 \iff \left(||f||_{L^{2}(\Omega)}^{2} + \left| \left| \frac{\partial f}{\partial x_{1}} \right| \right|_{L^{2}(\Omega)}^{2} + \left| \left| \frac{\partial f}{\partial x_{2}} \right| \right|_{L^{2}(\Omega)}^{2} \right)^{\frac{1}{2}} = 0$$

The square root of a positive radicand is zero when the radicand is zero. SO

$$||f||_{L^2(\Omega)} = 0 \Leftrightarrow f = 0 \ p. \ p \ on \ \Omega$$

and
$$\begin{cases} \left\| \frac{\partial f}{\partial x_1} \right\|_{L^2(\Omega)}^2 = 0 \\ \left\| \frac{\partial f}{\partial x_2} \right\|_{L^2(\Omega)}^2 = 0 \end{cases} \Leftrightarrow f = 0 \ p. p \ on \ \Omega$$

 $SOf = 0 p. p sur \Omega$

• Homogeneity

$$\|\lambda f\|_{H^1(\Omega)} = |\lambda| \|f\|_{H^1(\Omega)}, \forall \lambda \in \mathbb{R}.$$

$$\begin{split} \|\lambda f\|_{H^{1}(\Omega)} &= \left(\|\lambda f\|_{L^{2}(\Omega)}^{2} + \left\| \frac{\partial(\lambda f)}{\partial x_{1}} \right\|_{L^{2}(\Omega)}^{2} + \left\| \frac{\partial(\lambda f)}{\partial x_{2}} \right\|_{L^{2}(\Omega)}^{2} \right)^{1/2} \\ &= \left(\lambda^{2} \|f\|_{L^{2}(\Omega)}^{2} + \lambda^{2} \left\| \frac{\partial f}{\partial x_{1}} \right\|_{L^{2}(\Omega)}^{2} + \lambda^{2} \left\| \frac{\partial f}{\partial x_{2}} \right\|_{L^{2}(\Omega)}^{2} \right)^{1/2} \\ &= |\lambda| \left(\|f\|_{L^{2}(\Omega)}^{2} + \left\| \frac{\partial f}{\partial x_{1}} \right\|_{L^{2}(\Omega)}^{2} + \left\| \frac{\partial f}{\partial x_{2}} \right\|_{L^{2}(\Omega)}^{2} \right)^{1/2} \\ &= |\lambda| \|f\|_{H^{1}(\Omega)} \end{split}$$

• Triangle inequality

$$\|f+g\|_{H^1(\Omega)} \leq \|f\|_{H^1(\Omega)} + \|g\|_{H^1(\Omega)}, \forall (f,g) \in [H^1(\Omega)]^2$$

$$\begin{split} &\|f+g\|_{H^{1}(\Omega)} = \left(\|f+g\|_{L^{2}(\Omega)}^{2} + \left\|\frac{\partial(f+g)}{\partial x_{1}}\right\|_{L^{2}(\Omega)}^{2} + \left\|\frac{\partial(f+g)}{\partial x_{2}}\right\|_{L^{2}(\Omega)}^{2}\right)^{1/2} \\ &= \left(\|f+g\|_{L^{2}(\Omega)}^{2} + \left\|\frac{\partial f}{\partial x_{1}} + \frac{\partial g}{\partial x_{1}}\right\|_{L^{2}(\Omega)}^{2} + \left\|\frac{\partial f}{\partial x_{2}} + \frac{\partial g}{\partial x_{2}}\right\|_{L^{2}(\Omega)}^{2}\right)^{1/2} \\ &\leq \left(\|f\|_{L^{2}(\Omega)}^{2} + \|g\|_{L^{2}(\Omega)}^{2} + \left\|\frac{\partial f}{\partial x_{1}}\right\|_{L^{2}(\Omega)}^{2} + \left\|\frac{\partial g}{\partial x_{1}}\right\|_{L^{2}(\Omega)}^{2} + \left\|\frac{\partial f}{\partial x_{2}}\right\|_{L^{2}(\Omega)}^{2} + \left\|\frac{\partial g}{\partial x_{2}}\right\|_{L^{2}(\Omega)}^{2}\right)^{1/2} \end{split}$$

Thanks to Minkowski's inequality, we obtain

$$\leq \left(\|f\|_{L^{2}(\Omega)}^{2} + \left\| \frac{\partial f}{\partial x_{1}} \right\|_{L^{2}(\Omega)}^{2} + \left\| \frac{\partial f}{\partial x_{2}} \right\|_{L^{2}(\Omega)}^{2} + \left(\|g\|_{L^{2}(\Omega)}^{2} + \left\| \frac{\partial g}{\partial x_{1}} \right\|_{L^{2}(\Omega)}^{2} + \left\| \frac{\partial g}{\partial x_{2}} \right\|_{L^{2}(\Omega)}^{2} \right)^{\frac{1}{2}}$$

$$\leq \|f\|_{H^{1}(\Omega)} + \|g\|_{H^{1}(\Omega)}$$

 $\|.\|_{H^{1}(\Omega)}$ is indeed a standard on $H^{1}(\Omega)$

Hence $(H^1(\Omega), ||.||_{H^1(\Omega)})$ is a standardized space.

Proposition 3.5. Space $H^1(\Omega)$ has a Hilbertian structure.

Evidence. It suffices to show that $H^1(\Omega)$ is a Hilbert space for the norm $\|.\|_{H^1(\Omega)}$. Indeed,

- (i) $\langle ., . \rangle_{H^1(\Omega)}$ is a scalar product on $H^1(\Omega) \times H^1(\Omega)$ according to proposition (3.3)
- $\|.\|_{H^1(\Omega)}$ is a norm on $H^1(\Omega)$ according to proposition (3.4)
- (2*i*)Let us show that $H^1(\Omega)$ is complete for the norm $\|.\|_{H^1(\Omega)}$

Consider $(f_k) \in H^1(\Omega)$ a Cauchy sequence for the norm $\|.\|_{H^1(\Omega)}$. That's to say

$$\forall \varepsilon > 0, \exists \ k \in \mathbb{N} > 0/n, m \geq k : \|f_n - f_m\|_{H^1(\Omega)} \leq \varepsilon^2$$

$$\left\|f_{n}-f_{m}\right\|_{L^{2}\left(\Omega\right)}^{2}+\left\|\frac{\partial f_{n}}{\partial x_{1}}-\frac{\partial f_{m}}{\partial x_{1}}\right\|_{L^{2}\left(\Omega\right)}^{2}+\left\|\frac{\partial f_{n}}{\partial x_{2}}-\frac{\partial f_{m}}{\partial x_{2}}\right\|_{L^{2}\left(\Omega\right)}^{2}\leq\varepsilon^{2}$$

That implies that:

$$||f_n - f_m||_{L^2(\Omega)}^2 \le \varepsilon^2$$
, $\left| \left| \frac{\partial f_n}{\partial x_i} - \frac{\partial f_m}{\partial x_i} \right| \right|_{L^2(\Omega)}^2 \le \varepsilon^2$ For $i = 1, 2$

we have: (f_k) is from Cauchy for $\|.\|_{L^2(\Omega)}$

 $\left(\frac{\partial f_k}{\partial x_i}\right)$ is also from Cauchy for $\|.\|_{L^2(\Omega)}$

$$(i = 1,2)$$

Gold $L^{2}(\Omega)$ is complete for $\|.\|_{L^{2}(\Omega)}$, this implies that:

 $\exists f \in L^{2}\left(\Omega\right) \text{such as}(f_{k}) \ converge \ to \ f \ on \ L^{2}\left(\Omega\right) \ relatively \ to \ \|.\|_{L^{2}\left(\Omega\right)}$

$$\Leftrightarrow \lim_{n \to \infty} \|f_k - f\|_{L^2(\Omega)} = 0$$

 $\exists g_i \in L^2(\Omega) \text{ such as } \left(\frac{\partial f_k}{\partial x_i}\right) \text{ converge to } g_i \text{ on } L^2(\Omega) \text{ rrelatively to } \|.\|_{L^2(\Omega)}$

$$\Leftrightarrow \lim_{n \to \infty} \left\| \frac{\partial f_k}{\partial x_i} - g_i \right\|_{L^2(\Omega)} = 0$$

It remains to show that the sequence (f_k) converges to the function $f \in H^1(\Omega)$ with

$$\lim_{n\to\infty} \|f_k - f\|_{H^1(\Omega)} = 0$$

$$\operatorname{Gold}(f_k) \in H^1\left(\Omega\right) \Longleftrightarrow \begin{cases} (f_k) \in L^2\left(\Omega\right) \\ \left(\frac{\partial f_k}{\partial x_i}\right) \in L^2\left(\Omega\right) \ for \ i = 1,2 \end{cases}$$

$$avec\ \int_{\Omega}f_{k}\frac{\partial\varphi}{\partial x_{i}}=-\int_{\Omega}\frac{\partial f_{k}}{\partial x_{i}}\varphi,\forall\varphi\in\mathcal{D}(\Omega),\forall k\in\mathbb{N}$$

$$\left| \int_{\Omega} f_k \frac{\partial \varphi}{\partial x_i} - \int_{\Omega} f \frac{\partial \varphi}{\partial x_i} \right| = \left| \int_{\Omega} (f_k - f) \frac{\partial \varphi}{\partial x_i} \right|$$

By increasing the left side by the Cauchy-Schwarz inequality, we obtain

$$\left| \int_{\Omega} f_k \frac{\partial \varphi}{\partial x_i} - \int_{\Omega} f \frac{\partial \varphi}{\partial x_i} \right| = \left| \int_{\Omega} (f_k - f) \frac{\partial \varphi}{\partial x_i} \right|$$

$$\leq \|f_k - f\|_{L^2(\Omega)} \cdot \left\| \frac{\partial \varphi}{\partial x_i} \right\|_{L^2(\Omega)}$$

 $||f_k - f||_{L^2(\Omega)} \to 0$ by completeness of $L^2(\Omega)$.

We obtain
$$\lim_{k \to \infty} \int_{\Omega} f_k \frac{\partial \varphi}{\partial x_i} = \int_{\Omega} f \frac{\partial \varphi}{\partial x_i}$$

Likewise for the right hand side we obtain

$$\lim_{k \to \infty} \int_{\Omega} \frac{\partial f_k}{\partial x_i} \varphi = \int_{\Omega} g_i \varphi$$

By passing to the limit, we obtain:

$$\int_{\Omega} f \frac{\partial \varphi}{\partial x_i} = -\int_{\Omega} g_i \varphi, \forall \varphi \in \mathcal{D}(\Omega), (i = 1, 2)$$

This implies that $g_i = \frac{\partial f}{\partial x_i}$ derivative in the sense of distributions, $f \in H^1(\Omega)$.

We have: (f_k) converges towards f in $L^2(\Omega)$ and $\left(\frac{\partial f_k}{\partial x_i}\right)$ converge vers $g_i = \frac{\partial f}{\partial x_i}$ dans $L^2(\Omega)$

Moreover:

$$||f_k - f||_{H^1(\Omega)}^2 = ||f_k - f||_{L^2(\Omega)}^2 + \left\| \frac{\partial f_k}{\partial x_1} - \frac{\partial f}{\partial x_1} \right\|_{L^2(\Omega)}^2 + \left\| \frac{\partial f_k}{\partial x_2} - \frac{\partial f}{\partial x_2} \right\|_{L^2(\Omega)}^2$$

 $||f_k - f||_{L^2(\Omega)}^2 \to 0$ by completeness of $L^2(\Omega)$

$$\left\| \frac{\partial f_k}{\partial x_1} - \frac{\partial f}{\partial x_2} \right\|_{L^2(\Omega)}^2 \to 0$$
 by completeness of $L^2(\Omega)$

$$\left\| \frac{\partial f_k}{\partial x_2} - \frac{\partial f}{\partial x_2} \right\|_{L^2(\Omega)}^2 \longrightarrow 0$$
 by completeness of $L^2(\Omega)$

This implies that the sequence (f_k) converges to the function f in $H^1(\Omega)$.

We then write
$$(f_k) \mapsto f \iff \lim_{k \to \infty} ||f_k - f||_{H^1(\Omega)} = 0$$

Which completes the proof.

Therefore $H^1(\Omega)$ has a Hilbertian structure.

Conclusion

Sobolev space $H^1(\Omega)$, we first presented an overview of distributions and Lebesgue spaces $L^2(\Omega)$. Secondly, we established that the Sobolev space $H^1(\Omega)$ has a remarkable Hilbertian structure.

By constructing an appropriate scalar product involving the functions and their gradients, we showed that this space is equipped with a norm and a scalar product satisfying the essential axioms of bilinearity, positivity, symmetry and the Cauchy-Schwarz inequality. to define a Hilbert space. The completeness of $H^1(\Omega)$ guarantees that any Cauchy sequence in this space converges to a limit in $H^1(\Omega)$, thus confirming its nature as a Hilbert space.

References

- [1] Lacroix-Sonner MT, 1997, Distributions, Sobolev spaces, applications, Ellipses, Paris.
- [2]Bhattacharyya PK, 2012, Distributions-generalized functions with applications in sobolev spaces. From Gruyter, Boston.
- [3]Daniel Li, 2013; functional analysis course with 200 corrected exercises. Ellipses, Paris [4]Sobolev spaces, April 29.
- [5] Haim Brezis: 1983; Functional analysis course theory and applications. Masson, Paris.
- [6]Claire David PG, 2015; Partial differential equations, courses and corrected exercises. Dunod, Paris....