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Estimation of Semi-Parametric Models Using Some Penal 

Methods, Multiple Index Model as an Applied Example 
 

 

Abstract. In this study, some methods for estimating parameters and selecting the 

significant variable for the Semi-parametric Multiple Index Model (SMIM) were used at 

the same time. There are a large number of explanatory variables, and to avoid missing 

any of the important explanatory elements, special methods were used to select the 

significant variables. therefore, in this case, the use of parametric and non-parametric 

estimation methods produces poor performance, especially in the case of increasing the 

dimensions (curse of dimensionality). Accordingly, this research came to shed light on 

some semi-parametric methods for analyzing the multiple index model, which work on 

estimating the model and selecting the significant variables at the same time. These 

methods allow for dimensionality reduction, thus increasing the accuracy of the 

estimation while allowing greater flexibility and less risk in identifying errors.To achieve 

the goal of the study, some methods based on different penalty functions were used, 

which work on estimating and selecting variables for the semi-parametric multiple 

indexmodel at the same time. One of these methods is the (Sg MAVE-Lasso) and         

(Sg MAVE-MCP).  
Key word: SMIM, MAVE,MAVE-Lasso, MAVE-MCP, Groupwise  

 

 
 

INTRODUCTION 

Most of the models used in regression analysis contain a set of unknown parameters, 

which are to be estimated and represent the parametric regression model, which often 

does not take into account the nonlinear effect of the explanatory variables.[1] On the 

other hand, there is another part that represents the nonparametric regression model, 

which is represented by the link function or the conditional distribution function g(.), and 

the non-parametric model depends on the estimation from the data directly and is not 

bound by the assumptions of the parametric model, so it has more flexibility, but the non-

parametric model may not fulfill all the required assumptions and does not work 

completely, and also suffers from the problem of increasing the dimensions[2], or what is 

known as the curse dimensionality, i.e., increasing the number of explanatory variables, 
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and therefore it is difficult to know and choose the effective effective variables, which 

also suffers from the problem of self-correlation. (Autocorrelation). Therefore, there was 

a need for a model that exceeds these restrictions and assumptions and gives more 

accurate results, which is known as the semip-arametric regression model, which 

addresses the problem of increasing dimensions and the non-linear effect of variables. In 

other sciences, in which the explanatory variables are under one linear index   ( ßTX ). 

Semi-parametric methods are used as a compromise between parametric (constrained) 

and non-parametric (flexible) models[3].
 

 

Related work 

In (2012), the researcher (Huang et al) proposed a method to distinguish the linear and 

non-linear components in the semi-parametric models, as this approach identifies the 

parametric and non-parametric components of the semi-parametric model according to 

the data and assuming that the structure of the model is known, and the researcher 

explained that it provides flexible models for joint effects on The regression response 

variable combines the flexibility of non-parametric regression with the stability of linear 

regression. 

In (2014), researchers (Xu Guo, Wangli Xu and Lixing Zhu) presented a study entitled 

“Multiple Index Models with Missing Covariates” in which they suggested the model 

formula as follows: Y=g(  
      and they took into consideration Estimating the model 

by means of a weighted estimation equation by calling the inverse when the probability 

of choice is known in advance and is estimated in a parametric and non-parametric 

manner. The real choice. The research was applied to the clinical data of AIDS patients to 

find the most efficient method, and the research showed that the multiple index model is 

widely used in many statistical, economic, and other fields. 

In (2021), the researchers (Lee & Wang) conducted a study in which they presented 

assumptions to reduce the sizes of the variables of the multiple model to reduce the 

problem of dimensions and thus choose the best model, and the study showed that the 

multiple model contributes to reducing the sizes of the explanatory variables to choose 

the effective variables more accurately one index model. 

In (2021), (Chaohua Dong and others) presented an economic statistical study entitled 

(Multiple Index Model with Unstable Time Series Models, Theory and Application), 

where three types of time series were selected and a set of considerations were reached, 

namely : 

First: The use of the multiple index model and the estimates associated with it allow uses 

and applications in various fields, especially economic and financial. 
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Second: The model building mechanism allows finding reliable estimates for data with 

extreme and high dimensional values and bypassing the spatio-temporal problem. 

Third: The proposed models are applicable to several types of data, such as fixed and 

non-fixed time series data. 

Fourth: The proposed estimation processes enjoy sobriety and can be used 

mathematically in the economic, financial and other fields. 

 

 

Semi-parametric regression models 

Recently, researchers have relied on a new statistical method that integrates parametric 

regression functions with non-parametric regression functions at the same time. It is 

called the semi-parametric regression model, which works on regression analysis as a 

statistical method to study the explanatory variables. The term semi-parametric was 

proposed or developed by researcher (Oakes) in (1981)[4], which refers to two categories 

of models, the first category includes an unknown function of data that must be estimated 

in addition to the parameters (parametric part), and the second category does not include 

parameters but two or more unknown functions that can be estimated (the nonparametric 

part), Inaccurate application of parametric models may result in biased estimates and 

false inferences. On the other hand, nonparametric models provide great flexibility to 

know the shape of the function and have recently gained wide use in many fields to avoid 

the pitfalls of parametric models, but they suffer from the problem of increasing the 

dimensions that were referred to previously. When there are a large number of 

explanatory variables, where the data becomes random or scattered (sparsity), and thus 

the estimate is unreliable, and here nonparametric models are rarely used to achieve 

accurate results, Therefore, the above reasons and problems prompted researchers to turn 

to more reliable modern methods, which are represented by semi-parametric methods or 

models, which produce correct inferences in the event that conditions or hypotheses are 

not met, or the data is characterized by non-linearity.[1] 

 

Semi parametric multi index model(SMIM) 

The expansion of statistical applications and their entry into various fields and sciences 

prompted researchers to search for a more comprehensive model or method than the 

single index model, in line with the large number of explanatory variables, their 

correlation, and their effectiveness. (Li) was the first researcher to write about the 

multiple index model in the Journal of the American Statistical Association in 1991 as 

follows:[5] 

Y= m(XTß1 , … , XTßk  , ɛ ) 
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Where (ß1, …, ßk) this is known as the unknown predictive vectors to be estimated.. 

m(.) : the unknown link function. 

ɛ : random error. 

 According to the researcher's opinion, this model describes the state of the response 

variable (Y) depending on the P dimensions of the explanatory variable X through 

multiple indicators (XTß1 , … , XTßk) , after that, research and studies followed, and the 

model was used in many economic, banking and other fields, where researchers 

(H.Ichiura & Lang-fei) from the University of Michigan Department of Economics and 

Mathematics (1993) published research on the multiple model entitled semi-parametric 

estimation of the multiple index model in the form the following:[6]                                   
                           

      (          (                         (     

 

Properties of semi-parametric multiple index model 

The ideal Semi-parametric Multiple Index (SMIM) model has a number of advantages, as 

follows: [17]  

1. The multiple index model allows modeling the correlations between explanatory     

Working on reduce error variance.           (variables where the formula: Y= g (XTß1 , … ,  

2. The estimators resulting from the multiple model can achieve near-perfect statistical 

convergence even when the response variable is affected by large explanatory variables. 

3. The multiple model is as accurate as the parametric model in estimating the parameter 

vector (β) and as accurate as the non-parametric model in estimating the link function. 

4. It helps to reduce the sizes of the explanatory variables, which helps to reduce the 

problem of increasing the dimensions, and it chooses the effective variables more 

accurately than the other models, so it has a wide range of applications.                              

5. Consistency in the selection of variables is important as the correct model includes the 

important index set that represents non-zero (significant) parameters and also includes the 

unimportant index set that represents zero (non-significant) parameters.                              

 

                                   Penalty function   

The main idea that the penalty function operates on is that it prevents the emergence of a 

problem over the application (over fitting). And it means that the model with all its input 

variables (effective and others) may be below the desired ideal level, meaning that the 

dependent variable (response) depends only on a few important explanatory variables 

(effective), and thus produces inefficient estimators that do not have the smallest possible 

variance [12]. Therefore, we always strive to get rid of this problem by deleting the 

explanatory variables that are associated with other ineffective or unimportant variables, 
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thus getting rid of the problem of multilinearity. Therefore, the result of the penalty 

function is compensated by a large reduction of the sum of squared errors. That is, we try 

to make (SSE) as small as possible, but at the same time, the penalty limit will push us 

towards obtaining very large parameters, as most of the parameters are not zero with a 

large penalty limit, and therefore the estimate for any unimportant or ineffective 

parameter is zero for the penalty least squares estimates for the effect of the variable and 

then the automatic selection of the appropriate model. It is necessary to know that the 

penalty function depends mainly on the penalty parameter, also known as the (tuning 

parameter). and denoted by the symbol (λ), and the different penalty functions lead to 

different penalties for choosing variables[16]. In the following, we explain the penalty 

functions used in this research:                                                                                               

Penalty function:      1. Lasso 

It was suggested by the researcher (Tibshirani) (1996) and it is also known as the (L1) 

penalty function. It means (Least absolute shrinkage and selection operator penalty 

function) and takes the following formula: [15]                                                                     

                                                            

      (     |  | 

 

2. MCP Penalty function: 

It was suggested by a researcher (Zhang) (2010) that it means (Minimax concave Penalty 

function) and takes the following formula:[14]  

    (  

{
 

       | |  
  

  
                                   | |       

   

 
                                                      

 

 

Estimation  methods and  algorithms 

A set of methods for estimating and selecting variables for semi-parametric models in 

general has appeared, including the semi-parametric multiple index model. We will 

discuss these methods that helped improve the accuracy of the model. This study's two 

methods are discussed below:                                                                                                

1. Shrinkage groupwise MAVE with lasso penalty function(S.G MAVE-Lasso) 

The researcher (Tao Wang et al. 2015) proposed this method,[8][13] which combines the 

Lasso-MAVE method and the smart shrinkage groupwise (Shrinkage groupwise). The 

penalty function Lasso was proposed by the researcher (Tibshrani) in 1996, which works 
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on selecting transactions with the least absolute shrinkage (Least absolute shrinkage and 

operator selection method), and it is one of the proposed penal least squares methods 

(PLS). The method of reducing the groupwise with the least variance (with the Lasso 

function) reduces the sum of the squares of the residuals under the following constraint: 

(the sum of the absolute values of the coefficients is less than a certain constant, let it be 

(t), which represents the reduction parameter:[12]                                                                 

 ̂Lasso = argmin SSE  subject to       
 

| ̂      | ≤  t  , According to this method, the 

central averages of the groupwise can be obtained by minimizing the following objective 

function:                                                                                                                                  

{    –          
   

     
 (  

 
-  

 )      
             

     
  

Where (    –     ,   =1, … , n  is a random sample from ( ,  )  ,        ,                   

  
   

  
 , … ,    

   
  

  ,   = 1,…,n  ,     is a matrix    
      

  

 If the value (   ̃=     
 

 ̃  ) represents the groupwise with the minimum variance 

(MAVE), then the model estimate for the smart reduction group is defined as follows: 

 ̂         
 

diag (  ̂ )  ̃ , where(   ̂  ) represents the shrinkage index vectors . therefore, in 

an equal manner, the contraction index vectors are reduced according to the following 

equation: 

    
     

 [ {     ̃      
 

 ̃ 
   ̃̃ 

      (  
 
   

    }
 

 ̃ 
          

 
    

  |   |  ]   

Based on the foregoing and previous constraints, the (Lasso)-(groupwise MAVE) method 

tends to form coefficients equal to zero and thus works to contract and thus produces 

interpretable models. 

 

The algorithms 

 

Estimating and selecting variables in this method is according to the following 

algorithm:[9] 

step (0): The first step is to obtain an initial estimate for the parameter by using the 

ordinary least squares method (ols). 

step (1): And it is installed  ̂(    ̂  , the solution vectors are calculated for the position 

constants (  ̂ ,  ̂  according to the following formula: 

(  ̂ ,  ̂ = argmin    
     

 [   {     
   (              

        
   {   (       )}

     
    {  (      }
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step (2): In this step, the parameter vector    is estimated and set up (  ̂ ,  ̂  using the 

following formula: 

 ̂               argmin    
     

 [   {     
   (              +         

 
| ̂  | 

 Where the          
 

| ̂  |  is the penalty function LASSO. 

step (3): The two steps (1) and (2) are repeated until the convergence rates with the 

parameter vector    are obtained. 

  

2. Shrinkage groupwise MAVE with MCP penalty function ) (S.G MAVE-MCP): 

This method deals with the estimation and selection of parameters with the least mean 

variance of the wise shrinkage group with the penalty function (MCP), and it combines 

the two methods (MCP-MAVE) and the (Shrinkage groupwise). The (MCP) function is 

the (Minimax concave penalty) of the functions. Concave penalties, which are 

characterized by quality in estimation and selection,[11] where the characteristics of 

Oracle are achieved as a result of the fact that the algorithms use concave penalties that 

enable them to converge at different optimal values. The penalty function (MCP) was 

proposed by researcher (Zhang) in (2010). When the two methods (MCP-MAVE) are 

combined, a concavity is produced in the penalty loss points at certain thresholds for 

variable selection and impartiality, and the logic behind the penalty function (MCP) can 

be understood through the derivative of the function:[10] 

 ́MCP(   = {  (   
| |

 
                                 | |       

                                                   
 

The MCP-MAVE method for estimating and selecting variables was proposed by 

researchers (Alkenani and Yu) in (2013) as follows:[10] 

    (∑ ∑ *   {    (      
     } ]

 
 

 

   

     ∑     (|  | 

 

   

 

   

) 

The following can be said about the penalty estimator under (MCP) of the general linear 

regression model: 

 ̂     argmin {     
  (          

 
       

   | |  (      } 

Thus, under the MCP-MAVE method, it is possible to estimate and reduce shrinkage 

vectors and improve the quality of the estimation as follows: 

[{     ̃      
 

 ̃ 
   ̃̃ 

      (  
 
   

    }
 

 ̃ 
 ] +   *   {    (    

   
 
   

   
     } ]

 
        (|  | 

 
    

Where the above equation represents the estimation and selection of variables with the 

lowest rate of variance for the smart contraction group with the (MCP-MAVE) method. 

Therefore, the (MCP-MAVE) method is another alternative for estimating and selecting 

the coefficients with the shrinkage groupwise and thus obtaining the least biased 

regression coefficients in the scattered models. 
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The algorithms  

 

Estimating and selecting variables in this method is according to the following algorithm: 

[9] 

step (0): The first step is to obtain an initial estimate for the parameter by using the 

ordinary least squares method (ols). 

step (1): and it is installed  ̂(    ̂  , the solution vectors are calculated for the position 

constants (  ̂ ,  ̂  according to the following formula: 

(  ̂ ,  ̂ = argmin    
     

 [   {     
   (              

        
   {   (       )}

     
    {  (      }

 

step (2): In this step the parameter vector   is estimated and install (  ̂ ,  ̂  according to 

the following formula: 

 ̂             argmin    
     

 [   {     
   (              +       (|  | 

 
    

 Where the        (|  | 
 
     is the penalty function MCP . 

step (3): The two steps (1) and (2) are repeated until the convergence rates with the 

parameter vector    are obtained.  

 

 

Simulation study  

 

The simulation method was used to determine the best semi-parametric methods that 

were used in the research to estimate and select the variables for the Semi-parametric 

Multiple Index Model (SMIM). The format of the model was chosen as follows: 

Y=g( 
 

 
    

 

 
 )        ,    = 1,2, … , n , 

Also, two link functions g( 
 

 
    

 

 
 ) were used for models that fit most of the cases, 

which were used in published research dealing with the study of multiple models. In the 

basic stage, three experiments were studied, and they chose default values as shown in 

the table below, which shows the cases of the simulation study: 
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TABLE I. The cases of the simulation study 

𝛔      𝛔    

P Experiment n n 

30      50      100 30      50      100 3 I 

30      50      100 30      50      100 5 II 

30      50      100 30      50      100 7 III 

 

As each of the three experiments was done at two levels of standard deviation                

(σ = 1, 0.1), and different sample sizes (n = 30, 50, 100), and different dimensions of the 

explanatory variables (p = 3, 5, 7), The multiple model was estimated for all experiments 

using the estimation methods mentioned in the research and compared between them 

according to the mean squared error (MSE). 

 

Conclusions 

 

1. Through the repeated steps of simulation experiments based on the data in the previous 

table, it was noted that the first method (S.G MAVE-Lasso) in general gives lower (MSE) 

rates than the second method, and this shows that it is the best method for estimating the 

multiple model. 

2. The first method of estimating with the penalty function (LASSO) gives sparse 

estimates for the estimated parameters (   ) , which means that explanatory variables with 

zero coefficients  are removed from the model and the rest of the variables are  kept , and  

process of estimating and selecting variables in this method is continuous, which allows 

obtaining more stable models.   

 

 

Recommendations 

 

1. We recommend the use of estimation methods that include the penalty function 

(LASSO), which are efficient and have important features for estimating multiple 

models. 
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2. We also recommend the use of other methods for estimating the multiple-index model 

with other penalty functions and other functions of the more complex model that may 

allow obtaining more stable models. 
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