UNDER PEER REVI EW

Original Research Article

Hilbert structure of the Sobolev space H'(Q)

Abstract

By studying the Hilbertian structure of the Sobolev space H(Q), this article highlights the
precision and power offered by this mathematical framework. Thanks to the introduction of a
specific dot product and the associated completeness property, the Hilbertian structure
facilitates the analysis of functions with derivative weaknesses, thus allowing an in-depth study
of their convergence, continuity and orthogonality. These characteristics make the Sobolev
spaceH!(Q) an essential tool for solving complex mathematical problems.

Keywords : Spaces of distridutions D’ (£2), Lebersgue spaces L?(£), norm and scalar product,
Hilbertian structure and Sobolev space H1((),

Introduction

Sobolev space H!(Q)is a functional space modeled by Lebesgue space L%(Q). As a
mathematical framework for functions with weak derivatives, it reveals its full power when
given a Hilbertian structure. This Hilbertian structure gives Sobolev space H(Q)fundamental
properties inherited from classical Hilbert spaces such as the definition of a scalar product and
the completeness of the norm associated with it.
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By studying the precise nature of this structure within Sobolev space H (), this article will
examine in detail the implications and advantages of this approach for the mathematical
analysis of functions with weak derivatives.

Sobolev spaces H(Q)
1.SpaceD’(Q)
1. Definitions and properties

Definition 1.1 . Let be Qan open de R™and D()the space of infinitely differentiable functions
with bounded support. We call distribution T on Q, any linear and continuous form on D(Q).

(i)Linear T means: an application T of D(Q)in R(ou C)corresponding to a function ¢ € D(Q),
a number noted (T, ¢)such that: for all ¢4, ¢, € D(Q)and a, 8 € C, we have:

(T,ap, + Boz) = a(T, @1) + B(T, @3).

(20)T continues means: if the sequence (¢, )converges in D(Q)towards ¢, then the sequence
((T, @ ))converges in the usual sense towards (T, ¢).

We thus designate the space of distributions on Qby D’(Q), which is the topological dual of the
space D(Q).

Proposition 1.2. The space D'(Q)is a Banach space.
Evidence

D'(Q)being a topological dual therefore  D(Q), D(Q)becomes a Banach
space. ]

Definition 1.3. We call derivative T' of a distribution T , the linear and continuous form defined
by:

(T", @) = —(T,¢"),Vp €D (Q)
In general, the order derivative nof the distribution T is defined by the relation:
(T™, @) = (=1)™(T, 9™),Ve € D (Q).
Proposition 1.4. If (T,)is a sequence of distributions converging D '(Q)towards the

aTy,
axi

distribution T then the sequence( ) converge dans D'()) vers %

Evidence :[6], page 66 [ ]
2. SpaceL?(Q)
1. Definitions and properties

Definition 2.1. Let be Qan open of R™.

We poseL?(Q) = {f:Q - R: f intégrable et [ |f(x)|*dx < +oo}
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Definition 2.2. Scalar product and norm

We provide L?(Q)the scalar product {.,. )12(qyand the norm ||. || 2o, defined by:

(f, Iy = fnf(x)g(X)dx,V(f.g) € (2@’

1/2
et ”f”LZ(Q) = /(f’f)LZ(Q) = (foZ(X)dx> ,Vf € LZ(Q)

Proposition 2.3. The space (L2(Q), (., . ),2(q))is a Euclidean space.
Evidence. It is enough to show that (., . );2q,is a dot product on L*(Q).
(). Bilinearity
YV f,g9,h € L?(Q) et Va, b € R we have :
of +bg, W)y = fﬂ[af(x) + bg(OTh(0)dx

= | 1af (I + bgCORNdx

ajf(x)h(x)dx+ bfg(x)h(x)dx
Q Q
= a(f, h)2q) + b(g, h)12(q)

And also:

(f,ag +bhyzgy = jﬂf(x) lag(x) + bh(O)]dx

_ J [af (g (x) + bf COR()]dx
Q

= aff(x)g(x)dx+ bff(x)h(x)dx
Q Q

= a(f, 9) 2@ + b W2y
This proves the bilinearity of(.,. )2,
(20)Symmetry of(., . )2 q)
Y f,g € L*(Q), we have :
(0w = [ FEg@
= fg(x)h(x)dx
= (31f)L2(Q)

So the symmetry is verified
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(3i)Positivity defined

Vf € 12(Q)
Alors, (f, iz = f [FCO2dx
Q

Since [f (x)]?is always positive or zero, the integral
fU@H%xZ&
Q

Done,(f, f )12 = 0.

Moreover, if (f, f);2(q) = 0,then[f (x)]?> = 0 presque partout sur Q.
This implies that f(x) = 0 almost everywhere on Q.

So, {f, /2@ = 0 © f = 0 presque partout sur (.

Therefore, the defined positivity is verified.

Under (i); (2i) et (3i), space (L2 ), (.. )Lz(m) has a Euclidean space structure.
[ ]

Proposition 2.4. The space (L2 ), 1l ||L2(Q))i8 a Banach space.

Evidence. Showing that (L?(€), |I. |l ;2 (qy )is a Banach space amounts to verifying the following
two axioms:

(i) L?(Q) is a complete vector space

(20)The standard ||. |[ ;2 qy0n L?(Q)is complete.

(i) L?(Q) is a complete vector space.

We show that each Cauchy sequence in L2(Q)converges to an element of L2 (Q).
Consider (f;,)a Cauchy sequence in L?(Q). It means that

Ve > 0,3k € Nsuchasvm,n > k, ||fp, — full 2oy < €

As (f,,)is a Cauchy sequence, it is uniformly convergent almost everywhere to a function f.This
implies that the sequence (f;,(x))converges almost everywhere to f(x)when ntends to+oo.

Let us show that fis in L?(Q). Since ||f,, — fllz¢) — 0,lorsque n tend vers + oo,then
(f,,)also converges fto normL?(Q),

C'est —a — dire que lirP f |/ () — f(x)|?dx = 0.
n—>+0oo Q
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Therefore, fis in L2(Q), and therefore, L?(Q) is a complete vector space.
(2i)The standard ||. || 2(q) sur L?(Q) is complete.
It suffices to show that any Cauchy sequence (f,,) in L?(Q)converges in L2()under this norm.

As we have already established, any Cauchy sequence (f;,) in L?(Q) converges uniformly
almost everywhere on Qto a function f,and also converges on f to norm L2 ().

Thus, the standard ||. || ;2 (q)yon L*(Q) is complete.

In conclusion, (L?(€), II. |l ;2(qy) is @ Banach space. n
3. SpaceH'(Q)

Definitions and properties

Definition 3.1. Given Qan open de R?, we define the Sobolev space H(Q) by:

f

H(Q) = {f € (@5 € L), ¥i= 1 z}

with % partial derivatives of f taken in the sense of distributions defined by:

do af
f f%dxldxz = —j Egodxldxz,‘v’go €D(Q)
Q 14 Q i

Definition 3.2. The scalar product (.,.) and the norm ||. || on H* ()are defined by:

of dg of dg
(f, 9 () f (fg dx,q 6x1+0x2 0x,

v(f,9) € [H (D]

) dx,dx,

et I st oy = (nfan e

L? (Q))

Proposition 3.3. The space (H1 (Q),{(, )y (Q))is a Euclidean space.

12 (Q) ||6x2

Evidence. The space (H* (Q),(.,. )1 (Q))is a Euclidean space if (.,. )y (q)is a dot product on
H® (Q)x H! (Q).A dot product is a positive definite symmetric bilinear form.

(1) Bilinearity of(.,. )51y
Vi f2 91,92 € H'(Q),Va,b,c,d € Ri{af; + bfy,cg, + dg2)ui)

= ac(f1, 91) + ad(f1, g2) + bc{f2, g1) + bd{f2, g2)
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= .[ [(afl + bf;)(cg1 +dg>) + (af1 + bfz) (agl +dgs)
Q

0
+ E (afi + bf3) a_xz (cg1 + dgz)] dx;dx;,

af; af- ag ag
= fﬂ [afl. cgi + afi.dg, + bf,.cg, + bf,.dg, + (aa 1 +b 6x2> (c axi +d 6xj>
0f1 afz)( 091 agz)]
+ ( ox, +b ox, c ox, +d o, dx,dx,
_ 0f1 091 0f1 09, df, 091
= f [acf1g1 + adfi9, + bcf,g1 + bdf,g, + aca X, 0xs + ad ox, ox,s + bc ox, ox,
daf, 0 df; 0 df; 0 daf, 0
+bd£ g2+ac h 991 diﬁ_*_bcﬁﬂ
dxq 0x1 dx, 0x2 0x, 0x, dx, 0x,
+ bd % ]dxldxz
0x, 0x,

_ 0f1 09, dfi 691)
= jﬂ (ac f1g91 + ac 9, 9, + ac ox, ox, dx,dx,
0f1 09> df1 agz)
d d——+ad ——)dx;d
+fn<a fig> +a I 6x1+a ox, ox, x,dx,
af> a91 af> 6g1)
b b b dx,d
+f9< ¢ f,91 + ca 6x1+ C6x26x2 x,dx,

fz 09; 0f, g,

+ fn (bd fag2 + bd 5 52 4 b O_xZO_xZ) dx,dx,

= ac fQ(f1g1 + 20100,y Oh ag1> dx,dx, +ad [, <f1g2 95 992 4 %aﬂ) dx,dx,

6x1 axl axz 0

+adj afl dg, 0f1 09,

T ox, 0x, | ox, ax2>dx1dx2

0,09, 0f; 691)
t+he jﬂ( 01 H 55t T g s

df, g, n 0f, 09,

dx,d
dx, 0x; | 0x, 6x2> ¥16%;

+bd fﬂ(fzgz +

= ac({fy, 91) + ad(f1, 92) + be{f2, 91) + bd(f>, 92)
Bilinearity is verified.

(2i)Symmetry of(., . )41 (q)

In fact, Vf, g € H! (Q)we have:

_ of 99 of og
o = | (Fo+ 550+ 5y ga) drade

dxq 0x4 0x, 0xy
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=f (gf+ 99 9f | 99 af)dxldxz
Q

0xq 0x, 0x, 0x,

=9, ur @
This ensures the symmetry of(.,. )1 )
(3i)Positivity defined
Vf € H! (Q)we have :

2 af \2
P = [fz 6x1 + (6_xz> l dx,dx,

Which ensures the positivity of(.,. )1 q)
(f, @) (@is well defined onH* (Q)

Car (f,flur () = 0 & f = 0 presque partout sur Q.

Ona: {f,fliyjmq@=0e f lfz 0x1)2 + (aa—f)zl dx,dx, =0

X2
The integral of a positive function is zero when the integrand is zero almost everywhere on Q.
This means that f = 0 p.p sur Q,;Tf = 0.p.p sur Qand
1

o

P 0 p.p sur Q. which implies that f = 0 p. ponQ.
2

We have shown that (.,.)is a scalar product on H* (), therefore (H* (Q),(.,.)y1(q))is a
Euclidean space. ]
Proposition 3.4. The space (H1 ), I N1 (Q))is a standardized space.

L? (Q))

Evidence. H' (()is a norm space if ||. || 1 (q)is @ norm on H* (Q).

Wfllgr ) = <||f”L2 @t ||ax1 ||ax2

L% (Q)
e Separation
Ifllgry=0e f=0p.p.Q
of |I° 2
sy = 0 <”f”L2 @ ” 12 () ol (n)) =0

The square root of a positive radlcand is zero when the radicand is zero. SO

Ifllz@=0ef=0p.ponQ
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Hax
and{ ' Lz(m <=)f=0 p.ponQ
d|6x2 LZ(Q)
SOf =0p.p sur Q
e Homogeneity
WAf e @) = 1A Il g )y VA € R
1/2
(AN 3N
AF Il oy = (uz w5 |
Tl @ Sz @ Oxy 2 ) 0x; ll 2 )
1/2
|’ af |I?
RIfIIZz (o + A2 + A2 |[=—
( L@ ax1 12 (Q) 12 (Q)

= |A] (IlfllL2 @t ||6x1

= A g

12 (Q) ||ax2

1/
L? (Q)>

e Triangle inequality

If + gl @) < Ifllgr @ + N9lla2 @) V(. 9) € [HH(D)]?

” 0 +9)
L2 (Q) axz

o(f+
If + gl ) = <||f+9||52 @t ” Fhe

6x1

) >1/2
L? ()

dx, axz 2 (@)

ag z
6x1

(nf bl + o=

L? (9)

<IIf|ILz @ + gl o + || o

Thanks to Minkowski's inequality, we obtain

L? (ﬂ))
1 1

2 2
+

Il Il 52 (qyis indeed a standard onH* (Q)

or

6x1

<I|f|ILz o+

< [1flgx @) + gl

12 (Q) || axz 6x1 12 (.Q) || 6x2

Hence (H* (Q), |I. Il (q)is a standardized space.
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Proposition 3.5. Space H (Q)has a Hilbertian structure.
Evidence. It suffices to show that H* (Q)is a Hilbert space for the norm||. || 41 -
Indeed,
(@) (., g1 (is a scalar product on H* (Q)x H' (Q)according to proposition (3.3)
II. 1l 1 (qyis @ norm on H* (Q)according to proposition (3.4)
(2i)Let us show that H* (©)is complete for the norm|]. || ;1 @
Consider (f,) € H! (Q)a Cauchy sequence for the norm ||. || ;1 )+ That's to say

Ve>0,3keN>0/nm=k:|f, _fm||H1(g) < ¢?

T ST T Y

dx; 0xq * ||6_xz B a_xz

= fnlle o+ |

L% (Q) L? () B

That implies that :

fn _ 0fm]|?

<& | =
o, o e« Fori=1,2

L% (9)

”fn - fm”iZ ) < e&?,

we have: (fj)is from Cauchy for||. || 2 ()

(Zf")is also from Cauchy for||. |2 (o)

(i=12)
Gold L? (Q)is complete for ||. || 2 () this implies that:
af € L? (Q)such as(fy,) converge to f on L* (Q) relatively to ||. || 2 (o)
= nh_rgo”fk — fll2 @ =0
3 2 9k 2 :
gi € L* ()such as(ax_ converge to g; on L° (Q) rrelatively to ||. || ;2 (o)

=0
L? (Q)

It remains to show that the sequence (f;) converges to the function f € H (Q)with
lim — =0
n_mo”fk f”Hl Q)

(fi) € L* ()
(%) €12 (Q) fori=12

6xi

Gold(f,) € H! (Q) = {
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9]
avec .[ fk—(p 2 <p,V<p € D), Vk EN

ffk 0x; ffaxl fﬂ(fk_f)Z_Z‘

By increasing the left side by the Cauchy-Schwarz inequality, we obtain

ffk - Jfaxl f -2 -

< Wfi~ Fll o[22

Xill ;2 ()

I fi = fll 2 ) — Oby completeness of L2 (Q).
s op do

We obtain lim Jo, fi P Jof 5

Likewise for the right hand side we obtain

limf% =f ;
o aniq) QQz‘P

By passing to the limit, we obtain:
f fa —fgi<p.\1<p €D, (i =12)
Xl Q
This implies that g; = %derivative in the sense of distributions,f € H1((Q).

We have: (f;,)converges towards fin L? (Q)and( ! ") converge vers g; = % dans L*(Q)

Moreover :

ofc _ of |’

dx, 0xy

of _of |

axl axl

Ifie = Fllacqy = Wfie = Fllz2qy +

12(Q) L2(Q)

lIfie = FlIZ2(q) = 0 by completeness of L2 ((2)

Ok _ Of ,
ox1 oxoll 2y 0 by completeness ofL*(Q)
Ok _ Of ,

o, oxall 2y 0 by completeness ofL* ()

This implies that the sequence (f;) converges to the function f in H1(Q).

We then write(f,) — f < Jim Ifie = fllgry =0
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Which completes the proof.

Therefore H'(Q)has a Hilbertian structure. [
Conclusion

Sobolev space H'((), we first presented an overview of distributions and Lebesgue spaces
L?(Q). Secondly, we established that the Sobolev space H'(Q)has a remarkable Hilbertian
structure.

By constructing an appropriate scalar product involving the functions and their gradients, we
showed that this space is equipped with a norm and a scalar product satisfying the essential
axioms of bilinearity, positivity, symmetry and the Cauchy-Schwarz inequality. to define a
Hilbert space. The completeness of H!(Q)guarantees that any Cauchy sequence in this space
converges to a limit in H(Q), thus confirming its nature as a Hilbert space.
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