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CHAPTER ONE 

 

THE PARADIGM OF COMPLEX PROBABILITY 

APPLIED TO MONTÉ CARLO METHODS 
 

“Thus, joining the rigor of the demonstrations of science to the uncertainty of fate, and 

reconciling these two seemingly contradictory things, it can, taking its name from both, 

appropriately arrogate to itself this astonishing title: the geometry of chance.” 

                    Blaise Pascal. 

 

“You believe in the God who plays dice, and I in complete law and order.” 

  Albert Einstein, Letter to Max Born. 

 

 

Abstract: In 1933, Andrey Nikolaevich Kolmogorov established the system of five axioms that 

define the concept of mathematical probability. This system can be developed to include the set of 

imaginary numbers and this by adding a supplementary three original axioms. Therefore, any 

experiment can be performed in the set C of complex probabilities which is the summation of the 

set R of real probabilities and the set M of imaginary probabilities. The purpose here is to include 

additional imaginary dimensions to the experiment taking place in the "real" laboratory in R and 

hence to evaluate all the probabilities. Consequently, the probability in the entire set C = R + M 

is permanently equal to one no matter what the stochastic distribution of the input random variable 

in R is, therefore the outcome of the probabilistic experiment in C can be determined perfectly. 

This is due to the fact that the probability in C is calculated after subtracting from the degree of 

our knowledge the chaotic factor of the random experiment. This novel complex probability 

paradigm will be applied to the classical probabilistic Monte Carlo numerical methods and to prove 

as well the convergence of these stochastic procedures in an original way. 

 

Keywords: complex set, degree of our knowledge, chaotic factor, complex random vector, 

probability norm, simulation, convergence probability, divergence probability. 

 

NOMENCLATURE 

 

R = real set of events 

M = imaginary set of events 

C = complex set of events 

i         = the imaginary number where 1i    or 2 1i    

EKA = Extended Kolmogorov's Axioms 

CPP     = Complex Probability Paradigm 

Prob = probability of any event 

Pr      = probability in the real set R = probability of convergence in R 

Pm = probability in the imaginary set M corresponding to the real probability in R =          

               probability of divergence in M 
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Pc      = probability of an event in R with its associated event in M = probability in the complex  

               probability set C 

ER       = the exact result of the random experiment  

AR       = the approximate result of the random experiment   

z     = complex probability number = sum of Pr and Pm = complex random vector 

DOK      = 
2

z = the degree of our knowledge of the random system or experiment, it is the square  

               of the norm of z 

Chf       = the chaotic factor of z 

MChf     = magnitude of the chaotic factor of z 

N   = number of random vectors = number of iterations cycles 

CN         = number of random vectors = number of iterations cycles till the convergence of  

                 Monte Carlo method to ER  

Z        = the resultant complex random vector = 
1

N

j

j

z


  

2

2Z

Z
DOK

N
 = the degree of our knowledge of the whole stochastic system 

2Z

Chf
Chf

N
   = the chaotic factor of the whole stochastic system 

ZMChf   = magnitude of the chaotic factor of the whole stochastic system 

UZ         = the resultant complex random vector corresponding to a uniform random distribution 

UZDOK = the degree of our knowledge of the whole stochastic system corresponding to a  

                 uniform random distribution 

UZChf    = the chaotic factor of the whole stochastic system corresponding to a uniform random  

                distribution 

UZMChf = the magnitude of the chaotic factor of the whole stochastic system corresponding to a  

                 uniform random distribution 

UPc        = probability in the complex probability set C of the whole stochastic system  

                 corresponding to a uniform random distribution 

 

I- Introduction 

 

Firstly, in this introductory section an overview of Monte Carlo methods will be done. Before 

the Monte Carlo method was developed, simulations tested a previously understood deterministic 

problem, and statistical sampling was used to estimate uncertainties in the simulations. Monte 

Carlo simulations invert this approach, solving deterministic problems using a probabilistic analog 

(once can refer to Simulated annealing). 

 

An early variant of the Monte Carlo method can be seen in the Buffon's needle experiment, in 

which π can be estimated by dropping needles on a floor made of parallel and equidistant strips. 

In the 1930s, Enrico Fermi first experimented with the Monte Carlo method while studying neutron 

diffusion, but did not publish anything on it. [1] 
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The modern version of the Markov Chain Monte Carlo method was invented in the late 1940s 

by Stanislaw Ulam, while he was working on nuclear weapons projects at the Los Alamos National 

Laboratory. Immediately after Ulam's breakthrough, John von Neumann understood its importance 

and programmed the ENIAC computer to carry out Monte Carlo calculations. In 1946, physicists 

at Los Alamos Scientific Laboratory were investigating radiation shielding and the distance that 

neutrons would likely travel through various materials. Despite having most of the necessary data, 

such as the average distance a neutron would travel in a substance before it collided with an atomic 

nucleus, and how much energy the neutron was likely to give off following a collision, the Los 

Alamos physicists were unable to solve the problem using conventional, deterministic 

mathematical methods. Ulam had the idea of using random experiments. He recounts his 

inspiration as follows: 

 

“The first thoughts and attempts I made to practice [the Monte Carlo Method] were suggested 

by a question which occurred to me in 1946 as I was convalescing from an illness and playing 

solitaires. The question was what are the chances that a Canfield solitaire laid out with 52 cards 

will come out successfully? After spending a lot of time trying to estimate them by pure 

combinatorial calculations, I wondered whether a more practical method than "abstract thinking" 

might not be to lay it out say one hundred times and simply observe and count the number of 

successful plays. This was already possible to envisage with the beginning of the new era of fast 

computers, and I immediately thought of problems of neutron diffusion and other questions of 

mathematical physics, and more generally how to change processes described by certain 

differential equations into an equivalent form interpretable as a succession of random operations. 

Later [in 1946], I described the idea to John von Neumann, and we began to plan actual 

calculations.” [2] 

 

Being secret, the work of von Neumann and Ulam required a code name. [3] A colleague of 

von Neumann and Ulam, Nicholas Metropolis, suggested using the name Monte Carlo, which 

refers to the Monte Carlo Casino in Monaco where Ulam's uncle would borrow money from 

relatives to gamble. [1] Using lists of "truly random" random numbers was extremely slow, but 

von Neumann developed a way to calculate pseudorandom numbers, using the middle-square 

method. Though this method has been criticized as crude, von Neumann was aware of this: he 

justified it as being faster than any other method at his disposal, and also noted that when it went 

awry it did so obviously, unlike methods that could be subtly incorrect. [4] 

 

Monte Carlo methods were central to the simulations required for the Manhattan Project, 

though severely limited by the computational tools at the time. In the 1950s they were used at Los 

Alamos for early work relating to the development of the hydrogen bomb, and became popularized 

in the fields of physics, physical chemistry, and operations research. The Rand Corporation and 

the U.S. Air Force were two of the major organizations responsible for funding and disseminating 

information on Monte Carlo methods during this time, and they began to find a wide application 

in many different fields. 

 

The theory of more sophisticated mean field type particle Monte Carlo methods had certainly 

started by the mid-1960s, with the work of Henry P. McKean Jr. on Markov interpretations of a 

class of nonlinear parabolic partial differential equations arising in fluid mechanics. [5,6] We also 

quote an earlier pioneering article by Theodore E. Harris and Herman Kahn, published in 1951, 
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using mean field genetic-type Monte Carlo methods for estimating particle transmission energies. 

[7] Mean field genetic type Monte Carlo methodologies are also used as heuristic natural search 

algorithms (a.k.a. Metaheuristic) in evolutionary computing. The origins of these mean field 

computational techniques can be traced to 1950 and 1954 with the work of Alan Turing on genetic 

type mutation-selection learning machines [8] and the articles by Nils Aall Barricelli at the Institute 

for Advanced Study in Princeton, New Jersey. [9,10] 

 

Quantum Monte Carlo, and more specifically Diffusion Monte Carlo methods can also be 

interpreted as a mean field particle Monte Carlo approximation of Feynman-Kac path integrals. 

[11-17] The origins of Quantum Monte Carlo methods are often attributed to Enrico Fermi and 

Robert Richtmyer who developed in 1948 a mean field particle interpretation of neutron-chain 

reactions, [18] but the first heuristic-like and genetic type particle algorithm (a.k.a. Resampled or 

Reconfiguration Monte Carlo methods) for estimating ground state energies of quantum systems 

(in reduced matrix models) is due to Jack H. Hetherington in 1984 [17] In molecular chemistry, 

the use of genetic heuristic-like particle methodologies (a.k.a. pruning and enrichment strategies) 

can be traced back to 1955 with the seminal work of Marshall. N. Rosenbluth and Arianna. W. 

Rosenbluth. [19] 

 

The use of Sequential Monte Carlo in advanced signal processing and Bayesian inference is 

more recent. It was in 1993, that Gordon et al., published in their seminal work [20] the first 

application of a Monte Carlo resampling algorithm in Bayesian statistical inference. The authors 

named their algorithm 'the bootstrap filter', and demonstrated that compared to other filtering 

methods, their bootstrap algorithm does not require any assumption about that state-space or the 

noise of the system. We also quote another pioneering article in this field of Genshiro Kitagawa 

on a related "Monte Carlo filter", [21] and the ones by Pierre Del Moral [22] and Himilcon 

Carvalho, Pierre Del Moral, André Monin and Gérard Salut [23] on particle filters published in 

the mid-1990s. Particle filters were also developed in signal processing in the early 1989-1992 by 

P. Del Moral, J.C. Noyer, G. Rigal, and G. Salut in the LAAS-CNRS in a series of restricted and 

classified research reports with STCAN (Service Technique des Constructions et Armes Navales), 

the IT company DIGILOG, and the LAAS-CNRS (the Laboratory for Analysis and Architecture 

of Systems) on RADAR/SONAR and GPS signal processing problems. [24-29] These Sequential 

Monte Carlo methodologies can be interpreted as an acceptance-rejection sampler equipped with 

an interacting recycling mechanism. 

 

From 1950 to 1996, all the publications on Sequential Monte Carlo methodologies including 

the pruning and resample Monte Carlo methods introduced in computational physics and 

molecular chemistry, present natural and heuristic-like algorithms applied to different situations 

without a single proof of their consistency, nor a discussion on the bias of the estimates and on 

genealogical and ancestral tree-based algorithms. The mathematical foundations and the first 

rigorous analysis of these particle algorithms are due to Pierre Del Moral [22,30] in 1996. 

Branching type particle methodologies with varying population sizes were also developed in the 

end of the 1990s by Dan Crisan, Jessica Gaines and Terry Lyons, [31-33] and by Dan Crisan, 

Pierre Del Moral and Terry Lyons. [34] Further developments in this field were developed in 2000 

by P. Del Moral, A. Guionnet and L. Miclo. [12,35,36] 
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Finally, and to conclude, this research work is organized as follows: After the introduction in 

section I, the purpose and the advantages of the present work are presented in section II. Afterward, 

in section III, we will explain and illustrate the complex probability paradigm with its original 

parameters and interpretation. In section IV, the Monte Carlo techniques of integration and 

simulation will be explained. In section V, I will extend Monte Carlo methods to the imaginary 

and complex probability sets and hence link this concept to my novel complex probability 

paradigm. Moreover, in section VI, I will prove the convergence of Monte Carlo methods using 

the concept of the resultant complex random vector Z. Furthermore, in section VII we will evaluate 

the original paradigm parameters and in section VIII a flowchart of the complex probability and 

Monte Carlo methods prognostic model will be drawn. Additionally, in section IX simulations of 

Monte Carlo methods will be accomplished in the continuous and discrete cases. Finally, I 

conclude the work by doing a comprehensive summary in section X, and then present the list of 

references cited in the current research work. 

 

II- The Purpose and the Advantages of the Present Work [37-90] 

 

In this section we will present the purpose and the advantages of the current research work. 

Computing probabilities is the main work of classical probability theory. Adding new dimensions 

to the stochastic experiments will lead to a deterministic expression of probability theory. This is 

the original idea at the foundations of this work. Actually, the theory of probability is a 

nondeterministic system in its essence; that means that the events outcomes are due to chance and 

randomness. The addition of novel imaginary dimensions to the chaotic experiment occurring in 

the set R will yield a deterministic experiment and hence a stochastic event will have a certain 

result in the complex probability set C. If the random event becomes completely predictable then 

we will be fully knowledgeable to predict the outcome of stochastic experiments that arise in the 

real world in all stochastic processes. Consequently, the work that has been accomplished here 

was to extend the real probabilities set R to the deterministic complex probabilities set C = R + 

M by including the contributions of the set M which is the imaginary set of probabilities. 

Therefore, since this extension was found to be successful, then a novel paradigm of stochastic 

sciences and prognostic was laid down in which all stochastic phenomena in R was expressed 

deterministically. I called this original model "the Complex Probability Paradigm" that was 

initiated and illustrated in my previous research publications. 

 

Accordingly, the advantages and the purpose of the current paper are to: 

 

1- Extend classical probability theory to the set of complex numbers, therefore to link the 

theory of probability to the field of complex variables and analysis. This job was started 

and elaborated in my previous works. 

 

2- Apply the new axioms of probability and paradigm to Monte Carlo methods. 

 

3- Show that all stochastic phenomena can be expressed deterministically in the set of 

complex probabilities C. 

 

4- Measure and compute both the degree of our knowledge and the chaotic factor of Monte 

Carlo methods. 
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5- Draw and illustrate the graphs of the parameters and functions of the original paradigm 

corresponding to Monte Carlo methods. 

 

6- Show that the classical concept of probability is always equal to one in the complex set; 

hence, no randomness, no chaos, no uncertainty, no ignorance, no disorder, and no 

unpredictability exist in: 

 

C (complex set) = R (real set) + M (imaginary set). 

 

7- Prove the convergence of the stochastic Monte Carlo procedures in an original way by 

using the newly defined axioms and paradigm. 

 

8- Pave the way to implement this novel model to other areas in stochastic processes and to 

the field of prognostics. These will be the topics of my future research works.  

 

Concerning some applications of the original elaborated paradigm and as a future work, it can be 

applied to any random phenomena using Monte Carlo methods whether in the discrete or in the 

continuous cases.  

 

Furthermore, compared with existing literature, the main contribution of the present research work 

is to apply the novel paradigm of complex probability to the concepts and techniques of the 

stochastic Monte Carlo methods and simulations.  

 

The following figure shows the main purposes of the Complex Probability Paradigm (CPP) 

(Figure 1). 

 
Figure 1. The diagram of the main purposes of the Complex Probability Paradigm 

Complex
Probability 
Paradigm

Monte
Carlo 

Methods

Complex 
Analysis

Probability 
Theory

Stochastic 
Phenomena

Applied to 

Applied to Applied to 

Applied to 
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III- The Complex Probability Paradigm 

 

III-1- The Original Andrey Nikolaevich Kolmogorov System of Axioms  

 

The simplicity of Kolmogorov’s system of axioms may be surprising. Let E be a collection 

of elements {E1, E2, …} called elementary events and let F be a set of subsets of E called random 

events. The five axioms for a finite set E are [91-96]: 

Axiom 1:  F is a field of sets. 

Axiom 2:  F contains the set E. 

Axiom 3:  A non-negative real number Prob(A), called the probability of A, is assigned to each 

                  set A in F. We have always 0  Prob(A)  1. 

Axiom 4:  Prob(E) equals 1. 

Axiom 5:  If A and B have no elements in common, the number assigned to their union is: 

( ) ( ) ( )rob rob robP A B P A P B    

      hence, we say that A and B are disjoint; otherwise, we have: 

( ) ( ) ( ) ( )rob rob rob robP A B P A P B P A B      

And we say also that: ( ) ( ) ( / ) ( ) ( / )rob rob rob rob robP A B P A P B A P B P A B      which is the 

conditional probability. If both A and B are independent then: ( ) ( ) ( )rob rob robP A B P A P B   . 

 

Moreover, we can generalize and say that for N disjoint (mutually exclusive) events 

1 2, , , , ,j NA A A A  (for 1 j N  ), we have the following additivity rule:   

 
11

N N

rob j rob j

jj

P A P A


 
 

 
  

 

And we say also that for N independent events 
1 2, , , , ,j NA A A A  (for 1 j N  ), we have the 

following product rule:   

 
11

N N

rob j rob j

jj

P A P A


 
 

 
  

 

III-2- Adding the Imaginary Part M 

 

Now, we can add to this system of axioms an imaginary part such that: 

 

Axiom 6:  Let (1 )m rP i P    be the probability of an associated event in M (the imaginary 

part) to the event A in R (the real part). It follows that / 1r mP P i   where i is the imaginary 

number with 1i    or 2 1i   . 

Axiom 7:  We construct the complex number or vector (1 )r m r rZ P P P i P       having a 

norm Z  such that:    

2 2 2( / )r mZ P P i  . 
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Axiom 8:  Let Pc denote the probability of an event in the complex probability universe C where 

C = R + M. We say that Pc is the probability of an event A in R with its associated event in M 

such that: 

  
22 2( / ) 2r m r mPc P P i Z iP P      and is always equal to 1. 

 

We can see that by taking into consideration the set of imaginary probabilities we added three 

new and original axioms and consequently the system of axioms defined by Kolmogorov was 

hence expanded to encompass the set of imaginary numbers. 

 

III-3- The Purpose of Extending the Axioms 

 

After adding the new three axioms, it becomes clear that the addition of the imaginary 

dimensions to the real stochastic experiment yields a probability always equal to one in the 

complex probability set C. Actually, we will understand directly this result when we realize that 

the set of probabilities is formed now of two parts: the first part is real and the second part is 

imaginary. The stochastic event that is happening in the set R of real probabilities (like in the 

experiment of coin tossing and getting a tail or a head) has a corresponding real probability rP  and    

a corresponding imaginary probability mP . In addition, let M be the set of imaginary probabilities 

and let 
2

Z  be the Degree of Our Knowledge (DOK for short) of this experiment. According to 

the axioms of Kolmogorov, rP  is always the probability of the phenomenon in the set R. [97-102] 

  

 In fact, a total ignorance of the set M leads to:         

Prob(event) 0.5rP  , 
mP  = Prob(imaginary part) = 0.5i, and 

2
Z DOK  in this case is 

equal to: 1 2 (1 ) 1 (2 0.5) (1 0.5) 0.5 50%r rP P          

 

 Conversely, a total knowledge of the set in R leads to: 

Prob(event) 1rP   and  
mP  = Prob(imaginary part) = 0. Here we have 

1 (2 1) (1 1) 1DOK        because the phenomenon is totally known, that is, all the 

variables and laws affecting the experiment are determined completely, therefore; our 

degree of our knowledge (DOK) of the system is 1 = 100%. 

 

 Now, if we are for sure that an event will never happen i.e. like ‘getting nothing’ (the empty 

set), rP  is accordingly = 0, that is the event will never occur in R. mP  will be equal to: 

(1 ) (1 0)ri P i i    , and 
2

1 (2 0) (1 0) 1Z DOK       , because we are sure that the 

event of getting nothing will never happen; therefore, the Degree of Our Knowledge (DOK) 

of the system is 1 = 100%. 

 

We can deduce that we have always: 
2

0.5 1,    :  0 1r rZ P P        
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 and 
2 2 2( / )r mZ DOK P P i   , where 0 , / 1r mP P i   

 

And what is crucial is that in all cases we have: 

 

 
222 2 2( / ) 2 (1 ) 1 1r m r m r rPc P P i Z iP P P P          

 

Actually, according to an experimenter in R, the phenomenon is random: the experimenter ignores 

the outcome of the chaotic phenomenon. Each outcome will be assigned a probability 
rP  and he 

will say that the outcome is nondeterministic. But in the complex probability universe C = R + 

M, the outcome of the random phenomenon will be totally predicted by the observer since the 

contributions of the set M were taken into consideration, so this will give: 

 
2 2( / )r mPc P P i   

 

Therefore Pc  is always equal to 1. Actually, adding the imaginary set to our stochastic 

phenomenon leads to the elimination of randomness, of ignorance, and of nondeterminism. 

Subsequently, conducting experiments of this class of phenomena in the set C is of great 

importance since we will be able to foretell with certainty the output of all random phenomenon. 

In fact, conducting experiments in the set R leads to uncertainty and unpredictability. So, we place 

ourselves in the set C instead of placing ourselves in the set R, then study the random events, since 

in C we take into consideration all the contributions of the set M and therefore a deterministic 

study of the stochastic experiment becomes possible. Conversely, by taking into consideration the 

contributions of the probability set M we place ourselves in the set C and by disregarding M we 

restrict our experiment to nondeterministic events in R. [103-112] 

 

Furthermore, we can deduce from the above axioms and definitions that: 

2

2 2 (1 )

          2 (1 ) 2 (1 )

          

r m r r

r r r r

iP P i P i P

i P P P P

Chf

    

      



                                                                                                                                                                                        

 

2 r miP P  will be called the Chaotic factor in our stochastic event and will be denoted accordingly by 

‘Chf’. We will understand why we have named this term the chaotic factor; in fact: 

 

 In case 1rP  , that means in the case of a certain event, then the chaotic factor of the event 

is equal to 0. 

 In case 0rP  , that means in the case of an impossible event, then Chf = 0. Therefore, in 

both two last cases, there is no chaos because the output of the event is certain and is known 

in advance. 

 In case 0.5rP  , 0.5Chf   .  

 

So, we deduce that: 0.5 0,     :  0 1r rChf P P      . (Figures 2-4) 
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Consequently, what is truly interesting here is therefore we have quantified both the degree of our 

knowledge and the chaotic factor of any stochastic phenomenon and hence we can state 

accordingly: 
22 2 r mPc Z iP P DOK Chf     

Then we can conclude that:  
2Pc = Degree of our knowledge of the system – Chaotic factor = 1, 

therefore 1Pc   permanently and constantly. 

  

This directly leads to the following crucial conclusion: if we succeed to subtract and eliminate the 

chaotic factor in any stochastic phenomenon, then we will have the outcome probability always 

equal to one. [37-90] [113-122] 

 

 

 

 

 

 

 
The Complex Probability Paradigm Parameters for Any Probability Distribution 

 
Figure 2. Chf, DOK, and Pc for any probability distribution in 2D 
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Figure 3. DOK, Chf, and Pc for any probability distribution in 3D with 

2 1Pc DOK Chf Pc     

 

Figure 4. DOK, Chf, and Pc for a Weibull probability distribution in 3D with 
2 1Pc DOK Chf Pc     
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The graph below illustrates the linear relation between both DOK and Chf. (Figure 5) 

The Complex Probability Paradigm Parameters for Any Probability Distribution 

 

Figure 5. Graph of 
2 1Pc DOK Chf Pc     for any probability distribution 

 

Furthermore, we require in our present analysis the absolute value of the chaotic factor that will 

quantify for us the magnitude of the chaotic and stochastic influences on the random system 

considered which is materialized by the real probability 
rP  and a probability density function, and 

which lead to an increasing or decreasing system chaos in R. This additional and original term 

will be denoted accordingly MChf or Magnitude of the Chaotic factor. Therefore, we define this 

new term by: 

2 2 2 (1 ) 0,    :  0 1r m r m r r r rMChf Chf iPP iPP P P P P         ,                                                                     

And  
2

         ,    since  0.5 0 

        1,

Pc DOK Chf

DOK Chf Chf

DOK MChf

 

    

  

                                                                                                                   

0 0.5MChf    where 0.5 1DOK  . 

 

The graph below (Figure 6) illustrates the linear relation between both DOK and MChf. Moreover, 

Figures 7 to 13 illustrate the graphs of Chf, MChf, DOK, and Pc as functions of the real probability 

Pr and of the random variable X for any probability distribution and for a Weibull probability 

distribution. [37-90] 
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The Complex Probability Paradigm Parameters for Any Probability Distribution 

 

Figure 6. Graph of 
2 1Pc DOK MChf Pc     for any probability distribution 

 
The Complex Probability Paradigm Parameters for Any Probability Distribution 

 
Figure 7. MChf, DOK, and Pc for any probability distribution in 2D 
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Figure 8. DOK, MChf, and Pc for any probability distribution in 3D with 

2 1Pc DOK MChf Pc     

 

 
Figure 9. DOK, MChf, and Pc for a Weibull probability distribution in 3D with 

2 1Pc DOK MChf Pc     
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The Complex Probability Paradigm Parameters for Any Probability Distribution 

 

 
Figure 10. Chf and MChf for any probability distribution in 2D 

 

 
Figure 11. Chf and MChf for any probability distribution in 3D with MChf + Chf = 0 
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Figure 12. Chf and MChf for a Weibull probability distribution in 3D with 

 MChf + Chf = 0 

 

 
The Complex Probability Paradigm Parameters for Any Probability Distribution 

 
Figure 13. Chf, MChf, DOK, and Pc for any probability distribution in 2D 
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To conclude and to summarize, in the real probability universe R our degree of our certain 

knowledge is regrettably imperfect, therefore we extend our study to the complex set C which 

embraces the contributions of both the real probabilities set R and the imaginary probabilities set 

M. Subsequently, this will lead to a perfect and complete degree of knowledge in the universe       

C = R + M (since Pc = 1). In fact, working in the complex universe C leads to a certain prediction 

of any random event, because in C we eliminate and subtract from the calculated degree of our 

knowledge the quantified chaotic factor. This will yield a probability in the universe C equal to 

one (Pc2 = DOK Chf = DOK + MChf = 1 = Pc). Many illustrations considering various continuous 

and discrete probability distributions in my previous research papers verify this hypothesis and 

novel paradigm. [37-90] The Extended Kolmogorov Axioms (EKA for short) or the Complex 

Probability Paradigm (CPP for short) can be summarized and shown in the following figure 

(Figure 14): 

 

 

 

 

 

 

 

Figure 14- The EKA or the CPP diagram 

 

 

IV- The Monte Carlo Techniques of Integration and Simulation [123-133] 

 

In applied mathematics, the name Monte Carlo is given to the method of solving problems by 

means of experiments with random numbers. This name, after the casino at Monaco, was first 

applied around 1944 to the method of solving deterministic problems by reformulating them in 

terms of a problem with random elements which could then be solved by large-scale sampling. 

But, by extension, the term has come to mean any simulation that uses random numbers. 

5 original 

Kolmogorov 

axioms 

Real Probability Pr 

Pr 

Input: 

Real set R 

Output: 

Complex set C 

A total of 8 axioms 

Complex number Z = Pr + Pm 

Complex Probability Pc = 1 

Pc2 = DOK – Chf = 1 

     Pc2 = DOK + MChf = 1 
 

Adding 3 axioms 

Imaginary Probability Pm 

 Chf  = 2iPrPm 

 MChf  = |Chf| = –2iPrPm 

 

 

Add: 

Imaginary set M 
 

Total 

Determinism 

Chance 

and 

Luck 
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The development and proliferation of computers has led to the widespread use of Monte 

Carlo methods in virtually all branches of science, ranging from nuclear physics (where computer-

aided Monte Carlo was first applied) to astrophysics, biology, engineering, medicine, operations 

research, and the social sciences. 

 

The Monte Carlo Method of solving problems by using random numbers in a computer – 

either by direct simulation of physical or statistical problems or by reformulating deterministic 

problems in terms of one incorporating randomness – has become one of the most important tools 

of applied mathematics and computer science. A significant proportion of articles in technical 

journals in such fields as physics, chemistry, and statistics contain articles reporting results of 

Monte Carlo simulations or suggestions on how they might be applied. Some journals are devoted 

almost entirely to Monte Carlo problems in their fields. Studies in the formation of the universe or 

of stars and their planetary systems use Monte Carlo techniques. Studies in genetics, the 

biochemistry of DNA, and the random configuration and knotting of biological molecules are 

studied by Monte Carlo methods. In number theory, Monte Carlo methods play an important role 

in determining primality or factoring of very large integers far beyond the range of deterministic 

methods. Several important new statistical techniques such as “bootstrapping” and “jackknifing” 

are based on Monte Carlo methods. 

 

Hence, the role of Monte Carlo methods and simulation in all of the sciences has increased 

in importance during the past several years. These methods play a central role in the rapidly 

developing subdisciplines of the computational physical sciences, the computational life sciences, 

and the other computational sciences. Therefore, the growing power of computers and the evolving 

simulation methodology have led to the recognition of computation as a third approach for 

advancing the natural sciences, together with theory and traditional experimentation. At the kernel 

of Monte Carlo simulation is random number generation. 

 

Now we turn to the approximation of a definite integral by the Monte Carlo method. If we 

select the first N elements 1 2, , , Nx x x  from a random sequence in the interval (0,1), then: 

 
1

1 10

(1 0) 1
( ). ( ) ( )

N N

j j

j j

f x dx f x f x
N N 


    

 

Here the integral is approximated by the average of N numbers 1 2( ), ( ), , ( )Nf x f x f x . When this 

is actually carried out, the error is of order 
1

N
, which is not at all competitive with good 

algorithms, such as the Romberg method. However, in higher dimensions, the Monte Carlo method 

can be quite attractive. For example, 

 
1 1 1

1 10 0 0

[(1 0) (1 0) (1 0)] 1
( , , ). . . ( , , ) ( , , )

N N

j j j j j j

j j

f x y z dx dy dz f x y z f x y z
N N 

    
     
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where ( , , )j j jx y z  is a random sequence of N points in the unit cube 0 1x  , 0 1y  , and 

0 1z  . To obtain random points in the cube, we assume that we have a random sequence in 

(0,1) denoted by 1 2 3 4 5 6, , , , , ,      To get our first random point 1p  in the cube, just let 

1 1 2 3( , , )p    . The second is, of course, 2 4 5 6( , , )p     and so on. 

 

  If the interval (in a one-dimensional integral) is not of length 1, but say is the general case 

(a, b), then the average of f over N random points in (a, b) is not simply an approximation for the 

integral but rather for: 

 

1
( ).

b

a

f x dx
b a   

 

which agrees with our intention that the function ( ) 1f x   has an average of 1. Similarly, in higher 

dimensions, the average of f over a region is obtained by integrating and dividing by the area, 

volume, or measure of that region. For instance, 

 
7 5 3 7 5 3

4 2 0 4 2 0

1 1
( , , ). . . ( , , ). . .

[(7 4) (5 ( 2)) (3 0)] 63
f x y z dx dy dz f x y z dx dy dz

 


             

 

is the average of f over the parallelepiped described by the following three inequalities: 

 

0 3x  , 2 5y   , 4 7z  . 

 

To keep the limits of integration straight, we recall that: 

 

( , ). . ( , ). .

b d b d

a c a c

f x y dx dy f x y dx dy
 

  
 

     

and 

 
2 2 2 2 2 2

1 1 1 1 1 1

( , , ). . . ( , , ). . .

a b c a b c

a b c a b c

f x y z dx dy dz f x y z dx dy dz
   

   
   

       

 

So, if ( , )j jx y denote random points with appropriate uniform distribution, the following examples 

illustrate Monte Carlo techniques: 

 
9

1 11

(9 1) 8
( ). ( ) ( )

N N

j j

j j

f x dx f x f x
N N 


    

8 5

1 14 2

[(8 4) (5 2)] 12
( , ). . ( , ) ( , )

N N

j j j j

j j

f x y dx dy f x y f x y
N N 

  
    
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In each case, the random points should be uniformly distributed in the regions involved. 

 

In general, we have: 

 

A

f  (measure of A)   (average of f over N random points in A) 

 

Here we are using the fact that the average of a function on a set is equal to the integral of the 

function over the set divided by the measure of the set. 

 

V- The Complex Probability Paradigm and Monte Carlo Methods Parameters  

                 [37-90] [134-141] 

 

V-1- The Probabilities of Convergence and Divergence 

 

Let ER  be the exact result of the random experiment or of a simple or a multidimensional integral 

that are not always possible to evaluate by ordinary methods of probability theory or calculus or 

deterministic numerical methods. And let AR  be the approximate result of these experiments and 

integrals found by Monte Carlo methods.  

 

The relative error in the Monte Carlo methods is: Rel. Error 1E A A

E E

R R R

R R


     

In addition, the percent relative error is = 100% E A

E

R R

R


  and is always between 0% and 100%. 

Therefore, the relative error is always between 0 and 1. Hence: 

 

 

0 1 if 
0

0 1
2

0 1 if 

E A
A E

E A EE A

E A EE E A
A E

E

R R
R R

R R RR R

R R RR R R
R R

R

  
    

    
    

   
    

 

 

 

Moreover, we define the real probability by: 

 

1 1 if  0  if  0  

1 1 1

2 if  2  1 1 if  2  

A A
A E A E

E EE A A
r

AE E A
E A EE A E

EE

R R
R R R R

R RR R R
P

RR R R R R RR R R
RR

   
        

    
       

           

 

= 1 – the relative error in the Monte Carlo method  

= Probability of Monte Carlo method convergence in R. 

 

And therefore: 
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 1 1 1 1 1 1 1

1 if  0  1 if  0  

1 if  2  1 if  2  

E A A A
m r

E E E

A A
A E A E

E E

A A
E A E E A E

E E

R R R R
P i P i i i

R R R

R R
i R R i R R

R R

R R
i R R R i R R R

R R

         
                

         

    
         

     
  

    
          
    

 

= Probability of Monte Carlo method divergence in the imaginary probability set M since it is the 

imaginary complement of rP .  

 

Consequently,  

1 if  0  

/ 1 1

1 if  2  

A
A E

EA
m r

AE
E A E

E

R
R R

RR
P i P

RR
R R R

R


  


     

   


 

= The relative error in the Monte Carlo method  

= Probability of Monte Carlo method divergence in R since it is the real complement of rP . 

 

In the case where 0 A ER R   we have 0 1A

E

R

R
  0 1rP    and we deduce also that 

0 1 1A

E

R

R

 
   
 

0 / 1mP i    and 0 mP i    

And in the case where 2E A ER R R  1 2A

E

R

R
    0 2 1A

E

R

R

 
    

 
0 1rP    and we 

deduce also that 0 1 1A

E

R

R

 
   
 

0 / 1mP i    and 0 mP i    

 

Therefore, if 0AR   or 2A ER R  that means before the beginning of the simulation, then: 

rP  = Prob (convergence) in R = 0 

mP = Prob (divergence) in M = i 

/mP i  = Prob (divergence) in R = 1 

 

And if A ER R  that means at the end of Monte Carlo simulation then: 

rP  = Prob (convergence) in R = 1 

mP = Prob (divergence) in M = 0 

/mP i  = Prob (divergence) in R = 0 
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V-2- The Complex Random Vector Z in C 

 

We have 

1 if  0  

2 1 if  2  

A A
A E

E E

r m

A A
E A E

E E

R R
i R R

R R
Z P P

R R
i R R R

R R

  
     

  
   

   
       

   

  

 

where 

if  0  

Re( )

2 if  2  

A
A E

E

r

A
E A E

E

R
R R

R
Z P

R
R R R

R


 


  

   


= the real part of Z  

and 

1 if  0  

Im( ) /

1 if  2  

A
A E

E

m

A
E A E

E

R
R R

R
Z P i

R
R R R

R


  


  

   


= the imaginary part of Z.  

That means that the complex random vector Z is the sum in C of the real probability of convergence 

in R and of the imaginary probability of divergence in M. 

If 0AR   (before the simulation begins) then 0A
r

E

R
P

R
   and 1 (1 0)A

m

E

R
P i i i

R

 
     

 
 

therefore 0Z i i   . 

If 
2

E
A

R
R   or 

3

2

E
A

R
R   (at the middle of the simulation) then: 

 

if  0  0.5 if  0  
2

0.5
3

2 if  2  2 0.5 if  2  
2

A E
A E A E

E E

r r

A E
E A E E A E

E E

R R
R R R R

R R
P P

R R
R R R R R R

R R

 
     

 
    
       
  

  

and 

1 if  0  1 0.5 if  0  
2

0.5
3

1 if  2  1 0.5 if  2  
2

A E
A E A E

E E

m m

A E
E A E E A E

E E

R R
i R R i i R R

R R
P P i

R R
i R R R i i R R R

R R

    
          

     
    

    
          

    

 

therefore 0.5 0.5Z i  . 

 

If A ER R  (at the simulation end) then: 

 

1 if  0  

1

2 2 2 1 1 if  2  

A E
A E

E E

r r

A E
E A E

E E

R R
R R

R R
P P

R R
R R R

R R


   


  
        

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And 

 

1 if  0  1 if  0  
0 if  0  

0 if  2  
1 if  2  1 if  2  

0

A E
A E A E

E E A E

m

E A EA E
E A E E A E

E E

m

R R
i R R i R R

R R R R
P

R R RR R
i R R R i R R R

R R

P

    
         

      
    

      
         

    

 

  

 

therefore 1 0 1Z i   . 

 

V-3- The Degree of Our Knowledge DOK 

 

We have: 

 

2 2

2 2 2

2 2

2 2

2

if  0  1 if  0  

( / )

2 if  2  1 if  2  

1 if  0  

      

2 1

A A
A E A E

E E

r m

A A
E A E E A E

E E

A A
A E

E E

A A

E E

R R
R R R R

R R
DOK Z P P i

R R
R R R R R R

R R

R R
R R

R R

R R

R R

    
        
    

     
    

         
    

   
      

   


 
   

 

2

2 2

2 2 1 if  0  

if  2  2 6 5 if  2  

A A
A E

E E

A A
E A E E A E

E E

R R
R R

R R

R R
R R R R R R

R R

     
        
     

 
      

           
      

 

 

From CPP we have that 0.5 1DOK   then if 0.5DOK   
2

2

2 2 1 0.5 if  0  

2 6 5 0.5 if  2  

A A
A E

E E

A A
E A E

E E

R R
R R

R R

R R
R R R

R R

    
        
    

 
   

       
   

  

then solving the second-degree equation for A

E

R

R
 gives: 

1/ 2 if  0  
/ 2 if  0  

3 / 2 if  2  
3 / 2 if  2  

A
A E

E A E A E

A E E A EA
E A E

E

R
R R

R R R R R

R R R R RR
R R R

R


     

 
     



and vice versa.  
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That means that DOK is minimum when the approximate result is equal to half of the exact result 

if  0 A ER R   or when the approximate result is equal to three times the half of the exact result 

if  2E A ER R R  , that means at the middle of the simulation.  

 

In addition, if 1DOK   then: 

 
2 2

2 2

2 2 1 1 if  0  0 if  0  

2 6 5 1 if  2  2 6 4 0 if  2  

A A A A
A E A E

E E E E

A A A A
E A E E A E

E E E E

R R R R
R R R R

R R R R

R R R R
R R R R R R

R R R R

        
                
        

  
        

                 
        

 

 

0  OR  if  0  

2  OR  if  2  

A A E A E

A E A E E A E

R R R R R

R R R R R R R

   
 

   
and vice versa.  

 

That means that DOK is maximum when the approximate result is equal to 0 or 2 ER  (before the 

beginning of the simulation) and when it is equal to the exact result (at the end of the simulation). 

We can deduce that we have perfect and total knowledge of the stochastic experiment before the 

beginning of Monte Carlo simulation since no randomness was introduced yet, as well as at the 

end of the simulation after the convergence of the method to the exact result. 

 

V-4- The Chaotic Factor Chf 

 

We have: 

 

 

1 if  0  if  0  

2 2

2 if  2  1 if  2  

AA
A EA E

EE

r m

A A
E A E E A E

E E

RR
i R RR R

RR
Chf iP P i

R RR R R i R R R
R R

  
      

   
    

           

  

since 2 1i    then: 

2 1 if  0  

2 2 1 if  2  

A A
A E

E E

A A
E A E

E E

R R
R R

R R
Chf

R R
R R R

R R

   
      

   
 

  
      

  

 

 

From CPP we have that 0.5 0Chf    then if 0.5Chf    
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2 1 0.5 if  0  
/ 2 if  0  

3 / 2 if  2  
2 2 1 0.5 if  2  

A A
A E

E E A E A E

A E E A EA A
E A E

E E

R R
R R

R R R R R R

R R R R RR R
R R R

R R

   
        

     
  

     
        

  

 

and vice versa. 

 

That means that Chf is minimum when the approximate result is equal to half of the exact result 

if  0 A ER R   or when the approximate result is equal to three times the half of the exact result 

if  2E A ER R R  , that means at the middle of the simulation.  

 

In addition, if 0Chf   then: 

2 1 0 if  0  
0  OR  if  0  

2  OR  if  2  
2 2 1 0 if  2  

A A
A E

E E A A E A E

A E A E E A EA A
E A E

E E

R R
R R

R R R R R R R

R R R R R R RR R
R R R

R R

   
       

      
  

      
       

  

 

 

And, conversely, if  
0  OR  if  0  

2  OR  if  2  

A A E A E

A E A E E A E

R R R R R

R R R R R R R

   


   
 then 0Chf  .  

 

That means that Chf is equal to 0 when the approximate result is equal to 0 or 2 ER  (before the 

beginning of the simulation) and when it is equal to the exact result (at the end of the simulation). 

 

V-5- The Magnitude of the Chaotic Factor MChf 

 

We have: 

1 if  0  if  0  

2 2

2 if  2  1 if  2  

AA
A EA E

EE

r m

A A
E A E E A E

E E

RR
i R RR R

RR
MChf Chf iP P i

R RR R R i R R R
R R

  
      

   
       

           

 

since 2 1i    then: 

2 1 if  0  

2 2 1 if  2  

A A
A E

E E

A A
E A E

E E

R R
R R

R R
MChf

R R
R R R

R R

   
     

   
 

  
     

  

 

 

From CPP we have that 0 0.5MChf   then if 0.5MChf   
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2 1 0.5 if  0  
/ 2 if  0  

3 / 2 if  2  
2 2 1 0.5 if  2  

A A
A E

E E A E A E

A E E A EA A
E A E

E E

R R
R R

R R R R R R

R R R R RR R
R R R

R R

   
      

     
  

     
      

  

 

and vice versa. 

 

That means that MChf is maximum when the approximate result is equal to half of the exact result 

if  0 A ER R   or when the approximate result is equal to three times the half of the exact result 

if  2E A ER R R  , that means at the middle of the simulation. This implies that the magnitude of 

the chaos (MChf) introduced by the random variables used in Monte Carlo method is maximum at 

the halfway of the simulation. 

 

In addition, if 0MChf   then: 

2 1 0 if  0  
0  OR  if  0  

2  OR  if  2  
2 2 1 0 if  2  

A A
A E

E E A A E A E

A E A E E A EA A
E A E

E E

R R
R R

R R R R R R R

R R R R R R RR R
R R R

R R

   
      

      
  

      
      

  

 

 

And, conversely, if  
0  OR  if  0  

2  OR  if  2  

A A E A E

A E A E E A E

R R R R R

R R R R R R R

   
 

   
 then 0MChf  .  

 

That means that MChf is minimum and is equal to 0 when the approximate result is equal to 0 or 

2 ER  (before the beginning of the simulation) and when it is equal to the exact result (at the end of 

the simulation). We can deduce that the magnitude of the chaos in the stochastic experiment is null 

before the beginning of Monte Carlo simulation since no randomness was introduced yet, as well 

as at the end of the simulation after the convergence of the method to the exact result when 

randomness has finished its task in the stochastic Monte Carlo method and experiment. 

 

V-6- The Probability Pc in the Probability Set C = R + M 

 

We have: 
2

2

2

2 2 1 if  0  2 1 if  0  

2 2 1 if  2  2 6 5 if  2  

A A A A
A E A E

E E E E

A AA A
E A EE A E

E EE E

Pc DOK Chf DOK MChf

R R R R
R R R R

R R R R

R RR R R R RR R R
R RR R

   

       
              
        

  
      

              
     
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2
1 if  0  

1   for  0 2  
1 if  2  

A E

A E

E A E

R R
Pc R R

R R R

 
    

 
 

 

1Pc  = Probability of convergence in C, therefore: 

1 if  0  
if  0  

if  2  
2 1 if  2  

A
A E

E A E A E

A E E A EA
E A E

E

R
R R

R R R R R
Pc

R R R R RR
R R R

R


     

  
      



 

    for  0 2A E A ER R R R     continuously in the probability set C = R + M. This is due to the 

fact in C we have subtracted in the equation above the chaotic factor Chf from our knowledge DOK 

and therefore we have eliminated chaos caused and introduced by all the random variables and the 

stochastic fluctuations that lead to approximate results in the Monte Carlo simulation in R. 

Therefore, since in C we have always A ER R  then the Monte Carlo simulation which is a 

stochastic method by nature in R becomes after applying the CPP a deterministic method in C 

since the probability of convergence of any random experiment in C is constantly and permanently 

equal to 1 for any iterations number N. 

 

V-7- The Rates of Change of the Probabilities in R, M, and C 

 

Since 

1 if  0  

Re( ) Im( )

2 1 if  2  

A A
A E

E E

r m

A A
E A E

E E

R R
i R R

R R
Z P P Z i Z

R R
i R R R

R R

  
     

  
    

   
       

   

  

Then: 

 

1 if  0  

2 1 if  2  

1 if  0  

                            

A A
A E

A E E
mr

A A A
A A

E A E

A E E

A A
A E

A E A E

A

R Rd
i R R

dR R RdPdPdZ

dR dR dR R Rd
i R R R

dR R R

R Rd d
i R R

dR R dR R

d

dR

   
      

   
   

    
        

    

    
      

    


2 1 if  2  

                            

A A
E A E

E A E

R Rd
i R R R

R dR R






    
       

    
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1 1
(1 ) if  0

1 1
( 1) if  2

A E

E E E

E A E

E E E

i
i R R

R R R

i
i R R R

R R R


    


 
     


 

 

Therefore, 

 

1
if  0

Re
1

if  2

A E

Er

A A
E A E

E

R R
RdPdZ

dR dR
R R R

R


    

   
    



  

                  
constant 0 if  0   and  0

constant < 0 if  2   and  0

A E E

E A E E

R R R

R R R R

   
 

  
 

that means that the slope of the probability of convergence in R or its rate of change is 

constant and positive if  0 A ER R  , and constant and negative if  2E A ER R R  , and it 

depends only on ER  ; hence, we have a constant increase in rP  (the convergence 

probability) as a function of the iterations number N as AR  increases from 0 to ER  and as 

AR  decreases from 2 ER  to ER  till rP  reaches the value 1 that means till the random 

experiment converges to ER . 

 

1
if  0

( / )1
Im

1
if  2

A E

Em m

A A A
E A E

E

R R
RdP d P idZ

dR i dR dR
R R R

R


    

    
    



 

                   
constant < 0 if  0   and  0

constant > 0 if  2   and  0

A E E

E A E E

R R R

R R R R

  
 

  
 

 that means that the slopes of the probabilities of divergence in R and M or their rates of 

change are constant and negative if  0 A ER R  , and constant and positive 

if  2E A ER R R  , and they depend only on ER ; hence, we have a constant decrease in 

/mP i  and mP  (the divergence probabilities) as functions of the iterations number N as AR  

increases from 0 to ER  and as AR  decreases from 2 ER  to ER  till /mP i  and mP  reach the 

value 0 that means till the random experiment converges to ER . 

 

Additionally,  

UNDER PEER REVIEW



 

29 

 

2 2 2 2 2

2 2

2 2

( / )1

1 1
if  0

          

1 1
if  2

m mr r

A A A A A

A E

E E

E A E

E E

dP d P idP dPdZ

dR dR i dR dR dR

R R
R R

R R R
R R

       
          
       

   
       
   

 
   
      
   

 

2

2 2 2

1 1 2
   for  0 2A E

A E E E

dZ
R R

dR R R R
       

 

2
constant 0

A E

dZ

dR R
     if 0ER  ; that means that the module of the slope of the complex 

probability vector Z in C or of its rate of change is constant and positive and it depends only on ER

; hence, we have a constant increase in Re( )Z  and a constant decrease in Im( )Z  as functions of 

the iterations number N and as Z goes from (0, i) at N = 0 till (1,0) at the simulation end; hence, 

till Re( ) rZ P  reaches the value 1 that means till the random experiment converges to ER . 

 

Furthermore, since 
2 1Pc DOK Chf DOK MChf      then 1Pc  = Probability of 

convergence in C and consequently :
( ) (1)

0
A A

d Pc d

dR dR
  , that means that Pc is constantly equal to 1 

for every value of AR , of ER , and of the iterations number N, that means for any stochastic 

experiment and for any simulation of Monte Carlo method. So, we conclude that in C we have 

complete and perfect knowledge of the random experiment which has become now a deterministic 

one since the extension in the complex probability plane C defined by the CPP axioms has changed 

all stochastic variables to deterministic variables. 

 

VI- The Resultant Complex Random Vector Z and the Convergence of Monte Carlo 

Methods [37-90] 

 

A powerful tool will be described in the current section which was developed in my 

personal previous research papers and which is founded on the concept of a complex random 

vector that is a vector combining the real and the imaginary probabilities of a random outcome, 

defined in the three added axioms of CPP by the term 
j r j m jz P P  . Accordingly, we will define 

the vector Z as the resultant complex random vector which is the sum of all the complex random 

vectors 
jz  in the complex probability plane C. This procedure is illustrated by considering first a 

general Bernoulli distribution, then we will discuss a discrete probability distribution with N 

equiprobable random vectors as a general case. In fact, if z represents one output from the uniform 

distribution U, then UZ  represents the whole system of outputs from the uniform distribution U 

that means the whole random distribution in the complex probability plane C. So, it follows directly 
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that a Bernoulli distribution can be understood as a simplified system with two random outputs 

(section VI-1), whereas the general case is a random system with N random outputs (section VI-

2). Afterward, I will prove the convergence of Monte Carlo methods using this new powerful 

concept (section VI-3). 

 

VI-1- The Resultant Complex Random Vector Z of a General Bernoulli Distribution 

(A Distribution with Two Random Outputs)  

 

First, let us consider the following general Bernoulli distribution and let us define its complex 

random vectors and their resultant (Table 1): 

 

Outcome 
jx  1x  2x  

In R  
r jP  1rP p  2rP q  

In M 
m jP  

1 (1 )mP i p iq    
2 (1 )mP i q ip    

In C = R + M 
jz

 1 1 1r mz P P   2 2 2r mz P P   

Table 1. A general Bernoulli distribution in R, M, and C 
 

Where,  

1x  and 2x  are the outcomes of the first and second random vectors respectively. 

Pr1 and Pr2 are the real probabilities of 1x  and 2x  respectively. 

Pm1 and Pm2 are the imaginary probabilities of 1x  and 2x  respectively. 

 

We have 
2

1 2

1

1r j r r

j

P P P p q


      

and 
2

1 2

1

(1 )

 (2 1) ( 1)

mj m m

j

P P P iq ip i p ip

i ip ip i i i N



      

       


 

 

Where N is the number of random vectors or outcomes which is equal to 2 for a Bernoulli 

distribution. 

 

The complex random vector corresponding to the random outcome 
1x  is:  

1 1 1 (1 )r mz P P p i p p iq        

 

The complex random vector corresponding to the random outcome 
2x

 
is:  

2 2 2 (1 )r mz P P q i q q ip        

 

The resultant complex random vector is defined as follows:
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2 2 2

1 2

1 1 1

  ( ) ( ) ( ) ( )

  1 1 (2 1)

1 ( 1)

j r j mj

j j j

Z z z z P P

p iq q ip p q i p q

i i

Z i N

  

    

       

    

   

  

 

                                                               

The probability 1Pc  in the complex plane C = R + M which corresponds to the complex random 

vector 
1z  is computed as follows: 

2 2 2 2 2

1 1 1

1 1 1

22

1 1 1

2 2 2 2

1

( / )

2 / 2

           2 ( ) 1 1

1

r m

r m

z P P i p q

Chf P P i pq

Pc z Chf

p q pq p q

Pc

   

   

  

      

 

 

This is coherent with the three novel complementary axioms defined for the CPP. 

 

Similarly, 2Pc  corresponding to 
2z  is: 

2 2 2 2 2

2 2 2

2 2 2

22

2 2 2

2 2 2 2

2

( / )

2 / 2

           2 ( ) 1 1

1

r m

r m

z P P i q p

Chf P P i qp

Pc z Chf

q p qp q p

Pc

   

   

  

      

 

 

 

The probability Pc  in the complex plane C which corresponds to the resultant complex random 

vector 1Z i   is computed as follows:  
2 2

2 2
2 2 2

1 1

2 2

1 1

22

2 22
2

2 2 2 2 2

/ 1 1 2

2 / 2(1)(1) 2

Let 2 2 4 2

4 4
1

2 4

2
1

2

r j m j

j j

r j m j

j j

Z P P i

Chf P P i

s Z Chf s

Z Chf Zs Chf
Pc

N N N N

s
Pc

N

 

 

   
       
   

     

      


       

   

 

 

 

Where s is an intermediary quantity used in our computation of Pc.  
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Pc is the probability corresponding to the resultant complex random vector Z in the probability 

universe C = R + M and is also equal to 1. Actually, Z represents both 
1z  and 

2z  that means the 

whole distribution of random vectors of the general Bernoulli distribution in the complex plane C 

and its probability Pc is computed in the same way as 1Pc  and 2Pc . 

 

By analogy, for the case of one random vector 
jz  we have: 

2
2    with  ( 1)j j jPc z Chf N   . 

In general, for the vector Z we have: 
2

2

2 2
; ( 1)

Z Chf
Pc N

N N
    

Where the degree of our knowledge of the whole distribution is equal to 

2

2Z

Z
DOK

N
 , its relative 

chaotic factor is 
2Z

Chf
Chf

N
 , and its relative magnitude of the chaotic factor is . 

Notice, if N = 1 in the previous formula, then: 
2 2

222 2

2 2 2 2
 

1 1
j j j

Z ZChf Chf
Pc  Z  Chf z Chf Pc

N N
          

which is coherent with the calculations already done. 

To illustrate the concept of the resultant complex random vector Z, I will use the following graph 

(Figure 15). 

               
Figure 15. The resultant complex random vector 

1 2Z z z   for a general Bernoulli distribution 

in the complex probability plane C 

Z ZMChf Chf

 Z = z1 + z2 = 1+ i 

 Imaginary Dimension  

 Pmj 

 O 

 i 

 q   p 

 ip 

 iq 

 z2 

z1 

Real Dimension 

           Prj 
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VI-2- The General Case: A Discrete Distribution with N Equiprobable Random 

Vectors (A Uniform Distribution U with N Random Outputs) 

 

As a general case, let us consider then this discrete probability distribution with N 

equiprobable random vectors which is a discrete uniform probability distribution U with N outputs 

(Table 2): 

 

Outcome 
jx  1x  

2x   Nx  

In R  
r jP  

1

1
rP

N
  2

1
rP

N
  

  

 

1
rNP

N
  

In M 
m jP  

1

1
1mP i

N

 
  

 
 

2

1
1mP i

N

 
  
 

 
 

 
1

1mNP i
N

 
  
 

 

In C = R + M 
jz  1 1 1r mz P P   

2 2 2r mz P P    N r N mNz P P   

Table 2. A discrete uniform distribution with N equiprobable random vectors in R, M, and C 

 

We have here in C = R + M:  

,     :   1j r j mjz P P j j N     , 

and 1 2

1 ( 1)
N

i N
z z z

N N


      

 

1 2

1

1 ( 1)
1 ( 1)

N

U j N j

j

i N
Z z z z z Nz N i N

N N

 
            

 
  

 

Moreover, we can notice that: 
1 2 Nz z z   , hence, 

1 2 1 2U N NZ z z z N z N z N z         

 
2

22 2 2 2

2 2

1 ( 1)
1 ( 1) ,   where  1U j

N
Z N z N N j N

N N

 
         

 
; 

And 

2 2 2 1 1
2 ( / ) 2 2(1)( 1) 2( 1)j r j m j

N
Chf N Chf P P i N N N N

N N

  
                 

  
 

        
22 2 2 21 ( 1) 2( 1) [1 ( 1)]Us Z Chf N N N N             

2 2
2

2 2

2 2 2 2 2

2 2 2 2 2 2 2

1

1 ( 1) 2( 1) 1 ( 1) 2( 1) [1 ( 1)]
           1

1

U

U

U

s N
Pc

N N

Z Chf N N N N N N

N N N N N N N

Pc

   

         
       

 

 

Where s is an intermediary quantity used in our computation of PcU.  
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Therefore, the degree of our knowledge corresponding to the resultant complex vector UZ  

representing the whole uniform distribution is: 
2 2

2 2

1 ( 1)
U

U

Z

Z N
DOK

N N

 
  , 

and its relative chaotic factor is: 

2 2

2( 1)
UZ

Chf N
Chf

N N


   , 

 

Similarly, its relative magnitude of the chaotic factor is: 

2 2 2

2( 1) 2( 1)
U UZ Z

Chf N N
MChf Chf

N N N

 
     . 

Thus, we can verify that we have always: 
2

2

2 2
1

U U U U

U

U Z Z Z Z

Z Chf
Pc DOK Chf DOK MChf

N N
       1UPc   

 

What is important here is that we can notice the following fact.  Take for example: 

2N  

2

2 2

1 (2 1) 2(2 1)
0 5   and   0 5

2 2U UZ ZDOK . Chf .
   

       

4N  

2

2 2

1 (4 1) 2(4 1)
0 625 0 5   and   0 375 0 5

4 4U UZ ZDOK . . Chf . .
   

       
 

5N  

2

2 2

1 (5 1) 2(5 1)
0 68 0 625   and   0 32 0 375

5 5U UZ ZDOK . . Chf . .
   

         

10N  

2

2 2

1 (10 1) 2(10 1)
0 82 0 68   and   0 18 0 32

10 10U UZ ZDOK . . Chf . .
   

         

100N  

2

2

1 (100 1)
0 9802 0 82   and

100UZDOK . .
 

    
2

2(100 1)
0 0198 0 18

100UZChf . .
 

      

   

2

2

2

1 (1000 1)
1000  0 998002 0 9802   and

1000

2(1000 1)
                       0 001998 0 0198

1000

U

U

Z

Z

N DOK . .

Chf . .

 
    

 
    

    
 

 

We can deduce mathematically using calculus that: 
2 2

2 2

1 ( 1)
lim lim lim 1

U

U

Z
N N N

Z N
DOK

N N  

 
   , 

and 
2 2

2( 1)
lim lim lim 0

UZ
N N N

Chf N
Chf

N N  


    .                                        

 

From the above, we can also deduce this conclusion: 
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As much as N increases, as much as the degree of our knowledge in R corresponding to the 

resultant complex vector is perfect and absolute, that means, it is equal to one, and as much as the 

chaotic factor that prevents us from foretelling exactly and totally the outcome of the stochastic 

phenomenon in R approaches zero. Mathematically we state that: If N tends to infinity then the 

degree of our knowledge in R tends to one and the chaotic factor tends to zero. 

 

VI-3- The Convergence of Monte Carlo Methods using Z and CPP 

 

Subsequently, if lim 0
UZ

N
Chf


  then lim 0MC

N
Chf


  (the chaotic factor of Monte Carlo methods) 

provided that: 

1) The Monte Carlo algorithm used to solve the stochastic process or integral is correct 

2) The integral that we want to solve using Monte Carlo methods is convergent 

 

Therefore: 

1) lim lim 2 / 0MC r m
N N

Chf P P i
 

     

0

OR

/ 0

r

m

P

P i




 
 

0

OR

1 / 1 0 1

r

r m

P

P P i




 
     

 

(convergence) 0

OR

(convergence) 1

rob

rob

P

P




 
 

  

that means either the simulation has not started yet ( (convergence) 0robP  ) or the Monte Carlo 

algorithm result or output has converged to the exact result ( (convergence) 1robP  ) since 

0MCChf   in only two places which are 0N   and N  . 

2) And 

lim 2 1 if  0  

lim 0

lim 2 2 1 if  2  

A A
A E

N
E E

MC
N

A A
E A E

N
E E

R R
R R

R R
Chf

R R
R R R

R R







   
      

   
 

  
      

  

 

0   OR   1 0

OR

2 0   OR   1 0

A A

E E

A A

E E

R R

R R

R R

R R


  


 


    


0   OR   

OR

2   OR  

A A E

A E A E

R R R

R R R R

 


 
  

  

that means either: 

 the simulation has not started yet ( 0AR   or 2A ER R ) since at this instant the percent 

relative error is maximum and is equal to 100%,  

 or the Monte Carlo algorithm output has converged to the exact result ( A ER R ) since at 

this instant the percent relative error is minimum and is equal to 0%, 

this is due to the fact that 0MCChf   in only two places which are 0N   and N  . 
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Moreover, the speed of the convergence of Monte Carlo methods depends on: 

 

1) The algorithm used 

 

2) The integrand function of the original integral that we want to evaluate ( ( )f x  or in general

1 2( , , , )nf x x x )  since in Monte Carlo methods: 

1

( ) ( )

b N

j

ja

b a
f x dx f x

N 


   

Or in general: 
1 2

1 2

1 1 2 2
1 2 1 2 1 2

1

[( ) ( ) ( )]
( , , , ). ( , , , )

n

n

bb b N
n n

n n j j n j

ja a a

b a b a b a
f x x x dx dx dx f x x x

N 

     
     

 

3) The random numbers generator that provides the integrand function with random inputs 

for the Monte Carlo methods. In the current research work we have used one specific 

uniform random numbers generator although many others exist in literature. 

 

Furthermore, for 1N  

2 2

2 2

1 (1 1)
1 1

1UZ MC

Z
DOK DOK

N

 
      (the DOK of Monte 

Carlo methods)  

                                   And 
2 2

2(1 1)
0 0

1UZ MC

Chf
Chf Chf

N

 
      

 

This means that we have a random experiment with only one outcome or vector, hence, either

1rP   (always converging)  or  0rP   (always diverging), that means we have respectively either 

a sure event or an impossible event in R. Consequently, we have surely the degree of our 

knowledge is equal to one (perfect experiment knowledge) and the chaotic factor is equal to zero 

(no chaos) since the experiment is either certain (that means we have used a deterministic 

algorithm so the stochastic Monte Carlo methods are replaced by deterministic methods that do 

not use random numbers like the classical and ordinary methods of numerical integration) or 

impossible (an incorrect or divergent algorithm or integral), which is absolutely logical. 

 

Consequently, we have proved here the law of large numbers (already discussed in the published 

papers [37-90]) as well as the convergence of Monte Carlo methods using CPP. The following 

figures (Figures 16 and 17) show the convergence of 
UZChf to 0 and of 

UZDOK to 1 as functions 

of the uniform samples number N (Number of inputs/outputs). 
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Figure 16. 
UZChf ,

UZDOK , and UPc , as functions of N in 2D 

 

 
Figure 17. 

UZChf ,
UZDOK , and UPc , as functions of N in 3D 
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VII- The Evaluation of the New Paradigm Parameters  

 

 We can deduce from what has been elaborated previously the following: 

 

The real convergence probability: 
( )

( ) 1 E A
r

E

R R N
P N

R


        

We have 0 CN N   where N = 0 corresponds to the instant before the beginning of the random 

experiment when ( 0) 0  or 2A ER N R   , and 
CN N  (iterations number needed for the method 

convergence) corresponds to the instant at the end of the random experiments and Monte Carlo 

methods when ( )A C ER N N R  . 

         

The imaginary divergence probability: 
( )

( ) E A
m

E

R R N
P N i

R


                

The real complementary divergence probability: 
( )

( ) / E A
m

E

R R N
P N i

R


   

The complex probability and random vector:  

( ) ( )
( ) ( ) ( ) 1 E A E A

r m

E E

R R N R R N
Z N P N P N i

R R

  
     

 
 

 

The Degree of Our Knowledge:

 

 

2 2

22 2

2

2

( ) ( )
( ) ( ) ( ) ( ) / 1

               1 2 ( ) ( ) 1 2 ( ) 1 ( ) 1 2 ( ) 2 ( )

( ) ( )
               1 2 2

E A E A
r m

E E

r m r r r r

E A E A

E E

R R N R R N
DOK N Z N P N P N i

R R

iP N P N P N P N P N P N

R R N R R N

R R

    
        

   

       

  
    

 

                  

 

The Chaotic Factor: 

  2

2

( ) 2 ( ) ( ) 2 ( ) 1 ( ) 2 ( ) 2 ( )

( ) ( )
             2 2

r m r r r r

E A E A

E E

Chf N iP N P N P N P N P N P N

R R N R R N

R R

      

  
    

 

             

( )Chf N  is null when ( ) (0) 0r rP N P   and when ( ) ( ) 1r r CP N P N  . 

 

The Magnitude of the Chaotic Factor MChf:  

  2

2

( ) ( ) 2 ( ) ( ) 2 ( ) 1 ( ) 2 ( ) 2 ( )

( ) ( )
                2 2

r m r r r r

E A E A

E E

MChf N Chf N iP N P N P N P N P N P N

R R N R R N

R R

      

  
   

 
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( )MChf N  is null when ( ) (0) 0r rP N P   and when ( ) ( ) 1r r CP N P N  . 

 

At any iteration number N: 0 CN N  , the probability expressed in the complex probability 

set C is the following: 
22 2( ) [ ( ) ( ) ] ( ) 2 ( ) ( )

( ) ( )

( ) ( )

1

r m r mPc N P N P N / i Z N iP N P N

             DOK N Chf N

             DOK N MChf N

             

   

 

 



                                                         

then,  

 
22 2 2( ) [ ( ) ( ) ] ( ) [1 ( )] 1 1r m r rPc N P N P N / i P N P N Pc         always 

Hence, the prediction of the convergence probabilities of the stochastic Monte Carlo experiments 

in the set C is permanently certain. 

 

Let us consider thereafter some stochastic experiments and some single and multidimensional 

integrals to simulate the Monte Carlo methods and to draw, to visualize, as well as to quantify all 

the CPP and prognostic parameters. 
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VIII- Flowchart of the Complex Probability and Monte Carlo Methods Prognostic Model 

The following flowchart summarizes all the procedures of the proposed complex 

probability prognostic model: 

 

 
                                                                                    

                                                                             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Random variables set sampling 

,  

Calculate the approximate value 

at each simulation cycles N 

 

Prognostic 

No 

Yes 

Plot all the functions for  

N = 1, NC 

 

   N ≤ NC 

For each iteration  
cycles: N = 1, NC 

Monte Carlo simulation 

evaluation 

 

Complex probability 

paradigm functions 

 

Calculate the real convergence 

probability:   

Calculate DOK: 

DOK(N) = 1 – 2×Pr(N)×[1 – Pr(N)] 

 

Calculate Chf and MChf: 

Chf(N) = – 2×Pr(N)×[1 – Pr(N)] 

MChf(N) = | Chf(N) | 

 

Calculate: Pc2(N) = DOK(N) – Chf(N) 

                             = DOK(N) + MChf(N) 

Calculate the real divergence 

probability:   

Input the random experiment exact result:  

Determine the random numbers generator  
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IX- Simulation of the New Paradigm 

 

Note that all the numerical values found in the simulations of the new paradigm for any 

iteration cycles N were computed using the MATLAB version 2024 software and compared to the 

values found by Microsoft Visual C++ programs (included in all section IX-2). In addition, the 

reader should take care of the rounding errors since all numerical values are represented by at most 

five significant digits and since we are using Monte Carlo methods of integration and simulation 

which give approximate results subject to random effects and fluctuations. 

 

IX-1- The Continuous Random Case 

 

IX-1-1- The First Simple Integral: A Linear Function 

 

Let us consider the integral of the following linear function: 

 
11 2 2

0 0

1 1
0 0.5

2 2 2

x
xdx

 
     
 

 0.5ER   by the deterministic methods of calculus. 

( )f x x  ,  (0,1)x U  

 
1

10

1 N

j A

j

xdx x R
N 

    with 1 CN N   after applying Monte Carlo method. 

 

Moreover, the four figures (Figures 18-21) show the increasing convergence of Monte Carlo 

method and simulation to the exact result 0.5ER   for N = 50, 100, 500, and 100,000CN N   

iterations. Therefore, we have:  

 

( )
lim ( ) lim 1 1 1 0 1E A E E

r
N N

E E

R R N R R
P N

R R 

   
       

  
 which is equal to the convergence 

probability of Monte Carlo method as N  . 

 

Additionally, Figure 22 illustrates clearly and visibly the relation of Monte Carlo method to the 

complex probability paradigm with all its parameters ( , , , , , , / ,A r E mChf R P MChf R DOK P i Pc ) 

after applying it to this linear function.  
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Figure 18. The increasing convergence of the Monte Carlo method up to N = 50 iterations.  

 
Figure 19. The increasing convergence of the Monte Carlo method up to N = 100 iterations. 
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Figure 20. The increasing convergence of the Monte Carlo method up to N = 500 iterations. 

 
Figure 21. The increasing convergence of the Monte Carlo method up to N = 100,000 iterations. 
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Figure 22. The CPP parameters and the Monte Carlo method for a linear function. 

 

IX-1-2- The Second Simple Integral: A Parabolic Function 

Let us consider the integral of the following parabolic function: 
11 3 3

2

0 0

1 1
0 0.3333333

3 3 3

x
x dx

 
     
 

 0.3333333ER   by the deterministic methods of 

calculus. 
2( )f x x  ,  (0,1)x U  

1

2 2

10

1 N

j A

j

x dx x R
N 

    with 1 CN N   after applying Monte Carlo method. 

Moreover, the four figures (Figures 23-26) show the increasing convergence of Monte Carlo 

method and simulation to the exact result 0.3333333ER   for N = 50, 100, 500, and 

100,000CN N   iterations. Therefore, we have:  

( )
lim ( ) lim 1 1 1 0 1E A E E

r
N N

E E

R R N R R
P N

R R 

   
       

  
 which is equal to the convergence 

probability of Monte Carlo method as N  . 

 

Additionally, Figure 27 illustrates clearly and visibly the relation of Monte Carlo method to the 

complex probability paradigm with all its parameters ( , , , , , , / ,A r E mChf R P MChf R DOK P i Pc ) 

after applying it to this parabolic function.  
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Figure 23. The increasing convergence of the Monte Carlo method up to N = 50 iterations. 

 
Figure 24. The increasing convergence of the Monte Carlo method up to N = 100 iterations. 

UNDER PEER REVIEW



 

46 

 

 
Figure 25. The increasing convergence of the Monte Carlo method up to N = 500 iterations. 

 
Figure 26. The increasing convergence of the Monte Carlo method up to N = 100,000 iterations. 
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Figure 27. The CPP parameters and the Monte Carlo method for a parabolic function. 

 

IX-1-3- The Third Simple Integral: A Cubic Function 

Let us consider the integral of the following cubic function: 
11 4 4

3

0 0

1 1
0 0.25

4 4 4

x
x dx

 
     
 

 0.25ER   by the deterministic methods of calculus. 

3( )f x x  ,  (0,1)x U  
1

3 3

10

1 N

j A

j

x dx x R
N 

    with 1 CN N   after applying Monte Carlo method. 

Moreover, the four figures (Figures 28-31) show the increasing convergence of Monte Carlo 

method and simulation to the exact result 0.25ER   for N = 50, 100, 500, and 100,000CN N   

iterations. Therefore, we have:  

( )
lim ( ) lim 1 1 1 0 1E A E E

r
N N

E E

R R N R R
P N

R R 

   
       

  
 which is equal to the convergence 

probability of Monte Carlo method as N  . 

 

Additionally, Figure 32 illustrates clearly and visibly the relation of Monte Carlo method to the 

complex probability paradigm with all its parameters ( , , , , , , / ,A r E mChf R P MChf R DOK P i Pc ) 

after applying it to this cubic function.  
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Figure 28. The increasing convergence of the Monte Carlo method up to N = 50 iterations. 

 

 
Figure 29. The increasing convergence of the Monte Carlo method up to N = 100 iterations. 
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Figure 30. The increasing convergence of the Monte Carlo method up to N = 500 iterations. 

 

 
Figure 31. The increasing convergence of the Monte Carlo method up to N = 100,000 iterations. 
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Figure 32. The CPP parameters and the Monte Carlo method for a cubic function. 

IX-1-4- The Fourth Simple Integral: An Increasing Exponential Function 

Let us consider the integral of the following increasing exponential function: 

 
1

1

0

0

exp( ) exp( ) exp(1) exp(0) 1 2.718281828 1 1.718281828x dx x e       

1.718281828ER   by the deterministic methods of calculus. 

 

( ) exp( )f x x  ,  (0,1)x U  
1

10

1
exp( ) exp( )

N

j A

j

x dx x R
N 

    with 1 CN N   after applying Monte Carlo method. 

Moreover, the four figures (Figures 33-36) show the increasing convergence of Monte Carlo 

method and simulation to the exact result 1.718281828ER   for N = 50, 100, 500, and 

100,000CN N   iterations. Therefore, we have:  

( )
lim ( ) lim 1 1 1 0 1E A E E

r
N N

E E

R R N R R
P N

R R 

   
       

  
 which is equal to the convergence 

probability of Monte Carlo method as N  . 

Additionally, Figure 37 illustrates clearly and visibly the relation of Monte Carlo method to the 

complex probability paradigm with all its parameters ( , , , , , , / ,A r E mChf R P MChf R DOK P i Pc ) 

after applying it to this increasing exponential function.  
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Figure 33. The increasing convergence of the Monte Carlo method up to N = 50 iterations. 

 
Figure 34. The increasing convergence of the Monte Carlo method up to N = 100 iterations. 
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Figure 35. The increasing convergence of the Monte Carlo method up to N = 500 iterations. 

 

 
Figure 36. The increasing convergence of the Monte Carlo method up to N = 100,000 iterations. 
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Figure 37. The CPP parameters and the Monte Carlo method for an increasing exponential 

function. 

IX-1-5- The Fifth Simple Integral: A Decreasing Exponential Function 

Let us consider the integral of the following decreasing exponential function: 

 
1

1

0

0

exp( ) exp( ) exp( 1) exp(0) 0.367879441 1 0.632120558x dx x           

0.632120558ER   by the deterministic methods of calculus. 

( ) exp( )f x x   ,  (0,1)x U  
1

10

1
exp( ) exp( )

N

j A

j

x dx x R
N 

      with 1 CN N   after applying Monte Carlo method. 

Moreover, the four figures (Figures 38-41) show the increasing convergence of Monte Carlo 

method and simulation to the exact result 0.632120558ER   for N = 50, 100, 500, and 

100,000CN N   iterations. Therefore, we have:  

( )
lim ( ) lim 1 1 1 0 1E A E E

r
N N

E E

R R N R R
P N

R R 

   
       

  
 which is equal to the convergence 

probability of Monte Carlo method as N  . 

Additionally, Figure 42 illustrates clearly and visibly the relation of Monte Carlo method to the 

complex probability paradigm with all its parameters ( , , , , , , / ,A r E mChf R P MChf R DOK P i Pc ) 

after applying it to this decreasing exponential function.  
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Figure 38. The increasing convergence of the Monte Carlo method up to N = 50 iterations. 

 
Figure 39. The increasing convergence of the Monte Carlo method up to N = 100 iterations. 
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Figure 40. The increasing convergence of the Monte Carlo method up to N = 500 iterations. 

 

 
Figure 41. The increasing convergence of the Monte Carlo method up to N = 100,000 iterations. 
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Figure 42. The CPP parameters and the Monte Carlo method for a decreasing exponential 

function. 

 

IX-1-6- The Sixth Simple Integral: A Logarithmic Function 

Let us consider the integral of the following logarithmic function: 

 
2

2

1

1

( ) ( ) 2 2 1 0.386294361Ln x dx xLn x x Ln     0.386294361ER   by the 

deterministic methods of calculus. 

( ) ( )f x Ln x  ,  (1,2)x U  
1

10

1
( ) ( )

N

j A

j

Ln x dx Ln x R
N 

    with 1 CN N   after applying Monte Carlo method. 

Moreover, the four figures (Figures 43-46) show the increasing convergence of Monte Carlo 

method and simulation to the exact result 0.386294361ER   for N = 50, 100, 500, and 

100,000CN N   iterations. Therefore, we have:  

( )
lim ( ) lim 1 1 1 0 1E A E E

r
N N

E E

R R N R R
P N

R R 

   
       

  
 which is equal to the convergence 

probability of Monte Carlo method as N  . 

 

Additionally, Figure 47 illustrates clearly and visibly the relation of Monte Carlo method to the 

complex probability paradigm with all its parameters ( , , , , , , / ,A r E mChf R P MChf R DOK P i Pc ) 

after applying it to this logarithmic function.  
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Figure 43. The increasing convergence of the Monte Carlo method up to N = 50 iterations. 

 

 
Figure 44. The increasing convergence of the Monte Carlo method up to N = 100 iterations. 
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Figure 45. The increasing convergence of the Monte Carlo method up to N = 500 iterations. 

 
Figure 46. The increasing convergence of the Monte Carlo method up to N = 100,000 iterations. 
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Figure 47. The CPP parameters and the Monte Carlo method for a logarithmic function. 

 

IX-1-7- A Multiple Integral 

 

Let us consider the multidimensional integral of the following function: 

 
3/23/2 3/2 3/2 3/2 3/2 3/2 3/22

0 0 0 0 0 0 00

3/2 3/23/2 3/22 2

0 00 0

9
. . .

2 8

9 9 9 81
                             . .

8 2 8 8 64 2

81 9
                             

64 8

x
xyz dxdydz yz dydz yz dydz

y z
z dz z dz

 
  

 

   
     

   

  

      

 

729
1.423828125

512


 

1.423828125ER   by the deterministic methods of calculus. 

 

( , , )f x y z xyz  ,  (0,3/ 2)x U , (0,3/ 2)y U , (0,3/ 2)z U  
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3/2 3/2 3/2

10 0 0

1

[(3 / 2 0) (3 / 2 0) (3 / 2 0)]
.

27 / 8
                                  

N

j j j

j

N

j j j A

j

xyz dxdydz x y z
N

x y z R
N





    
 

 

  



  

with 1 CN N   after applying Monte Carlo method. 

 

Moreover, the four figures (Figures 48-51) show the increasing convergence of Monte Carlo 

method and simulation to the exact result 1.423828125ER   for N = 50, 100, 500, and 

100,000CN N   iterations. Therefore, we have:  

 

( )
lim ( ) lim 1 1 1 0 1E A E E

r
N N

E E

R R N R R
P N

R R 

   
       

  
 which is equal to the convergence 

probability of Monte Carlo method as N  . 

 

Additionally, Figure 52 illustrates clearly and visibly the relation of Monte Carlo method to the 

complex probability paradigm with all its parameters ( , , , , , , / ,A r E mChf R P MChf R DOK P i Pc ) 

after applying it to this three-dimensional integral. 

 

 

 
Figure 48. The increasing convergence of the Monte Carlo method up to N = 50 iterations. 
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Figure 49. The increasing convergence of the Monte Carlo method up to N = 100 iterations. 

 

 
Figure 50. The increasing convergence of the Monte Carlo method up to N = 500 iterations. 
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Figure 51. The increasing convergence of the Monte Carlo method up to N = 100,000 iterations. 

 
Figure 52. The CPP parameters and the Monte Carlo method for a multiple integral. 
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IX-2- The Discrete Random Case 

 

IX-2-1- The First Random Experiment: A Random Walk in a Plane 
 

We will try in this problem to simulate random walks in a plane, each walk starting at 

O(0,0) and consisting of s = 10000 steps of length = L = 0.008. The probability theory says that 

after s steps, the expected distance from the starting point will be L s . So, the estimated 

distance in the program will be 0.008 10000 0.008 100 0.8 ER      . The figure below 

shows a random walk in a plane (Figure 53): 
 

                                                                            
 

 

                                                                                                 

          

 

 

      

 

 

                                                                                                                 
                                                           

 

 

 

 

 

Figure 53. A random walk simulation in a plane 

 

 

The algorithm in Microsoft Visual C++ is the following: 

 

#include <iostream> 
#include <cstdlib> 
#include <ctime> 
#include <cmath> 
#include <iomanip> 
 
using namespace std; 
 
int main() 
{ 
 const long double PI = 3.1415926535897931; 
 long int i, j, s, k, N; 
 long double d, d1, d2, alpha, sum, L, f, F; 
 
 cout << "                        THE RANDOM WALK PROBLEM" 
      << endl; 

L = 0.008 

O 

L = 0.008 

L = 0.008  

Y 

X 
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 cout << 
  "                      ---------------------------\n" 
      << endl; 
 
 srand(time(0)); 
 
 N = 100000; L = 0.008; 
 for (i = 1; i <= 3; i++) 
 { 
  sum = 0; 
  for (k = 1; k <= N; k++) 
  { 
   d = d1 = d2 = 0; 
   s = 10000; alpha = 0; f = 0; F = 0; 
   for (j = 1; j <= s; j++) 
   { 
    f = (long double) rand() / 32767; 
    alpha = 2*PI*f; 
    d1 = d1 + (long double) L*f*cos(alpha); 
    d2 = d2 + (long double) L*f*sin(alpha); 
    F = F + f; 
   } 
 
   d1 = (long double) d1 / F; 
   d2 = (long double) d2 / F; 
   d = (long double) PI*sqrt(s)*pow((d1*d1)+(d2*d2),0.5); 
   sum = sum + d; 
  } 
 
  sum = (long double) sum / N; 
 
  cout << fixed << setprecision(3); 
  cout << "AFTER " << s << " STEPS OF LENGTH = " << L 
       << " THE PARTICLE IS AT A DISTANCE " << sum << endl; 
  cout << "THE ESTIMATED DISTANCE IS  = " << L*sqrt(s) << "\n" 
       << endl; 
 
 } 
 
 return 0; 
} 
 

Moreover, the four figures (Figures 54-57) show the increasing convergence of Monte Carlo 

method and simulation to the exact result 0.8ER   for N = 50, 100, 500, and 100,000CN N   

iterations. Therefore, we have: 
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( )
lim ( ) lim 1 1 1 0 1E A E E

r
N N

E E

R R N R R
P N

R R 

   
       

  
 which is equal to the convergence 

probability of Monte Carlo method as N  . 

 

Additionally, Figure 58 illustrates clearly and visibly the relation of Monte Carlo method to the 

complex probability paradigm with all its parameters ( , , , , , , / ,A r E mChf R P MChf R DOK P i Pc ) 

after applying it to this random walk problem. 

 

 

 
Figure 54. The increasing convergence of the Monte Carlo method up to N = 50 iterations. 
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Figure 55. The increasing convergence of the Monte Carlo method up to N = 100 iterations. 

 
Figure 56. The increasing convergence of the Monte Carlo method up to N = 500 iterations. 
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Figure 57. The increasing convergence of the Monte Carlo method up to N = 100,000 iterations. 

 
Figure 58. The CPP parameters and the Monte Carlo method for the random walk problem. 

J 
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IX-2-1-1 The Complex Probability Cubes 

 

In the first cube (Figure 59), the simulation of DOK and Chf as functions of each other and 

of the iterations N for the random walk problem can be seen. The line in cyan is the projection of 

Pc2(N) = DOK(N) - Chf(N) = 1 = Pc(N) on the plane N = 0 iterations. This line starts at the point 

J (DOK = 1, Chf = 0) when N = 0 iterations, reaches the point (DOK = 0.5, Chf = -0.5) when N = 

50,000 iterations, and returns at the end to J (DOK = 1, Chf = 0) when N = NC = 100,000 iterations. 

The other curves are the graphs of DOK(N) (red) and Chf(N) (green, blue, pink) in different planes. 

Notice that they all have a minimum at the point K (DOK = 0.5, Chf = -0.5, N = 50,0000 iterations). 

The point L corresponds to (DOK = 1, Chf = 0, N = NC = 100,000 iterations). The three points J, 

K, L are the same as in Figure 58. 

 

 
 

 

 

 

 

 

 

Figure 59. DOK and Chf in terms of N and of each other for the random walk problem. 

 

       Chf : Chaotic factor 

       Pc2 = DOK – Chf = 1 = Pc 

       DOK : Degree of our knowledge 

       Chf : Chaotic factor 

       Chf : Chaotic factor 
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In the second cube (Figure 60), we can notice the simulation of the convergence probability 

Pr(N) and its complementary real divergence probability Pm(N)/i in terms of the iterations N for 

the random walk problem. The line in cyan is the projection of Pc2(N) = Pr(N) + Pm(N)/i = 1 = 

Pc(N) on the plane N = 0 iterations. This line starts at the point (Pr = 0, Pm/i = 1) and ends at the 

point (Pr = 1, Pm/i = 0). The red curve represents Pr(N) in the plane Pr(N) = Pm(N)/i. This curve 

starts at the point J (Pr = 0, Pm/i = 1, N = 0 iterations), reaches the point K (Pr = 0.5, Pm/i = 0.5, N 

= 50,000 iterations), and gets at the end to L (Pr = 1, Pm/i = 0, N = NC = 100,000 iterations). The 

blue curve represents Pm(N)/i in the plane Pr(N) + Pm(N)/i = 1. Notice the importance of the point 

K which is the intersection of the red and blue curves at N = 50,000 iterations and when Pr(N) = 

Pm(N)/i = 0.5. The three points J, K, L are the same as in Figure 58. 

 

 

 
 

 

 

 

 

Figure 60- Pr and Pm/i in terms of N and of each other for the random walk problem. 

 

       Pm/i : Real Complementary Divergence Probability 

       Pr : Real Convergence Probability 

       Pc : Probability in the set C = Pr + Pm/i = 1 
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In the third cube (Figure 61), we can notice the simulation of the complex random vector 

Z(N) in C as a function of the real convergence probability Pr(N) = Re(Z) in R and of its 

complementary imaginary divergence probability Pm(N) = i×Im(Z) in M , and this in terms of the 

iterations N for the random walk problem. The red curve represents Pr(N) in the plane Pm(N) = 0 

and the blue curve represents Pm(N) in the plane Pr(N) = 0. The green curve represents the complex 

probability vector Z(N) = Pr(N) + Pm(N) = Re(Z) + i×Im(Z) in the plane Pr(N) = iPm(N) + 1.  The 

curve of Z(N) starts at the point J (Pr = 0, Pm= i, N = 0 iterations) and ends at the point L (Pr = 1, 

Pm = 0, N = NC = 100,000 iterations). The line in cyan is Pr(0) = iPm(0) + 1 and it is the projection 

of the Z(N) curve on the complex probability plane whose equation is N = 0 iterations. This 

projected line starts at the point J (Pr = 0, Pm= i, N = 0 iterations) and ends at the point (Pr = 1, Pm 

= 0, N = 0 iterations). Notice the importance of the point K corresponding to N = 50,000 iterations 

and when Pr = 0.5 and Pm = 0.5i. The three points J, K, L are the same as in Figure 58.  

 

 
 

 

 

 

Figure 61- The Complex Probability Vector Z in terms of N for the random walk problem. 

 

         Pr  : Real Convergence Probability in the set R = Re(Z) 

         Pm : Complementary Imaginary Divergence Probability in the set M = i×Im(Z)      

         Z =  Pr + Pm : The Complex Probability Vector in the set C 
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IX-2-2- The Second Random Experiment: The Birthday Problem 

 

 The given of the second random experiment is the following: Find the probability that n people 

( 365)n  selected at random will have n different birthdays. 

 

Theoretical Analysis 

We assume that there are only 365 days in a year (not a leap year) and that all birthdays are equally 

probable, assumptions which are not quite met in reality. 

 

The first of the n people has of course some birthday with probability 365/365 = 1. Then, if the 

second is to have a different birthday, it must occur on one of the other days. Therefore, the 

probability that the second person has a birthday different from the first is 364/365. Similarly, the 

probability that the third person has a birthday different from the first two is 363/365. Finally, the 

probability that the nth person has a birthday different from the others is (365 1) / 365n  . We 

therefore have: 

 

365 364 363 1
(all  birthdays are different) 1

365 365 365 365
E

n
P n R

 
       

 
 

 

The table below gives the theoretical probabilities of different birthdays for a selected number of 

people n (Table 3). 

 

Number of People n Theoretical Probability = 
ER  

n = 1 P  = 1 

n = 2 P  = 0.99726 

n = 3 P  = 0.991796 

n = 4 P  = 0.983644 

n = 5 P  = 0.972864 

n = 10 P  = 0.883052 

n = 20 P  = 0.588562 

n = 50 P  = 0.0296264 

n = 75 P  = 0.000280122 

n = 100 P  = 0.000000307249 

n > 365 P  = 0 

 

Table 3. The theoretical probabilities of distinct birthdays for n people where n ≥ 1. 

 

The algorithm in Microsoft Visual C++ is the following: 

 

#include <iostream> 
#include <iomanip> 
#include <cstdlib> 
#include <ctime> 
#include <cmath> 
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using namespace std; 
 
void theoretical(int); 
void simulated(int); 
 
int main() 
{ 
 int n; 
 cout << "                              THE BIRTHDAY PROGRAM" 

     << endl; 
 cout << "                             ----------------------\n" 
  << endl; 
  
 n = 13; 
 
 cout << fixed << setprecision(4); 
 
 theoretical(n); 
 
 cout << "WAIT...........................................\n" 

     << endl; 
 
 simulated(n); 
 
 return 0; 
} 
 
void theoretical(int n) 
{ 
 int i; 
 long double prod; 
 long double P; 
 
 prod = 1; 
 for (i = 0; i <= (n - 1); i++) 
  prod = (long double) prod * (365 - i) / 365; 
 
 P = prod; 
 
 cout << "The theoretical probability of " << n 
      << " distinct birthday(s) is = " << P << "\n" << endl; 
} 
 
void simulated(int n) 
{ 
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 int table[366] = { 0 }; 
 long int random, match; 
 long double P, sum, N; 
 int i, j; 
 
 srand(time(0)); 
 
 N = 500000000; 
 
 sum = 0; random = 0; P = 0; match = 0; 
 for (j = 1; j <= N; j++) 
 { 
  for (i = 1; i <= n; i++) 
  { 
   random = 1 + rand() % 365; 
   table[random] += 1; 
   random = 0; 
  } 
 
  i = 0; 
  while ((i <= 365) && (match == 0)) 
  { 
   if (table[i] >= 2) 
    match = 1; 
   ++i; 
  } 
 
  if (match == 0) 
   sum += 1; 
 
  for (i = 0; i <= 365; i++) 
   table[i] = 0; 
 
  match = 0; 
 } 
 
 P = (long double) sum / N; 
 
 cout << "The simulated   probability of " << n 
      << " distinct birthday(s) is = " << P << "\n" << endl; 
} 
 

Moreover, the four figures (Figures 62-65) show the increasing convergence of Monte Carlo 

method and simulation to the exact result 0.80558972ER   for 13n   people and for N = 50, 

100, 500, and 500,000,000CN N   iterations. Therefore, we have:  
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   
       

  
 which is equal to the convergence 

probability of Monte Carlo method as N  . 

 

Additionally, Figure 66 illustrates clearly and visibly the relation of Monte Carlo method to the 

complex probability paradigm with all its parameters ( , , , , , , / ,A r E mChf R P MChf R DOK P i Pc ) 

after applying it to this birthday problem. 

 

 

 
Figure 62. The increasing convergence of the Monte Carlo method up to N = 50 iterations. 
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Figure 63. The increasing convergence of the Monte Carlo method up to N = 100 iterations. 

 
Figure 64. The increasing convergence of the Monte Carlo method up to N = 500 iterations. 
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Figure 65. The increasing convergence of the Monte Carlo method up to N = 500,000,000 

iterations. 

 
Figure 66. The CPP parameters and the Monte Carlo method for the birthday problem. 
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IX-2-2-1 The Complex Probability Cubes 

 

In the first cube (Figure 67), the simulation of DOK and Chf as functions of each other and 

of the iterations N for the birthday problem can be seen. The line in cyan is the projection of Pc2(N) 

= DOK(N) - Chf(N) = 1 = Pc(N) on the plane N = 0 iterations. This line starts at the point J (DOK 

= 1, Chf = 0) when N = 0 iterations, reaches the point (DOK = 0.5, Chf = -0.5) when N = 

250,000,000 iterations, and returns at the end to J (DOK = 1, Chf = 0) when N = NC = 500,000,000 

iterations. The other curves are the graphs of DOK(N) (red) and Chf(N) (green, blue, pink) in 

different planes. Notice that they all have a minimum at the point K (DOK = 0.5, Chf = -0.5, N = 

250,000,000 iterations). The point L corresponds to (DOK = 1, Chf = 0, N = NC = 500,000,000 

iterations). The three points J, K, L are the same as in Figure 66. 

 

 
 

 

 

 

 

 

 

Figure 67. DOK and Chf in terms of N and of each other for the birthday problem. 

       Chf : Chaotic factor 

       Pc2 = DOK – Chf = 1 = Pc 

       DOK : Degree of our knowledge 

       Chf : Chaotic factor 

       Chf : Chaotic factor 
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In the second cube (Figure 68), we can notice the simulation of the convergence probability 

Pr(N) and its complementary real divergence probability Pm(N)/i in terms of the iterations N for 

the birthday problem. The line in cyan is the projection of Pc2(N) = Pr(N) + Pm(N)/i = 1 = Pc(N) 

on the plane N = 0 iterations. This line starts at the point (Pr = 0, Pm/i = 1) and ends at the point 

(Pr = 1, Pm/i = 0). The red curve represents Pr(N) in the plane Pr(N) = Pm(N)/i. This curve starts at 

the point J (Pr = 0, Pm/i = 1, N = 0 iterations), reaches the point K (Pr = 0.5, Pm/i = 0.5, N = 

250,000,000 iterations), and gets at the end to L (Pr = 1, Pm/i = 0, N = NC = 500,000,000 iterations). 

The blue curve represents Pm(N)/i in the plane Pr(N) + Pm(N)/i = 1. Notice the importance of the 

point K which is the intersection of the red and blue curves at N = 250,000,000 iterations and when 

Pr(N) = Pm(N)/i = 0.5. The three points J, K, L are the same as in Figure 66. 

 

 

 
 

 

 

 

 

Figure 68. Pr and Pm/i in terms of N and of each other for the birthday problem. 

 

       Pm/i : Real Complementary Divergence Probability 

       Pr : Real Convergence Probability 

       Pc : Probability in the set C = Pr + Pm/i = 1 
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In the third cube (Figure 69), we can notice the simulation of the complex random vector 

Z(N) in C as a function of the real convergence probability Pr(N) = Re(Z) in R and of its 

complementary imaginary divergence probability Pm(N) = i×Im(Z) in M , and this in terms of the 

iterations N for the birthday problem. The red curve represents Pr(N) in the plane Pm(N) = 0 and 

the blue curve represents Pm(N) in the plane Pr(N) = 0. The green curve represents the complex 

probability vector Z(N) = Pr(N) + Pm(N) = Re(Z) + i×Im(Z) in the plane Pr(N) = iPm(N) + 1. The 

curve of Z(N) starts at the point J (Pr = 0, Pm= i, N = 0 iterations) and ends at the point L (Pr = 1, 

Pm = 0, N = NC = 500,000,000 iterations). The line in cyan is Pr(0) = iPm(0) + 1 and it is the 

projection of the Z(N) curve on the complex probability plane whose equation is N = 0 iterations. 

This projected line starts at the point J (Pr = 0, Pm= i, N = 0 iterations) and ends at the point (Pr = 

1, Pm = 0, N = 0 iterations). Notice the importance of the point K corresponding to N = 250,000,000 

iterations and when Pr = 0.5 and Pm = 0.5i. The three points J, K, L are the same as in Figure 66.  

 

 
 

 

 

 

 

Figure 69. The Complex Probability Vector Z in terms of N for the birthday problem. 

         Pr  : Real Convergence Probability in the set R = Re(Z) 

         Pm : Complementary Imaginary Divergence Probability in the set M = i×Im(Z)      

         Z =  Pr + Pm : The Complex Probability Vector in the set C 
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IX-2-3- The Third Random Experiment: The Two Dice Problem 

 

The following program has an analytic solution beside a simulated solution. This is 

advantageous for us because we wish to compare the results of Monte Carlo simulations with 

theoretical solutions. Consider the experiment of tossing two dice. For an unloaded die, the 

numbers 1,2,3,4,5, and 6 are equally likely to occur. We ask: What is the probability of throwing 

a 12 (i.e., 6 appearing on each die) in 14 throws of the dice? 

 

There are six possible outcomes from each die for a total of 36 possible combinations. Only 

one of these combinations is a double 6, so 35 out of the 36 combinations are not correct. With 14 

throws, we have 

14
35

36

 
 
 

as the probability of a wrong outcome. Hence, 

14
35

1 0.325910425
36

 
  
 

 is the exact answer and therefore the value of 
ER . Not all random 

problems of this type can be analyzed like this. 

 

The algorithm in Microsoft Visual C++ is the following:  

 
#include <iostream> 
#include <iomanip> 
#include <cstdlib> 
#include <ctime> 
#include <cmath> 
 
using namespace std; 
 
void theoretical(void); 
void simulated(void); 
 
int main() 
{ 
 cout << "                           THE TWO DICE PROBLEM" 

     << endl; 
 cout << "                         ------------------------\n" 

     << endl; 
 
 cout << fixed << setprecision(4); 
 
 theoretical(); 
 simulated(); 
 
 cout << endl; 
 
 return 0; 
} 
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void theoretical(void) 
{ 
 long double P, p; 
 
 p = (long double) 35 / 36; 
 P = 1 - (long double) pow(p, 14); 
 
 cout << 
 "The theoretical probability of throwing a (6,6) in 14 throws = " 

     << P << "\n" << endl; 
} 
void simulated(void) 
{ 
 long int i, j, die1, die2, sum; 
 long int counter, N; 
 long double P; 
 
 srand(time(0)); 
 
 N = 100000000; 
 
 sum = 0; counter = 0; 
 for (i = 1; i <= N; i++) 
 { 
  j = 1; sum = 0; 
  while ((j <= 14) && (sum != 12)) 
  { 
   die1 = 1 + rand() % 6; 
   die2 = 1 + rand() % 6; 
   sum = die1 + die2; 
 
   if (sum == 12) 
    ++counter; 
   ++j; 
  } 
 } 
 
 P = (long double) counter / N; 
 cout << 
   "\nThe simulated   probability of throwing a (6,6) in 14 throws = " 
      << P << "\n" << endl; 
} 
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Moreover, the four figures (Figures 70-73) show the increasing convergence of Monte Carlo 

method and simulation to the exact result 0.325910425ER   for N = 50, 100, 500, and 

100,000,000CN N   iterations. Therefore, we have:  

 

( )
lim ( ) lim 1 1 1 0 1E A E E

r
N N

E E

R R N R R
P N

R R 

   
       

  
 which is equal to the convergence 

probability of Monte Carlo method as N  . 

 

Additionally, Figure 74 illustrates clearly and visibly the relation of Monte Carlo method to the 

complex probability paradigm with all its parameters ( , , , , , , / ,A r E mChf R P MChf R DOK P i Pc ) 

after applying it to this two dice problem. 

 

 

 
Figure 70. The increasing convergence of the Monte Carlo method up to N = 50 iterations. 
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Figure 71. The increasing convergence of the Monte Carlo method up to N = 100 iterations. 

 
Figure 72. The increasing convergence of the Monte Carlo method up to N = 500 iterations. 
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Figure 73. The increasing convergence of the Monte Carlo method up to N = 100,000,000 

iterations. 

 
Figure 74. The CPP parameters and the Monte Carlo method for the two dice problem. 
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IX-2-3-1 The Complex Probability Cubes 

 

In the first cube (Figure 75), the simulation of DOK and Chf as functions of each other and 

of the iterations N for the two dice problem can be seen. The line in cyan is the projection of Pc2(N) 

= DOK(N) - Chf(N) = 1 = Pc(N) on the plane N = 0 iterations. This line starts at the point J (DOK 

= 1, Chf = 0) when N = 0 iterations, reaches the point (DOK = 0.5, Chf = -0.5) when N = 70,000,000 

iterations, and returns at the end to J (DOK = 1, Chf = 0) when N = NC = 100,000,000 iterations. 

The other curves are the graphs of DOK(N) (red) and Chf(N) (green, blue, pink) in different planes. 

Notice that they all have a minimum at the point K (DOK = 0.5, Chf = -0.5, N = 70,000,000 

iterations). The point L corresponds to (DOK = 1, Chf = 0, N = NC = 100,000,000 iterations). The 

three points J, K, L are the same as in Figure 74. 

 

 
 

 

 

 

 

 

Figure 75. DOK and Chf in terms of N and of each other for the two dice problem. 

       Chf : Chaotic factor 

       Pc2 = DOK – Chf = 1 = Pc 

       DOK : Degree of our knowledge 

       Chf : Chaotic factor 

       Chf : Chaotic factor 
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In the second cube (Figure 76), we can notice the simulation of the convergence probability 

Pr(N) and its complementary real divergence probability Pm(N)/i in terms of the iterations N for 

the two dice problem. The line in cyan is the projection of Pc2(N) = Pr(N) + Pm(N)/i = 1 = Pc(N) 

on the plane N = 0 iterations. This line starts at the point (Pr = 0, Pm/i = 1) and ends at the point 

(Pr = 1, Pm/i = 0). The red curve represents Pr(N) in the plane Pr(N) = Pm(N)/i. This curve starts at 

the point J (Pr = 0, Pm/i = 1, N = 0 iterations), reaches the point K (Pr = 0.5, Pm/i = 0.5, N = 

70,000,000 iterations), and gets at the end to L (Pr = 1, Pm/i = 0, N = NC = 100,000,000 iterations). 

The blue curve represents Pm(N)/i in the plane Pr(N) + Pm(N)/i = 1. Notice the importance of the 

point K which is the intersection of the red and blue curves at N = 70,000,000 iterations and when 

Pr(N) = Pm(N)/i = 0.5. The three points J, K, L are the same as in Figure 74. 

 

 

 
 

 

 

 

 

Figure 76. Pr and Pm/i in terms of N and of each other for the two dice problem. 

 

       Pm/i : Real Complementary Divergence Probability 

       Pr : Real Convergence Probability 

       Pc : Probability in the set C = Pr + Pm/i = 1 
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In the third cube (Figure 77), we can notice the simulation of the complex random vector 

Z(N) in C as a function of the real convergence probability Pr(N) = Re(Z) in R and of its 

complementary imaginary divergence probability Pm(N) = i×Im(Z) in M , and this in terms of the 

iterations N for the two dice problem. The red curve represents Pr(N) in the plane Pm(N) = 0 and 

the blue curve represents Pm(N) in the plane Pr(N) = 0. The green curve represents the complex 

probability vector Z(N) = Pr(N) + Pm(N) = Re(Z) + i×Im(Z) in the plane Pr(N) = iPm(N) + 1.  The 

curve of Z(N) starts at the point J (Pr = 0, Pm= i, N = 0 iterations) and ends at the point L (Pr = 1, 

Pm = 0, N = NC = 100,000,000 iterations). The line in cyan is Pr(0) = iPm(0) + 1 and it is the 

projection of the Z(N) curve on the complex probability plane whose equation is N = 0 iterations. 

This projected line starts at the point J (Pr = 0, Pm= i, N = 0 iterations) and ends at the point (Pr = 

1, Pm = 0, N = 0 iterations). Notice the importance of the point K corresponding to N = 70,000,000 

iterations and when Pr = 0.5 and Pm = 0.5i. The three points J, K, L are the same as in Figure 74.  

 

 
 

 

 

 

Figure 77. The Complex Probability Vector Z in terms of N for the two dice problem. 

 

         Pr  : Real Convergence Probability in the set R = Re(Z) 

         Pm : Complementary Imaginary Divergence Probability in the set M = i×Im(Z)       

         Z =  Pr + Pm : The Complex Probability Vector in the set C 
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X- Conclusion and Perspectives 

 

In the present research work the novel extended Kolmogorov paradigm of eight axioms (EKA) was 

applied and bonded to the classical and stochastic Monte Carlo numerical methods. Hence, a tight 

link between Monte Carlo methods and the original paradigm was made. Therefore, the model of 

"Complex Probability” was more elaborated beyond the scope of my previous research works on 

this subject.  

 

Additionally, as it was verified and shown in the novel model, when N = 0 (before the beginning 

of the random simulation) and when N = NC (when Monte Carlo method converges to the exact 

result) therefore the degree of our knowledge (DOK) is one and the chaotic factor (Chf and MChf) 

is zero since the random effects and fluctuations have either not started or they have finished their 

task on the experiment. During the course of the stochastic experiment (N > 0) we have:                   

0.5 ≤ DOK < 1, -0.5 ≤ Chf < 0, and 0 < MChf ≤ 0.5. Notice that during this whole process we have 

always Pc2 = DOK - Chf = DOK + MChf = 1 = Pc, that means that the simulation which looked to 

be stochastic and random in the set R is now certain and deterministic in the set C = R + M, and 

this after the addition of the contributions of M to the phenomenon occurring in R and thus after 

subtracting and eliminating the chaotic factor from the degree of our knowledge. Moreover, the 

convergence and divergence probabilities of the stochastic Monte Carlo method corresponding to 

each iteration cycle N have been evaluated in the probability sets R, M, and C by rP , mP , and Pc 

respectively. Consequently, at each instance of N, the new Monte Carlo method and CPP 

parameters ER , AR , Pr, mP , /mP i , DOK, Chf, MChf, Pc, and Z are certainly and perfectly predicted 

in the complex probability set C with Pc maintained as equal to one constantly and permanently.  

 

In addition, using all these illustrated simulations and drawn graphs all over the whole research 

work, we can quantify and visualize both the certain knowledge (expressed by DOK and Pc) and 

the system chaos and random effects (expressed by Chf and MChf) of Monte Carlo methods. This 

is definitely very fascinating, fruitful, and wonderful and proves once again the advantages of 

extending the five probability axioms of Kolmogorov and thus the novelty and benefits of this 

original field in prognostic and applied mathematics that can be called verily: 

  

"The Complex Probability Paradigm". 

 

Furthermore, it is important to indicate here that one very well-known and essential probability 

distribution was considered in the present paper which is the discrete uniform probability 

distribution as well as a specific uniform random numbers generator, knowing that the novel CPP 

model can be applied to any uniform random numbers’ generator existent in literature. This will 

lead certainly to analogous conclusions and results and will show undoubtedly the success of my 

original theory. 

 

Moreover, it is also significant to mention that it is possible to compare the current conclusions 

and results with the existing ones from both theoretical investigations and analysis and simulation 

researches and studies. This will be the task of subsequent research papers.  

 

As a prospective and future work and challenges, it is planned to more elaborate the original 

created prognostic paradigm and to implement it to a varied set of nondeterministic systems like 
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for other random experiments in classical probability theory and in stochastic processes. 

Furthermore, we will apply also CPP to the field of prognostic in engineering as well as to other 

random problems which have enormous applications in physics, in economics, in chemistry, in 

applied and pure mathematics. 

 

Data Availability 

 

The data used to support the findings of this study are available from the author upon request.  
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CHAPTER TWO 

 

THE MONTÉ CARLO TECHNIQUES AND THE 

COMPLEX PROBABILITY PARADIGM 
 

 

“Chance is the pseudonym of God when He did not want to sign.” 

            Anatole France. 

 

“There is a certain Eternal Law, to wit, Reason, existing in the mind of God and governing the 

whole universe.” 

 Saint Thomas Aquinas. 

 
“An equation has no meaning for me unless it expresses a thought of God.” 

Srinivasa Ramanujan. 

 

 

Abstract: The five fundamental axioms of classical probability theory were put forward in 1933 

by Andrey Nikolaevich Kolmogorov. Encompassing new imaginary dimensions with the 

experiment real dimensions will make the work in the complex probability set C totally predictable 

and with a probability permanently equal to one. This is the original idea in my complex 

probability paradigm. Therefore, this will make the event in C = R + M absolutely deterministic 

by adding to the real set of probabilities R the contributions of the imaginary set of probabilities 

M. It is of great importance that stochastic systems become totally predictable since we will be 

perfectly knowledgeable to foretell the outcome of all random events that occur in nature. 

Consequently, by calculating the parameters of the new prognostic model, we will be able to 

determine the chaotic factor, the magnitude of the chaotic factor, the degree of our knowledge, the 

real and imaginary and complex probabilities in the probability sets R and M and C and which are 

all subject to chaos and random effects. We will apply this innovative paradigm to the well-known 

Monte Carlo techniques and to their random algorithms and procedures in a novel way. 

 

Keywords: Degree of our knowledge, chaotic factor, complex probability set, probability norm, 

complex random vector, convergence probability, divergence probability, simulation. 
 

 

NOMENCLATURE 

 

R = the events real set 

M = the events imaginary set  

C = the events complex set 

i         = the imaginary number with 2 1i    or 1i     

EKA = Extended Kolmogorov's Axioms 

CPP     = Complex Probability Paradigm 

Prob = any event probability 
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Pr      = the probability in the real set R = convergence probability in R 

Pm = the probability in the complementary imaginary set M that corresponds to the real  

               probability set in R = divergence probability in M 

Pc      = the event probability in R with its associated event in M = probability in the complex  

               probability set C = R + M 

ER        = the random experiment exact result  

AR        = the random experiment approximate result  

Z      = complex probability number = complex random vector = sum of Pr and Pm 

DOK      = 
2

Z = the degree of our knowledge of the stochastic experiment or system, it is the  

                  square of the norm of Z 

Chf       = the chaotic factor of Z 

MChf     = the magnitude of the chaotic factor of Z 

N   = the number of iterations cycles = number of random vectors 

CN         = the number of iterations cycles till the convergence of Monte Carlo method to ER  =  

                 the number of random vectors till convergence. 

 

I- Introduction [1-90] 

 

Computing probabilities is the main work of classical probability theory. Adding new 

dimensions to the stochastic experiments will lead to a deterministic expression of probability 

theory. This is the original idea at the foundations of this work. Actually, the theory of probability 

is a nondeterministic system in its essence; that means that the events outcomes are due to chance 

and randomness. The addition of novel imaginary dimensions to the chaotic experiment occurring 

in the set R will yield a deterministic experiment and hence a stochastic event will have a certain 

result in the complex probability set C. If the random event becomes completely predictable then 

we will be fully knowledgeable to predict the outcome of stochastic experiments that arise in the 

real world in all stochastic processes. Consequently, the work that has been accomplished here 

was to extend the real probabilities set R to the deterministic complex probabilities set                         

C = R + M by including the contributions of the set M which is the imaginary set of probabilities. 

Therefore, since this extension was found to be successful, then a novel paradigm of stochastic 

sciences and prognostic and physics was laid down in which all stochastic phenomena in R was 

expressed deterministically. I coined this novel model by the term "The Complex Probability 

Paradigm" that was initiated and established in my earlier research works. 

 

II- The Purpose and the Advantages of the Current Chapter [37-90] 

 

The advantages and the purpose of the present chapter are to: 

 

1- Extend the theory of classical probability to cover the complex numbers set, hence to 

connect the probability theory to the field of complex variables and analysis. This task was 

started and elaborated in my earlier works. 

2- Apply the novel probability axioms and paradigm to Monte Carlo techniques. 
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3- Show that all nondeterministic phenomena can be expressed deterministically in the 

complex probabilities set which is C. 

 

4- Compute and quantify both the degree of our knowledge and the chaotic factor of Monte 

Carlo procedures. 

 

5- Represent and show the graphs of the functions and parameters of the innovative paradigm 

related to Monte Carlo algorithms. 

 

6- Demonstrate that the classical concept of probability is permanently equal to one in the set 

of complex probabilities; hence, no chaos, no randomness, no ignorance, no uncertainty, 

no unpredictability, no nondeterminism, and no disorder exist in: 

 

C (complex set) = R (real set) + M (imaginary set). 

 

7- Pave the way to implement this inventive model to other topics in prognostics and to the 

field of stochastic processes. These will be the goals of my future research works.  

 

Concerning some applications of the novel established paradigm and as a future work, it can 

be applied to any nondeterministic phenomena using Monte Carlo algorithms whether in the 

continuous or in the discrete cases. Moreover, compared with existing literature, the major 

contribution of the current research chapter is to apply the innovative paradigm of complex 

probability to the concepts and techniques of the probabilistic Monte Carlo simulations and 

algorithms. The next figure displays the major aims of the Complex Probability Paradigm (CPP) 

(Figure 1). 

 
Figure 1. The diagram of the major aims of the Complex Probability Paradigm 
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Paradigm

Monte
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III- The Complex Probability Paradigm [37-141] 

 

III-1- The Original Andrey Nikolaevich Kolmogorov System of Axioms  

 

The simplicity of Kolmogorov’s system of axioms may be surprising. Let E be a collection 

of elements {E1, E2, …} called elementary events and let F be a set of subsets of E called random 

events. The five axioms for a finite set E are: 

 

Axiom 1:  F is a field of sets. 

Axiom 2:  F contains the set E. 

Axiom 3:  A non-negative real number Prob(A), called the probability of A, is assigned to each 

                  set A in F. We have always 0  Prob(A)  1. 

Axiom 4:  Prob(E) equals 1. 

Axiom 5:  If A and B have no elements in common, the number assigned to their union is: 

( ) ( ) ( )rob rob robP A B P A P B    

      hence, we say that A and B are disjoint; otherwise, we have: 

( ) ( ) ( ) ( )rob rob rob robP A B P A P B P A B      

And we say also that: ( ) ( ) ( / ) ( ) ( / )rob rob rob rob robP A B P A P B A P B P A B      which is the 

conditional probability. If both A and B are independent then: ( ) ( ) ( )rob rob robP A B P A P B   . 

 

Moreover, we can generalize and say that for N disjoint (mutually exclusive) events 

1 2, , , , ,j NA A A A  (for 1 j N  ), we have the following additivity rule:   

 
11

N N

rob j rob j

jj

P A P A


 
 

 
  

 

And we say also that for N independent events 
1 2, , , , ,j NA A A A  (for 1 j N  ), we have the 

following product rule:   

 
11

N N

rob j rob j

jj

P A P A


 
 

 
  

 

 III-2- Adding the Imaginary Part M 

 

Now, we can add to this system of axioms an imaginary part such that: 

 

Axiom 6:  Let (1 )m rP i P    be the probability of an associated complementary event in M (the 

imaginary part) to the event A in R (the real part). It follows that / 1r mP P i   where i is the 

imaginary number with 1i    or 2 1i   . 

 

Axiom 7:  We construct the complex number or vector (1 )r m r rZ P P P i P       having a 

norm Z  such that:    
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2 2 2( / )r mZ P P i  . 

 

Axiom 8:  Let Pc denote the probability of an event in the complex probability universe C where 

C = R + M. We say that Pc is the probability of an event A in R with its associated event in M 

such that: 
22 2( / ) 2r m r mPc P P i Z iP P      and is always equal to 1. 

 

We can see that by taking into consideration the set of imaginary probabilities we added three new 

and original axioms and consequently the system of axioms defined by Kolmogorov was hence 

expanded to encompass the set of imaginary numbers. 

 

 III-3- A Brief Interpretation of the Novel Paradigm 
 

To conclude and to summarize my original invented model, as the degree of our certain 

knowledge DOK in the real probability universe and set R is unfortunately imperfect and 

incomplete and hence unsatisfactory, then the extension to the complex probability set C includes 

the contributions of both the real set of probabilities R and the imaginary set of probabilities M. 

Consequently, this will result to a complete and perfect degree of knowledge in C = R + M since 

Pc = 1 constantly and permanently. In fact, in order to have a certain prediction of any random 

event, it is necessary to work in the complex set C in which the chaotic factor Chf is quantified and 

subtracted from the computed degree of knowledge to lead to a probability in C always equal to 

one as it is proved and shown in the following equation: 

 
2 1Pc DOK Chf DOK MChf Pc       

 

and which was derived from the Complex Probability Paradigm. This hypothesis and innovative 

and original model are verified by the mean of many examples encompassing both various, 

important, and well-known discrete and continuous probability distributions illustrated and 

discussed in my previous research works.  

 

The figure that follows shows and summarizes the Extended Kolmogorov Axioms (EKA) or the 

Complex Probability Paradigm (CPP) (Figure 2): 
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Figure 2- The EKA or the CPP diagram 
 

 

IV- The Monte Carlo Techniques and the Complex Probability Paradigm Parameters  

[37-141] 

 

IV-1- The Convergence and Divergence Probabilities 

 

Let ER  be the exact result of the random experiment or of a simple or a multidimensional integral 

that are not always possible to evaluate by ordinary methods of probability theory or calculus or 

deterministic numerical methods. And let AR  be the approximate result of these experiments and 

integrals found by Monte Carlo techniques.  

 

The relative error in the Monte Carlo methods is: Rel. Error 1E A A

E E

R R R

R R


     

In addition, the percent relative error is = 100% E A

E

R R

R


  and is always between 0% and 100%. 

Therefore, the relative error is always between 0 and 1. Hence: 

 

5 original 

Kolmogorov 

axioms 

Real Probability Pr 

Pr 

Input: 

Real set R 

Output: 

Complex set C 

A total of 8 axioms 

Complex number Z = Pr + Pm 

Complex Probability Pc = 1 

Pc2 = DOK – Chf = 1 

     Pc2 = DOK + MChf = 1 
 

Adding 3 axioms 

Imaginary Probability Pm 

 Chf  = 2iPrPm 

 MChf  = |Chf| = –2iPrPm 

 

 

Add: 

Imaginary set M 
 

Total 

Determinism 

Chance 

and 

Luck 
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0 1 if 
0

0 1
2

0 1 if 

E A
A E

E A EE A

E A EE E A
A E

E

R R
R R

R R RR R

R R RR R R
R R

R

  
    

    
    

   
    

 

 

 

Moreover, we define the real probability in the set R by: 

 

1 1 if  0  if  0  

1 1 1

2 if  2  1 1 if  2  

A A
A E A E

E EE A A
r

AE E A
E A EE A E

EE

R R
R R R R

R RR R R
P

RR R R R R RR R R
RR

   
        

    
       

           

 

= 1 – the relative error in the Monte Carlo method  

= Probability of Monte Carlo method convergence in R. 

 

And therefore: 

 

 1 1 1 1 1 1 1

1 if  0  1 if  0  

1 if  2  1 if  2  

E A A A
m r

E E E

A A
A E A E

E E

A A
E A E E A E

E E

R R R R
P i P i i i

R R R

R R
i R R i R R

R R

R R
i R R R i R R R

R R

         
                

         

    
         

     
  

    
          
    

 

= Probability of Monte Carlo method divergence in the imaginary complementary probability set 

M since it is the imaginary complement of rP .  

Consequently,  

1 if  0  

/ 1 1

1 if  2  

A
A E

EA
m r

AE
E A E

E

R
R R

RR
P i P

RR
R R R

R


  


     

   


 

= The relative error in the Monte Carlo method  

= Probability of Monte Carlo method divergence in R since it is the real complement of rP . 

 

In the case where 0 A ER R  0 1A

E

R

R
   0 1rP    and we deduce also that 0 1 1A

E

R

R

 
   
 

0 / 1mP i    and 0 mP i    
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And in the case where 2E A ER R R  1 2A

E

R

R
    0 2 1A

E

R

R

 
    

 
0 1rP    and we 

deduce also that 0 1 1A

E

R

R

 
   
 

0 / 1mP i    and 0 mP i    

 

Therefore, if 0AR   or 2A ER R  that means before the beginning of the simulation, then: 

rP  = Prob (convergence) in R = 0 

mP = Prob (divergence) in M = i 

/mP i  = Prob (divergence) in R = 1 

 

And if A ER R  that means at the end of Monte Carlo simulation then: 

rP  = Prob (convergence) in R = 1 

mP = Prob (divergence) in M = 0 

/mP i  = Prob (divergence) in R = 0 

 

IV-2- The Complex Random Vector Z in C = R + M 

 

We have 

1 if  0  

Re( ) Im( )

2 1 if  2  

A A
A E

E E

r m

A A
E A E

E E

R R
i R R

R R
Z P P Z i Z

R R
i R R R

R R

  
     

  
    

   
       

   

  

 

where 

if  0  

Re( )

2 if  2  

A
A E

E

r

A
E A E

E

R
R R

R
Z P

R
R R R

R


 


  

   


= the real part of Z  

and 

1 if  0  

Im( ) /

1 if  2  

A
A E

E

m

A
E A E

E

R
R R

R
Z P i

R
R R R

R


  


  

   


= the imaginary part of Z.  

That means that the complex random vector Z is the sum in C of the real probability of convergence 

in R and of the imaginary probability of divergence in M. 

 

If 0AR   or 2A ER R  (before the simulation begins) then: 

0
0A

r

E E

R
P

R R
    or 

2
2 2 2 2 0A E

r

E E

R R
P

R R
        
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and 
0

1 1 (1 0)A
m

E E

R
P i i i i

R R

   
         

   
 or  

2
1 1 (2 1)A E

m

E E

R R
P i i i i

R R

   
         

   
 

therefore 0Z i i   . 

 

If 
2

E
A

R
R   or 

3

2

E
A

R
R   (at the middle of the simulation) then: 

 

if  0  0.5 if  0  
2

0.5
3

2 if  2  2 0.5 if  2  
2

A E
A E A E

E E

r r

A E
E A E E A E

E E

R R
R R R R

R R
P P

R R
R R R R R R

R R

 
     

 
    
       
  

  

and 

1 if  0  1 0.5 if  0  
2

0.5
3

1 if  2  1 0.5 if  2  
2

A E
A E A E

E E

m m

A E
E A E E A E

E E

R R
i R R i i R R

R R
P P i

R R
i R R R i i R R R

R R

    
          

     
    

    
          

    

 

therefore 0.5 0.5Z i  . 

 

If A ER R  (at the simulation end) then: 

 

1 if  0  

1

2 2 2 1 1 if  2  

A E
A E

E E

r r

A E
E A E

E E

R R
R R

R R
P P

R R
R R R

R R


   


  
        


  

And 

1 if  0  1 if  0  
0 if  0  

0 if  2  
1 if  2  1 if  2  

0

A E
A E A E

E E A E

m

E A EA E
E A E E A E

E E

m

R R
i R R i R R

R R R R
P

R R RR R
i R R R i R R R

R R

P

    
         

      
    

      
         

    

 

  

therefore 1 0 1Z i   . 

 

IV-3- The Degree of Our Knowledge DOK 

 

We have: 
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2 2

2 2 2

2 2

2 2

2

if  0  1 if  0  

( / )

2 if  2  1 if  2  

1 if  0  

      

2 1

A A
A E A E

E E

r m

A A
E A E E A E

E E

A A
A E

E E

A A

E E

R R
R R R R

R R
DOK Z P P i

R R
R R R R R R

R R

R R
R R

R R

R R

R R

    
        
    

     
    

         
    

   
      

   


 
   

 

2

2 2

2 2 1 if  0  

if  2  2 6 5 if  2  

A A
A E

E E

A A
E A E E A E

E E

R R
R R

R R

R R
R R R R R R

R R

     
        
     

 
      

           
      

 

 

From CPP we have that 0.5 1DOK   then if 0.5DOK   
2

2

2 2 1 0.5 if  0  

2 6 5 0.5 if  2  

A A
A E

E E

A A
E A E

E E

R R
R R

R R

R R
R R R

R R

    
        
    

 
   

       
   

  

then solving the second-degree equations for A

E

R

R
 gives: 

1/ 2 if  0  
/ 2 if  0  

3 / 2 if  2  
3 / 2 if  2  

A
A E

E A E A E

A E E A EA
E A E

E

R
R R

R R R R R

R R R R RR
R R R

R


     

 
     



and vice versa.  

 

That means that DOK is minimum when the approximate result AR  is equal to half of the exact 

result ER  if  0 A ER R   or when the approximate result is equal to three times the half of the 

exact result if  2E A ER R R  , that means at the middle of the simulation.  

 

In addition, if 1DOK   then: 

 
2 2

2 2

2 2 1 1 if  0  0 if  0  

2 6 5 1 if  2  2 6 4 0 if  2  

A A A A
A E A E

E E E E

A A A A
E A E E A E

E E E E

R R R R
R R R R

R R R R

R R R R
R R R R R R

R R R R

        
                
        

  
        

                 
        

 

 

0  OR  if  0  

2  OR  if  2  

A A E A E

A E A E E A E

R R R R R

R R R R R R R

   
 

   
and vice versa.  
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That means that DOK is maximum when the approximate result AR  is equal to 0 or 2 ER  (before 

the beginning of the simulation) and when it is equal to the exact result ER  (at the end of the 

simulation). We can deduce that we have perfect and total knowledge of the stochastic experiment 

before the beginning of Monte Carlo simulation since no randomness was introduced yet, as well 

as at the end of the simulation after the convergence of the method to the exact result. 

 

IV-4- The Chaotic Factor Chf 

 

We have: 

 

 

1 if  0  if  0  

2 2

2 if  2  1 if  2  

AA
A EA E

EE

r m

A A
E A E E A E

E E

RR
i R RR R

RR
Chf iP P i

R RR R R i R R R
R R

  
      

   
    

           

  

Since 2 1i    then: 

2 1 if  0  

2 2 1 if  2  

A A
A E

E E

A A
E A E

E E

R R
R R

R R
Chf

R R
R R R

R R

   
      

   
 

  
      

  

 

 

From CPP we have that 0.5 0Chf    then if 0.5Chf    

2 1 0.5 if  0  
/ 2 if  0  

3 / 2 if  2  
2 2 1 0.5 if  2  

A A
A E

E E A E A E

A E E A EA A
E A E

E E

R R
R R

R R R R R R

R R R R RR R
R R R

R R

   
        

     
  

     
        

  

 

and vice versa. 

 

That means that Chf is minimum when the approximate result AR  is equal to half of the exact 

result ER  if  0 A ER R   or when the approximate result is equal to three times the half of the 

exact result if  2E A ER R R  , that means at the middle of the simulation.  

In addition, if 0Chf   then: 

2 1 0 if  0  
0  OR  if  0  

2  OR  if  2  
2 2 1 0 if  2  

A A
A E

E E A A E A E

A E A E E A EA A
E A E

E E

R R
R R

R R R R R R R

R R R R R R RR R
R R R

R R

   
       

      
  

      
       

  
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And, conversely, if  
0  OR  if  0  

2  OR  if  2  

A A E A E

A E A E E A E

R R R R R

R R R R R R R

   


   
 then 0Chf  .  

 

That means that Chf is equal to 0 when the approximate result AR  is equal to 0 or 2 ER  (before the 

beginning of the simulation) and when it is equal to the exact result ER  (at the end of the 

simulation). 

 

IV-5- The Magnitude of the Chaotic Factor MChf 

 

We have: 

1 if  0  if  0  

2 2

2 if  2  1 if  2  

AA
A EA E

EE

r m

A A
E A E E A E

E E

RR
i R RR R

RR
MChf Chf iP P i

R RR R R i R R R
R R

  
      

   
       

           

 

Since 2 1i    then: 

2 1 if  0  

2 2 1 if  2  

A A
A E

E E

A A
E A E

E E

R R
R R

R R
MChf

R R
R R R

R R

   
     

   
 

  
     

  

 

 

From CPP we have that 0 0.5MChf   then if 0.5MChf   

2 1 0.5 if  0  
/ 2 if  0  

3 / 2 if  2  
2 2 1 0.5 if  2  

A A
A E

E E A E A E

A E E A EA A
E A E

E E

R R
R R

R R R R R R

R R R R RR R
R R R

R R

   
      

     
  

     
      

  

 

and vice versa. 

 

That means that MChf is maximum when the approximate result AR  is equal to half of the exact 

result ER  if  0 A ER R   or when the approximate result is equal to three times the half of the 

exact result if  2E A ER R R  , that means at the middle of the simulation. This implies that the 

magnitude of the chaos (MChf) introduced by the random variables used in Monte Carlo method 

is maximum at the halfway of the simulation. 

 

In addition, if 0MChf   then: 
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2 1 0 if  0  
0  OR  if  0  

2  OR  if  2  
2 2 1 0 if  2  

A A
A E

E E A A E A E

A E A E E A EA A
E A E

E E

R R
R R

R R R R R R R

R R R R R R RR R
R R R

R R

   
      

      
  

      
      

  

 

And, conversely, if  
0  OR  if  0  

2  OR  if  2  

A A E A E

A E A E E A E

R R R R R

R R R R R R R

   
 

   
 then 0MChf  .  

 

That means that MChf is minimum and is equal to 0 when the approximate result AR  is equal to 0 

or 2 ER  (before the beginning of the simulation) and when it is equal to the exact result ER  (at the 

end of the simulation). We can deduce that the magnitude of the chaos in the stochastic experiment 

is null before the beginning of Monte Carlo simulation since no randomness was introduced yet, 

as well as at the end of the simulation after the convergence of the method to the exact result when 

randomness has finished its task in the stochastic Monte Carlo method and experiment. 

 

IV-6- The Probability Pc in the Probability Set C = R + M 
 

We have: 
2

2

2

2 2 1 if  0  2 1 if  0  

2 2 1 if  2  2 6 5 if  2  

A A A A
A E A E

E E E E

A AA A
E A EE A E

E EE E

Pc DOK Chf DOK MChf

R R R R
R R R R

R R R R

R RR R R R RR R R
R RR R

   

       
              
        

  
      

              
     

 

 

2
1 if  0  

1   for  0 2  
1 if  2  

A E

A E

E A E

R R
Pc R R

R R R

 
    

 
 

 

1Pc  = Probability of convergence in C, therefore: 

1 if  0  
if  0  

if  2  
2 1 if  2  

A
A E

E A E A E

A E E A EA
E A E

E

R
R R

R R R R R
Pc

R R R R RR
R R R

R


     

  
      



 

  

   for  0 2A E A ER R R R     continuously in the probability set C = R + M. This is due to the 

fact that in C we have subtracted in the equation above the chaotic factor Chf from our knowledge 

DOK and therefore we have eliminated chaos caused and introduced by all the random variables 

and the stochastic fluctuations that lead to approximate results in the Monte Carlo simulation in 

R. Therefore, since in C we have always A ER R  then the Monte Carlo simulation which is a 

stochastic method by nature in R becomes after applying the CPP a deterministic method in C 
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since the probability of convergence of any random experiment in C is constantly and permanently 

equal to 1 for any iterations number N. 

 

IV-7- The Rates of Change of the Probabilities in R, M, and C 

 

Since 

1 if  0  

Re( ) Im( )

2 1 if  2  

A A
A E

E E

r m

A A
E A E

E E

R R
i R R

R R
Z P P Z i Z

R R
i R R R

R R

  
     

  
    

   
       

   

  

Then: 

 

1 if  0  

2 1 if  2  

1 if  0  

                            

A A
A E

A E E
mr

A A A
A A

E A E

A E E

A A
A E

A E A E

A

R Rd
i R R

dR R RdPdPdZ

dR dR dR R Rd
i R R R

dR R R

R Rd d
i R R

dR R dR R

d

dR

   
      

   
   

    
        

    

    
      

    


2 1 if  2  

                            

A A
E A E

E A E

R Rd
i R R R

R dR R






    
       

    

 

                             

1 1
(1 ) if  0

1 1
( 1) if  2

A E

E E E

E A E

E E E

i
i R R

R R R

i
i R R R

R R R


    


 
     


 

 

Therefore, 

 

1
if  0

Re
1

if  2

A E

Er

A A
E A E

E

R R
RdPdZ

dR dR
R R R

R


    

   
    



  

                  
constant 0 if  0   and  0

constant < 0 if  2   and  0

A E E

E A E E

R R R

R R R R

   
 

  
 

that means that the slope of the probability of convergence in R or its rate of change is 

constant and positive if  0 A ER R  , and constant and negative if  2E A ER R R  , and it 

depends only on ER  ; hence, we have a constant increase in rP  (the convergence 

probability) as a function of the iterations number N as AR  increases from 0 to ER  and as 
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AR  decreases from 2 ER  to ER  till rP  reaches the value 1 that means till the random 

experiment converges to ER . 

 

1
if  0

( / )1
Im

1
if  2

A E

Em m

A A A
E A E

E

R R
RdP d P idZ

dR i dR dR
R R R

R


    

    
    



 

                   
constant < 0 if  0   and  0

constant > 0 if  2   and  0

A E E

E A E E

R R R

R R R R

  
 

  
 

that means that the slopes of the probabilities of divergence in R and M or their rates of 

change are constant and negative if  0 A ER R  , and constant and positive 

if  2E A ER R R  , and they depend only on ER ; hence, we have a constant decrease in 

/mP i  and mP  (the divergence probabilities) as functions of the iterations number N as AR  

increases from 0 to ER  and as AR  decreases from 2 ER  to ER  till /mP i  and mP  reach the 

value 0 that means till the random experiment converges to ER . 

 

Additionally,  
2 2 2 2 2

2 2

2 2

( / )1

1 1
if  0

          

1 1
if  2

m mr r

A A A A A

A E

E E

E A E

E E

dP d P idP dPdZ

dR dR i dR dR dR

R R
R R

R R R
R R

       
          
       

   
       
   

 
   
      
   

 

2

2 2 2

1 1 2
   for  0 2A E

A E E E

dZ
R R

dR R R R
       

 

2
constant 0

A E

dZ

dR R
     if 0ER  ; that means that the module of the slope of the complex 

probability vector Z in C or of its rate of change is constant and positive and it depends only on ER

; hence, we have a constant increase in Re( )Z  and a constant decrease in Im( )Z  as functions of 

the iterations number N and as Z goes from (0, i) at N = 0 till (1,0) at the simulation end; hence, 

till Re( ) rZ P  reaches the value 1 that means till the random experiment converges to ER . 

Furthermore, since 
2 1Pc DOK Chf DOK MChf      then 1Pc  = Probability of 

convergence in C and consequently :
( ) (1)

0
A A

d Pc d

dR dR
  , that means that Pc is constantly equal to 1 

for every value of AR , of ER , and of the iterations number N, that means for any stochastic 
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experiment and for any simulation of Monte Carlo method. So, we conclude that in C = R + M 

we have complete and perfect knowledge of the random experiment which has become now a 

deterministic one since the extension in the complex probability plane C defined by the CPP 

axioms has changed all stochastic variables to deterministic variables. 

 

V- The Evaluation of the New Paradigm Parameters  

 

 We can deduce from what has been elaborated previously the following: 

 

The real convergence probability: 
( )

( ) 1 E A
r

E

R R N
P N

R


        

We have 0 CN N   where N = 0 corresponds to the instant before the beginning of the random 

experiment when ( 0) 0  or 2A ER N R   , and where 
CN N  (iterations number needed for the 

method convergence) corresponds to the instant at the end of the random experiments and Monte 

Carlo methods when ( )A C ER N N R  . 

         

The imaginary complementary divergence probability: 
( )

( ) E A
m

E

R R N
P N i

R


                

 

The real complementary divergence probability: 
( )

( ) / E A
m

E

R R N
P N i

R


   

 

The complex probability and random vector:  

( ) ( )
( ) ( ) ( ) 1 E A E A

r m

E E

R R N R R N
Z N P N P N i

R R

  
     

 
 

 

The Degree of Our Knowledge:

 

 

2 2

22 2

2

2

( ) ( )
( ) ( ) ( ) ( ) / 1

               1 2 ( ) ( ) 1 2 ( ) 1 ( ) 1 2 ( ) 2 ( )

( ) ( )
               1 2 2

E A E A
r m

E E

r m r r r r

E A E A

E E

R R N R R N
DOK N Z N P N P N i

R R

iP N P N P N P N P N P N

R R N R R N

R R

    
        

   

       

  
    

 

                  

( )DOK N  is equal to 1 when ( ) (0) 0r rP N P   and when ( ) ( ) 1r r CP N P N  . 

 

The Chaotic Factor: 

  2

2

( ) 2 ( ) ( ) 2 ( ) 1 ( ) 2 ( ) 2 ( )

( ) ( )
             2 2

r m r r r r

E A E A

E E

Chf N iP N P N P N P N P N P N

R R N R R N

R R

      

  
    

 
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( )Chf N  is null when ( ) (0) 0r rP N P   and when ( ) ( ) 1r r CP N P N  . 

 

The Magnitude of the Chaotic Factor MChf:  

  2

2

( ) ( ) 2 ( ) ( ) 2 ( ) 1 ( ) 2 ( ) 2 ( )

( ) ( )
                2 2

r m r r r r

E A E A

E E

MChf N Chf N iP N P N P N P N P N P N

R R N R R N

R R

      

  
   

 

                                   

( )MChf N  is null when ( ) (0) 0r rP N P   and when ( ) ( ) 1r r CP N P N  . 

 

At any iteration number N: 0 CN N  , the probability expressed in the complex probability 

set C is the following: 
22 2( ) [ ( ) ( ) ] ( ) 2 ( ) ( )

( ) ( )

( ) ( )

1

r m r mPc N P N P N / i Z N iP N P N

             DOK N Chf N

             DOK N MChf N

             

   

 

 



                                                         

then,  

 
22 2 2( ) [ ( ) ( ) ] ( ) [1 ( )] 1 1 ( ) 1r m r rPc N P N P N / i P N P N Pc N          always 

Hence, the prediction of the convergence probabilities of the stochastic Monte Carlo experiments 

in the set C is permanently certain. 

 

Let us consider thereafter a multidimensional integral and a stochastic experiment to simulate the 

Monte Carlo methods and to draw, to visualize, as well as to quantify all the CPP and prognostic 

parameters. 
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VI- Flowchart of the Complex Probability and Monte Carlo Techniques Prognostic Model 

The following flowchart summarizes all the procedures of the proposed complex 

probability prognostic model: 

 

 
                                                                                    

                                                                             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Random variables set sampling 

,  

Calculate the approximate value 

at each simulation cycles N 

 

Prognostic 

No 

Yes 

Plot all the functions for  

N = 1, NC 

 

   N ≤ NC 

For each iteration  
cycles: N = 1, NC 

Monte Carlo simulation 

evaluation 

 

Complex probability 

paradigm functions 

 

Calculate the real convergence 

probability:   

Calculate DOK: 

DOK(N) = 1 – 2×Pr(N)×[1 – Pr(N)] 

 

Calculate Chf and MChf: 

Chf(N) = – 2×Pr(N)×[1 – Pr(N)] 

MChf(N) = | Chf(N) | 

 

Calculate: Pc2(N) = DOK(N) – Chf(N) 

                             = DOK(N) + MChf(N) 

Calculate the real divergence 

probability:   

Input the random experiment exact result:  

Determine the random numbers generator  
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VII- Simulation of the New Paradigm 

Note that all the numerical values found in the simulations of the new paradigm for any iteration 

cycles N were computed using the 64-Bit MATLAB version 2024 software and compared to the 

values found by Microsoft Visual C++ programs. In addition, the reader should take care of the 

rounding and truncation errors since all numerical values are represented by at most five significant 

digits and since we are using Monte Carlo methods of integration and simulation which give 

approximate results subject to random effects and fluctuations. We have considered for this 

purpose a high-capacity computer system: a workstation computer with parallel microprocessors, 

a 64-Bit operating system, and a 64-GB RAM. 

 

VII-1- The Continuous Random Case: A Four-Dimensional Multiple Integral 

The Monte Carlo technique of integration can be summarized by the following equation: 
1 2

1 2

1 1 2 2
1 2 1 2 1 2

1

[( ) ( ) ( )]
( , , , ). ( , , , )

n

n

bb b N
n n

n n j j n j

ja a a

b a b a b a
f x x x dx dx dx f x x x

N 

     
     

Let us consider here the multidimensional integral of the following function: 
4/34/3 4/3 4/3 4/3 4/3 4/3 4/3 4/3 4/3 4/32

0 0 0 0 0 0 0 0 0 00

4/3 4/34/3 4/3 4/3 4/3 4/32 2

0 0 0 0 0 00 0
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0.62429507696997411ER   by the deterministic methods of calculus. 

( , , , )f x y z w xyzw  , where x, y, z, and w follow a discrete uniform distribution U such that: 

(0,4 / 3)x U , (0,4 / 3)y U , (0,4 / 3)z U , (0,4 / 3)w U  
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with 1 CN N   after applying Monte Carlo method. 

Moreover, the four figures (Figures 3-6) show the increasing convergence of Monte Carlo method 

and simulation to the exact result 0.62429507696997411ER   for N = 50, 100, 500, and 

100,000CN N   iterations. Therefore, we have:  

( )
lim ( ) lim 1 1 1 0 1E A E E

r
N N

E E

R R N R R
P N

R R 

   
       

  
 which is equal to the convergence 

probability of Monte Carlo method as N  . 

Additionally, Figure 7 illustrates clearly and visibly the relation of Monte Carlo method to the 

complex probability paradigm with all its parameters ( , , , , , , / ,A r E mChf R P MChf R DOK P i Pc ) 

after applying it to this four-dimensional integral. 
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Figure 3. The increasing convergence of the Monte Carlo method up to N = 50 iterations. 

 

 
Figure 4. The increasing convergence of the Monte Carlo method up to N = 100 iterations. 
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Figure 5. The increasing convergence of the Monte Carlo method up to N = 500 iterations. 

 
Figure 6. The increasing convergence of the Monte Carlo method up to N = 100,000 iterations. 
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Figure 7. The CPP parameters and the Monte Carlo method for a multiple integral. 

 

VII-2- The Discrete Random Case: The Matching Birthday Problem 

 

 An interesting problem that can be solved using simulation is the famous birthday 

problem. Suppose that in a room of n persons, each of the 365 days of the year (not a leap year) is 

equally likely to be someone’s birthday. From probability theory, it can be shown that, contrary to 

intuition, only 23 persons need to be present for the chances to be better than fifty-fifty that at least 

two of them will have the same birthday! 

 

Many people are curious about the theoretical reasoning behind this result, so we discuss 

it briefly before solving the simulation problem. After someone is asked his or her birthday, the 

chances that the next person asked will not have the same birthday are 364/365. The chances that 

the third person’s birthday will not match those of the first two people are 363/365. The chances 

of two successive independent events occurring is the product of the probability of the separate 

events. In general, the probability that the nth person asked will have a birthday different from that 

of anyone already asked is: 

365 364 363 365 ( 1)
(all  birthdays are different)

365 365 365 365

n
P n

        
           
       

 

 

The probability that the nth person asked will provide a match is 1 minus this value:   
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(matching birthdays)

365 364 363 365 ( 1) (365) (364) (363) [365 ( 1)]
1 1

365 365 365 365 365
En

P

n n
R



              
              
       

 

shows that with 23 persons the chances are 50.7%; with 55 persons, the chances are 98.6% or 

almost theoretically certain that at least two out of 55 people will have the same birthday. The 

table below gives the theoretical probabilities of matching birthdays for a selected number of 

people n (Table 1). 

 

Number of People n Theoretical Probability = 
ER  

n = 5 P = 0.027135573700 

n = 10 P = 0.116948177711 

n = 15 P = 0.252901319764 

n = 20 P = 0.411438383581 

n = 22 P = 0.475695307663 

n = 23 P = 0.507297234324 

n = 25 P = 0.568699703969 

n = 30 P = 0.706316242719 

n = 35 P = 0.814383238875 

n = 40 P = 0.891231809818 

n = 45 P = 0.940975899466 

n = 50 P = 0.970373579578 

n = 55 P = 0.986262288816 

n = 100 P = 0.999999692751 

n = 133 P = 0.999999999999 

n = 365 P = 1.000000000000 

Table 1. Some theoretical probabilities of matching birthdays for n people where 1 365n  . 

 

Without using probability theory, we can write a routine that uses the random-number 

generator to compute the approximate chances for groups of n persons. Clearly, all that is needed 

is to select n random integers from the set {1, 2, 3, …, 365} and to examine them in some way to 

determine whether there is a match. By repeating this experiment a large number of times, we can 

compute the probability of at least one match in any gathering of n persons. Note that if 366n   

then (matching birthdays) 1P   by the famous pigeonhole principle. Moreover, the four figures 

(Figures 8-11) show the increasing convergence of Monte Carlo method and simulation to the 

exact result 0.706316242719...ER   for 30n   people and for N = 50, 100, 500, and 

750,000CN N   iterations. Therefore, we have:  

( )
lim ( ) lim 1 1 1 0 1E A E E

r
N N

E E

R R N R R
P N

R R 

   
       

  
 which is equal to the convergence 

probability of Monte Carlo method as N  .  

Additionally, Figure 12 illustrates clearly and visibly the relation of Monte Carlo method to the 

complex probability paradigm with all its parameters ( , , , , , , / ,A r E mChf R P MChf R DOK P i Pc ) 

after applying it to this matching birthday problem. 
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The algorithm in Microsoft Visual C++ is the following: 

 

// The birthday problem. 
#include <iostream> 
#include <iomanip> 
#include <cstdlib> 
#include <ctime> 
#include <cmath> 
 
using namespace std; 
 
void theoretical(long int); 
void simulated(long int); 
 
int main() 
{ 
 long int n; 
 
 cout << "                          THE BIRTHDAY PROBLEM" << endl; 
 cout << "                         ----------------------\n"  

     << endl; 
 cout << "Input the number of persons : "; 
 cin >> n; 
 cout << endl; 
 
 cout << fixed << setprecision(5); 
 
 theoretical(n); 
 simulated(n); 
 
 return 0; 
} 
 
void theoretical(long int n) 
{ 
 long int i; 
 long double prod; 
 long double P; 
 
 prod = 1; 
 for (i = 0; i <= (n - 1); i++) 
  prod = (long double) prod * (365 - i) / 365; 
 
 P = 1 - prod; 
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 cout << "The theoretical probability of a match for n = " << n  
     << " is = " << P << endl; 

} 
 
void simulated(long int n) 
{ 
 long int table[366] = { 0 }; 
 long int random, match; 
 long double P, sum, limit; 
 long int i, j; 
 
 srand(time(0)); 
 limit = 100000000; 
 sum = 0; random = 0; P = 0; match = 0; 
 
 for (j = 1; j <= limit; j++) 
 { 
  for (i = 1; i <= n; i++) 
  { 
   random = 1 + rand() % 365; 
   table[random] += 1; 
   random = 0; 
  } 
 
  i = 0; 
  while ((i <= 365) && (match == 0)) 
  { 
   if (table[i] >= 2) 
    match = 1; 
   ++i; 
  } 
 
  if (match == 1) 
   sum += 1; 
 
  for (i = 0; i <= 365; i++) 
   table[i] = 0; 
 
  match = 0; 
 } 
 
 P = (long double) sum / limit; 
 cout << "The simulated   probability of a match for n = " << n  

     << " is = " << P 
     << "\n" << endl; 

} 
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Figure 8. The increasing convergence of the Monte Carlo method up to N = 50 iterations. 

 
Figure 9. The increasing convergence of the Monte Carlo method up to N = 100 iterations. 
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Figure 10. The increasing convergence of the Monte Carlo method up to N = 500 iterations. 

 
Figure 11. The increasing convergence of the Monte Carlo method up to N = 750,000 iterations. 
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Figure 12. The CPP parameters and the Monte Carlo techniques for the matching birthday 

problem. 

 

 

VII-2-1 The Complex Probability Cubes 

 

In the first cube (Figure 13), the simulation of DOK and Chf as functions of each other and 

of the iterations N for the matching birthday problem can be seen. The line in cyan is the projection 

of Pc2(N) = DOK(N) – Chf(N) = 1 = Pc(N) on the plane N = 0 iterations. This line starts at the 

point J (DOK = 1, Chf = 0) when N = 0 iterations, reaches the point (DOK = 0.5, Chf = –0.5) when 

N = 375,000 iterations, and returns at the end to J (DOK = 1, Chf = 0) when N = NC = 750,000 

iterations. The other curves are the graphs of DOK(N) (red) and Chf(N) (green, blue, pink) in 

different planes. Notice that they all have a minimum at the point K (DOK = 0.5, Chf = –0.5, N = 

375,000 iterations). The point L corresponds to (DOK = 1, Chf = 0, N = NC = 750,000 iterations). 

The three points J, K, L are the same as in Figure 12. 
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Figure 13. DOK and Chf in terms of N and of each other for the matching birthday problem. 

 

 

In the second cube (Figure 14), we can notice the simulation of the convergence probability 

Pr(N) and its complementary real divergence probability Pm(N)/i in terms of the iterations N for 

the matching birthday problem. The line in cyan is the projection of Pc2(N) = Pr(N) + Pm(N)/i = 1 

= Pc(N) on the plane N = 0 iterations. This line starts at the point (Pr = 0, Pm/i = 1) and ends at the 

point (Pr = 1, Pm/i = 0). The red curve represents Pr(N) in the plane Pr(N) = Pm(N)/i. This curve 

starts at the point J (Pr = 0, Pm/i = 1, N = 0 iterations), reaches the point K (Pr = 0.5, Pm/i = 0.5, N 

= 375,000 iterations), and gets at the end to L (Pr = 1, Pm/i = 0, N = NC = 750,000 iterations). The 

blue curve represents Pm(N)/i in the plane Pr(N) + Pm(N)/i = 1. Notice the importance of the point 

K which is the intersection of the red and blue curves at N = 375,000 iterations and when Pr(N) = 

Pm(N)/i = 0.5. The three points J, K, L are the same as in Figure 12. 

       Chf : Chaotic factor 

       Pc2 = DOK – Chf = 1 = Pc 

       DOK : Degree of our knowledge 

       Chf : Chaotic factor 

       Chf : Chaotic factor 
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Figure 14. Pr and Pm/i in terms of N and of each other for the matching birthday problem. 

 

In the third cube (Figure 15), we can notice the simulation of the complex random vector 

Z(N) in C as a function of the real convergence probability Pr(N) = Re(Z) in R and of its 

complementary imaginary divergence probability Pm(N) = i×Im(Z) in M , and this in terms of the 

iterations N for the matching birthday problem. The red curve represents Pr(N) in the plane Pm(N) 

= 0 and the blue curve represents Pm(N) in the plane Pr(N) = 0. The green curve represents the 

complex probability vector Z(N) = Pr(N) + Pm(N) = Re(Z) + i×Im(Z) in the plane Pr(N) = iPm(N) 

+ 1. The curve of Z(N) starts at the point J (Pr = 0, Pm= i, N = 0 iterations) and ends at the point L 

(Pr = 1, Pm = 0, N = NC = 750,000 iterations). The line in cyan is Pr(0) = iPm(0) + 1 and it is the 

projection of the Z(N) curve on the complex probability plane whose equation is N = 0 iterations. 

This projected line starts at the point J (Pr = 0, Pm= i, N = 0 iterations) and ends at the point (Pr = 

1, Pm = 0, N = 0 iterations). Notice the importance of the point K corresponding to N = 375,000 

iterations and when Pr = 0.5 and Pm = 0.5i. The three points J, K, L are the same as in Figure 12.  

       Pm/i : Real Complementary Divergence Probability 

       Pr : Real Convergence Probability 

       Pc : Probability in the set C = Pr + Pm/i = 1 
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Figure 15. The Complex Probability Vector Z in terms of N for the matching birthday problem. 

 

VIII- Conclusion and Perspectives 

 

In the current research chapter, the original extended Kolmogorov model of eight axioms 

(EKA) was connected and applied to the classical and random Monte Carlo numerical techniques. 

Thus, a tight link between Monte Carlo algorithms and the novel paradigm was executed. 

Accordingly, the model of "Complex Probability” was more expanded beyond the scope of my 

earlier research studies on this subject.  

 

Also, as it was verified and demonstrated in the original model, when N = 0 (before the random 

simulation beginning) and when N = NC (when Monte Carlo algorithm converges to the exact 

result) then the degree of our knowledge (DOK) is 1 and the chaotic factor (Chf and MChf) is 0 

         Pr  : Real Convergence Probability in the set R = Re(Z) 

         Pm : Complementary Imaginary Divergence Probability in the set M = i×Im(Z)      

         Z =  Pr + Pm : The Complex Probability Vector in the set C 
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since the stochastic effects and fluctuations have either not commenced yet or they have terminated 

their task on the random experiment. During the course of the nondeterministic experiment             

(N > 0) we have: 0.5 ≤ DOK < 1, –0.5 ≤ Chf < 0, and 0 < MChf ≤ 0.5. We notice that during this 

entire process we have continually and incessantly Pc2 = DOK – Chf = DOK + MChf = 1 = Pc, 

that means that the simulation which looked to be random and nondeterministic in the set R is now 

deterministic and certain in the set C = R + M, and this after adding the contributions of M to the 

experiment happening in R and thus after removing and subtracting the chaotic factor from the 

degree of our knowledge. Additionally, the probabilities of convergence and divergence of the 

random Monte Carlo procedure that correspond to each iteration cycle N have been determined in 

the three sets of probabilities which are R, M, and C by rP , mP , and Pc respectively. Subsequently, 

at each instance of N, the novel Monte Carlo techniques and CPP parameters ER , AR , Pr, mP , 

/mP i , DOK, Chf, MChf, Pc, and Z are perfectly and surely predicted in the set of complex 

probabilities C with Pc kept as equal to 1 continuously and forever.  

 

Furthermore, using all these shown simulations and obtained graphs all over the entire research 

chapter, we can visualize and quantify both the certain knowledge (expressed by DOK and Pc) 

and the system chaos and stochastic influences and effects (expressed by Chf and MChf) of Monte 

Carlo algorithms. This is definitely very wonderful, fruitful, and fascinating and demonstrates once 

again the advantages of extending the five axioms of probability of Kolmogorov and thus the 

benefits and novelty of this original theory in applied mathematics and prognostics that can be 

called verily:  

"The Complex Probability Paradigm". 

 

Moreover, it is important to state here that one essential and very well-known probability 

distribution was taken into consideration in the current chapter which is the uniform and discrete 

probability distribution as well as a specific generator of uniform random numbers, knowing that 

the original CPP model can be applied to any generator of uniform random numbers that exists in 

literature. This will yield certainly to analogous results and conclusions and will confirm without 

any doubt the success of my innovative theory.  

 

As a prospective and future challenges and research, we intend to more develop the novel 

conceived prognostic paradigm and to apply it to a diverse set of nondeterministic events like for 

other stochastic phenomena as in the classical theory of probability and in stochastic processes. 

Additionally, we will implement CPP also to other stochastic problems which have huge 

consequences when applied to economics, to chemistry, to physics, to pure and applied 

mathematics. 
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CHAPTER THREE 

 

THE PARADIGM OF COMPLEX PROBABILITY  

AND LE COMTE DE BUFFON’S NEEDLE 
 

 

“Nature is an infinite sphere of which the center is everywhere and the circumference 

nowhere.” 

                    Blaise Pascal. 

 

“I believe that mathematical reality lies outside us, that our function is to discover or observe 

it, and that the theorems which we prove, and which we describe grandiloquently as our 

"creations," are simply the notes of our observations.” 

 Godfrey Harold Hardy. 

 
 

“Imagination decides everything.” 

            Blaise Pascal. 

 

“The mathematician's patterns, like the painter's or the poet's must be beautiful; the ideas, 

like the colors or the words must fit together in a harmonious way. Beauty is the first test: 

there is no permanent place in the world for ugly mathematics.” 

Godfrey Harold Hardy. 

 

 

Abstract: In the current work, we extend and incorporate in the five-axioms probability system of 

Andrey Nikolaevich Kolmogorov set up in 1933 the imaginary set of numbers and this by adding 

three supplementary axioms. Consequently, any stochastic experiment can thus be achieved in the 

extended complex probabilities set C which is the sum of the real probabilities set R and the 

imaginary probabilities set M. The purpose here is to evaluate the complex probabilities by 

considering additional novel imaginary dimensions to the experiment occurring in the “real” 

laboratory. Therefore, the random phenomenon outcome and result in C = R + M can be predicted 

absolutely and perfectly no matter what the random distribution of the input variable in R is since 

the associated probability in the entire set C is constantly and permanently equal to one. Thus, the 

following consequence indicates that chance and randomness in R is replaced now by absolute 

and total determinism in C as a result of subtracting from the degree of our knowledge the chaotic 

factor in the probabilistic experiment. Moreover, we will apply this innovative paradigm to the 

well-known Buffon’s needle technique and to its random algorithms and procedures in a novel 

way. 

 

Keywords: Degree of our knowledge, Chaotic factor, Magnitude of chaotic factor, Complex 

random vector, Probability norm, Real and Imaginary Probabilities, Complex probability set            

C = R + M, Convergence probability, Divergence probability, Simulation. 
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NOMENCLATURE 

 

R = the events real set 

M = the events imaginary set  

C = the events complex set 

i         = the imaginary number with 2 1i    or 1i     

EKA = Extended Kolmogorov's Axioms 

CPP     = Complex Probability Paradigm 

Prob = any event probability 

Pr      = the probability in the real set R = convergence probability in R 

Pm = the probability in the complementary imaginary set M that corresponds to the real  

               probability set in R = divergence probability in M 

Pc      = the event probability in R with its associated event in M = probability in the complex  

               probability set C = R + M 

EX        = the random experiment exact result  

AP        = the random experiment approximate result  

Z      = complex probability number = complex random vector = sum of Pr and Pm 

DOK      = 
2

Z = the degree of our knowledge of the stochastic experiment or system, it is the  

                  square of the norm of Z 

Chf       = the chaotic factor of Z 

MChf     = the magnitude of the chaotic factor of Z 

N   = the number of iterations cycles = number of random vectors 

CN         = the number of iterations cycles till the convergence of Buffon’s needle method  

                 to EX = the number of random vectors till convergence. 

 

1- Introduction [1-90] 

 

All our work in classical probability theory is to compute probabilities. The original idea in 

this book is to add new dimensions to our random experiment which will make the work totally 

deterministic. In fact, probability theory is a nondeterministic theory by nature that means that the 

outcome of the stochastic events is due to chance and luck. By adding new dimensions to the event 

occurring in the “real” laboratory which is R, we make the work deterministic and hence a random 

experiment will have a certain outcome in the complex set of probabilities C. It is of great 

importance that stochastic systems become totally predictable since we will be perfectly 

knowledgeable to foretell the outcome of all chaotic and random events that occur in nature like 

for example in statistical mechanics, in all stochastic processes, or in the well-established field of 

prognostic. Therefore, the work that should be done is to add to the real set of probabilities R, the 

contributions of M which is the imaginary set of probabilities which will make the event in                

C = R + M absolutely deterministic. If this is found to be fruitful, then a new theory in stochastic 

sciences and prognostic would be elaborated and this to understand deterministically those 

phenomena that used to be random phenomena in R. This is what I called "The Complex 

Probability Paradigm (CPP)" that was initiated and elaborated in my previous papers and works. 
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2- The Purpose and the Advantages of the Current Chapter [37-90] 

 

The advantages and the purpose of the present chapter are to: 

 

1- Extend the theory of classical probability to cover the complex numbers set, hence to 

connect the probability theory to the field of complex variables and analysis. This task was 

started and elaborated in my earlier papers and works. 

 

2- Apply the novel probability axioms and paradigm to Buffon’s needle method for the 

computation of  . 

 

3- Show that all nondeterministic phenomena can be expressed deterministically in the 

complex probabilities set which is C. 

 

4- Compute and quantify both the degree of our knowledge and the chaotic factor of Buffon’s 

needle procedure. 

 

5- Represent and show the graphs of the functions and parameters of the innovative paradigm 

related to Buffon’s needle algorithm. 

 

6- Demonstrate that the classical concept of probability is permanently equal to one in the set 

of complex probabilities; hence, no chaos, no randomness, no ignorance, no uncertainty, 

no unpredictability, no nondeterminism, and no disorder exist in: 

 

C (complex set) = R (real set) + M (imaginary set). 

 

7- Pave the way to implement this inventive model to other topics in prognostics and to the 

field of stochastic processes. These will be the goals of my future research works.  

 

Concerning some applications of the novel established paradigm and as a future work, it can 

be applied to any nondeterministic phenomena using Buffon’s needle algorithm in any random 

case.  

 

Moreover, compared with existing literature, the major contribution of the current research 

chapter is to apply the innovative paradigm of complex probability to the concept and technique 

of the probabilistic Buffon’s needle simulation and algorithms. The next figure displays the major 

aims and purposes of the Complex Probability Paradigm (CPP) (Figure 1). 
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Figure 1- The diagram of the major aims of the Complex Probability Paradigm and Buffon’s 

Needle Method. 

 

3- The Complex Probability Paradigm [37-142] 

 

3-1- The Original Andrey Nikolaevich Kolmogorov System of Axioms  

 

The simplicity of Kolmogorov’s system of axioms may be surprising. Let E be a collection 

of elements {E1, E2, …} called elementary events and let F be a set of subsets of E called random 

events. The five axioms for a finite set E are: 

 

Axiom 1:  F is a field of sets. 

Axiom 2:  F contains the set E. 

Axiom 3:  A non-negative real number Prob(A), called the probability of A, is assigned to each 

                  set A in F. We have always 0  Prob(A)  1. 

Axiom 4:  Prob(E) equals 1. 

Axiom 5:  If A and B have no elements in common, the number assigned to their union is: 

( ) ( ) ( )rob rob robP A B P A P B    

      hence, we say that A and B are disjoint; otherwise, we have: 

( ) ( ) ( ) ( )rob rob rob robP A B P A P B P A B      

 

And we say also that: ( ) ( ) ( / ) ( ) ( / )rob rob rob rob robP A B P A P B A P B P A B      which is the 

conditional probability. If both A and B are independent then: ( ) ( ) ( )rob rob robP A B P A P B   . 

 

Moreover, we can generalize and say that for N disjoint (mutually exclusive) events 

1 2, , , , ,j NA A A A  (for 1 j N  ), we have the following additivity rule:   

Complex
Probability 
Paradigm

Buffon's 
Needle 
Method

Complex 
Analysis

Probability 
Theory

Stochastic 
Phenomena

Applied to 

Applied to Applied to 

Applied to 
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 
11

N N

rob j rob j

jj

P A P A


 
 

 
  

 

And we say also that for N independent events 
1 2, , , , ,j NA A A A  (for 1 j N  ), we have the 

following product rule:   

 
11

N N

rob j rob j

jj

P A P A


 
 

 
  

 

 3-2- Adding the Imaginary Part M 

 

Now, we can add to this system of axioms an imaginary part such that: 

Axiom 6:  Let (1 )m rP i P    be the probability of an associated complementary event in M (the 

imaginary part) to the event A in R (the real part). It follows that / 1r mP P i   where i is the 

imaginary number with 1i    or 2 1i   . 

Axiom 7:  We construct the complex number or vector (1 )r m r rZ P P P i P       having a 

norm Z  such that:    

2 2 2( / )r mZ P P i  . 

Axiom 8:  Let Pc denote the probability of an event in the complex probability universe C where 

C = R + M. We say that Pc is the probability of an event A in R with its associated event in M 

such that: 
22 2( / ) 2r m r mPc P P i Z iP P      and is always equal to 1. 

We can see that by taking into consideration the set of imaginary probabilities we added three new 

and original axioms and consequently the system of axioms defined by Kolmogorov was hence 

expanded to encompass the set of imaginary numbers. 

 

 3-3- A Brief Interpretation of the Novel Paradigm 
 

To summarize and to conclude, as the degree of our certain knowledge in the real universe 

R is unfortunately incomplete, the extension to the complex set C includes the contributions of 

both the real set of probabilities R and the imaginary set of probabilities M. Consequently, this 

will result in a complete and perfect degree of knowledge in C = R + M (since Pc = 1). In fact, in 

order to have a certain prediction of any random event, it is necessary to work in the complex set 

C in which the chaotic factor is quantified and subtracted from the computed degree of knowledge 

to lead to a probability in C equal to one as it is shown in the following equation derived from 

CPP:  

Pc2 = DOK  Chf = DOK + MChf = 1 = Pc. 

 

This hypothesis is also verified in my previous research papers and works by the mean of many 

examples encompassing both discrete and continuous distributions. The Extended Kolmogorov 

Axioms (EKA for short) or the Complex Probability Paradigm (CPP for short) can be illustrated 

by the following figure (Figure 2): 
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Figure 2- The EKA or the CPP diagram 
 

4- The Buffon’s Needle Method for the computation of   

 

A classic example of what we call the Monté Carlo method is that of Georges-Louis Leclerc 

or Comte de Buffon, who in 1733 pointed out that   could be determined experimentally by 

repeatedly throwing a needle onto a ruled surface and counting the number of times the needle 

crossed a line. The idea is more remarkable for its sophistication in geometric probability than for 

its practicability – a more accurate evaluation of   could be done with a piece of string, a ruler, 

and the plates and saucers in your kitchen. But the idea of Monté Carlo had been conceived, 

although the difficulty of using physical devices for sampling and the lack of suitable statistical 

theory made it little more than a curiosity until the advent of large-scale computers. 

 

The Buffon’s needle solution: If a needle of length L ( 1 ) is dropped on a ruled surface of parallel 

lines spaced one unit apart (Figure 3), the probability that the needle will cross a line is 
2L


. If the 

needle is dropped N times, the number of line crossings (say, X) should be about 
2NL


, and hence: 

2NL

X
 is a Monté Carlo estimate of   

 

        

5 original 

Kolmogorov 

axioms 

Real Probability Pr 

Pr 

Input: 

Real set R 

Output: 

Complex set C 

A total of 8 axioms 

Complex number Z = Pr + Pm 

Complex Probability Pc = 1 

Pc2 = DOK – Chf = 1 

     Pc2 = DOK + MChf = 1 
 

Adding 3 axioms 

Imaginary Probability Pm 

 Chf  = 2iPrPm 

 MChf  = |Chf|= –2iPrPm 

 

 

Add: 

Imaginary set M 
 

Total 

Determinism 

Chance 

and 

Luck 
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Figure 3- Needles on a ruled surface. 

 

                                                   

                                                     Y 

 

               

               

                                                

 

                                             

 

                                                

                                                                                                                                             

          

             

 

                                         

                                               O                                                                   X 

                                 Figure 4- Geometrical explanation of the Buffon’s needle problem. 

 

 

We have 
ay  a random number and   is a random angle. 

We take sinb ay y   , and L = length of the needle = 1. 

Let 1 aq j y   and 2 b aq y y  , 

               If 
1 2( )q q  then there is a line crossing, 

                                  else, the needle doesn’t cross the line (Figure 4).      

 

Inside the computer program, the variable counter counts the number of line crossings, and the 

variable N = number of iterations such that: 0 CN N  ; therefore: 

Exact Result = 3.1415926535897931EX    

Approximate Result = 
2 2 ( 1)C CN L N L

X counter

  
 = the variable AP in the whole work. 

 

  

ay  

by  

Line j 

Line j + 1 

Line j – 1 

needle        

needle 

 
j 

L 
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5- The Buffon’s Needle Method and the Complex Probability Paradigm Parameters 

 

5-1- The Convergence and Divergence Probabilities 

 

Let EX  be the experiment exact result like of a multidimensional or a simple integral that is not 

possible always to determine by ordinary methods or calculus or numerical deterministic methods. 

And let AP  be the experiment approximate result and therefore let it be the value of these random 

experiments found by Monte Carlo Techniques like Buffon’s needle method.  

 

The absolute error in the numerical analysis method is: Abs. Error EX AP    

 

The relative error in the numerical method is: 
Abs. Error

Rel. Error  1
EX AP AP

EX EX EX


      

In addition, the percent relative error is = 100%
EX AP

EX


  and is always between 0% and 100%. 

Therefore, the relative error is always between 0 and 1. Hence: 

 

 

0 1 if 
0

0 1
2

0 1 if 

EX AP
AP EX

AP EXEXEX AP

EX AP EXEX EX AP
AP EX

EX

  
        

    
          

 

 

Moreover, we define the real probability by: 

 

1 1 if  0  

1 1 1

1 1      if  2  

if  0  

                                                 

2      if  2  

r

AP
AP EX

EXEX AP AP
P

EX EX AP
EX AP EX

EX

AP
AP EX

EX

AP
EX AP EX

EX

  
    

   
      

        


 

 
   


 

= 1 – the relative error in the numerical method  

= Probability and degree of the numerical method convergence in R 

= Probability and ratio of the approximate result to the exact result.  

 

And therefore: 
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 1 1 1 1 1 1 1

1 if  0  1 if  0  

                     

1      if  2  1       if 

m r

EX AP AP AP
P i P i i i

EX EX EX

AP AP
i AP EX i AP EX

EX EX

AP AP
i EX AP EX i

EX EX

       
                

      

    
        

    
 

              
 2  EX AP EX





  


 

= The relative error in the numerical method in M 

= Probability and degree of the numerical method divergence in the imaginary probability set M   

   since it is the imaginary complement of rP .  

 

Consequently,  

1 if  0  

/ 1 1

1      if  2  
m r

AP
AP EX

AP EX
P i P

APEX
EX AP EX

EX


  

     
   


 

= The relative error in the numerical method in R 

= Probability and degree of the numerical method divergence in R since it is the real complement 

   of rP . 

In the case where 0 AP EX   we have 0 1
AP

EX
  0 1rP    and we deduce also that 

0 1 1
AP

EX

 
   
 

0 / 1mP i    and 0 mP i    

And in the case where 2EX AP EX  1 2
AP

EX
    0 2 1

AP

EX

 
    

 
0 1rP    and we 

deduce also that 0 1 1
AP

EX

 
   
 

0 / 1mP i    and 0 mP i    

Therefore, if 0AP   or 2AP EX  that means before the beginning of the numerical method and 

the simulation, then: 

rP  = Prob (convergence) in R = 0 

mP = Prob (divergence) in M = i 

/mP i  = Prob (divergence) in R = 1 

 

And if AP EX  that means at the end of the simulation and the numerical method then: 

rP  = Prob (convergence) in R = 1 

mP = Prob (divergence) in M = 0 

/mP i  = Prob (divergence) in R = 0 
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5-2- The Complex Random and Random Vector Z in C = R + M 

 

We have 

1 if  0  

2 1      if  2  

r m

AP AP
i AP EX

EX EX
Z P P

AP AP
i EX AP EX

EX EX

  
    

  
   

              

  

 

where 

if  0  

Re( )

2      if  2  
r

AP
AP EX

EX
Z P

AP
EX AP EX

EX


 

  
   


= the real part of Z  

and 

1 if  0  

Im( ) /

1      if  2  
m

AP
AP EX

EX
Z P i

AP
EX AP EX

EX


  

  
   


= the imaginary part of Z.  

That means that the complex random vector Z is the sum in C of the convergence real probability 

in R and of the divergence imaginary probability in M. 

If 0AP   or 2AP EX  (before beginning of the simulation) then 
0

0r

AP
P

EX EX
    or 

2
2 2 2 2 0r

AP EX
P

EX EX
        and 

0
1 1 (1 0)m

AP
P i i i i

EX EX

   
         
   

 or 

2
1 1 (2 1)m

AP EX
P i i i i

EX EX

   
         
   

 therefore 0Z i i   . 

 

If 
2

EX
AP   or 

3

2

EX
AP   (at the middle of the simulation) then: 

 

if  0  0.5 if  0  
2

3
2      if  2  2 0.5      if  2  

2

r

AP EX
AP EX AP EX

EX EX
P

AP EX
EX AP EX EX AP EX

EX EX

 
      

  
       
  

  

0.5rP   

and 

1 if  0  1 0.5 if  0  
2

3
1      if  2  1 0.5      if  2  

2

m

AP EX
i AP EX i i AP EX

EX EX
P

AP EX
i EX AP EX i i EX AP EX

EX EX

    
          

     
  

                  

  

0.5mP i   

therefore 0.5 0.5Z i  . 

 

If AP EX  (at the simulation end) then: 

UNDER PEER REVIEW



 

147 

 

 

1 if  0  

1

2 2 2 1 1      if  2  
r r

AP EX
AP EX

EX EX
P P

AP EX
EX AP EX

EX EX


   

  
        


  

And 

 

1 if  0  1 if  0  

1      if  2  1      if  2  

0 if  0  
    

0      if  2  

0

m

m

AP EX
i AP EX i AP EX

EX EX
P

AP EX
i EX AP EX i EX AP EX

EX EX

AP EX

EX AP EX

P

    
         

     
  

                 

 
 

 

 

  

therefore 1 0 1Z i   . 

 

5-3- The Degree of Our Knowledge of the Random Experiment DOK 

 

We have: 
2 2 2

2 2

2 2

( / )

if  0  1 if  0  

        

2      if  2  1      if  2  

r mDOK Z P P i

AP AP
AP EX AP EX

EX EX

AP AP
EX AP EX EX AP EX

EX EX

  

    
        

    
  

    
         

    

 

      

2 2

2 2

1 if  0  

   

2 1      if  2  

AP AP
AP EX

EX EX

AP AP
EX AP EX

EX EX

    
       

    
 

   
       

   

 

 

2

2

2 2 1 if  0  

        

2 6 5      if  2  

AP AP
AP EX

EX EX

AP AP
EX AP EX

EX EX

    
       

    
 

   
      

   

 

 

From CPP we have that 0.5 1DOK   then if  
2

2

2 2 1 0.5 if  0  

2 6 5 0.5      if  2  

AP AP
AP EX

EX EX

AP AP
EX AP EX

EX EX

    
        

    
 

   
       

   

  

0.5DOK 
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then solving the two second-degree equations for 
AP

EX
 gives: 

1/ 2 if  0  
/ 2 if  0  

3 / 2      if  2  
3 / 2      if  2  

AP
AP EX

AP EX AP EXEX

AP AP EX EX AP EX
EX AP EX

EX


     

 
     



 

 

and vice versa.  

 

That means that DOK is minimum when the approximate result is equal to half of the exact result 

if  0 AP EX   or when the approximate result is equal to three times the half of the exact result 

if  2EX AP EX  , that means at the middle of the simulation.  

 

In addition, if 1DOK   then: 

 
2

2

2 2 1 1 if  0  

2 6 5 1      if  2  

AP AP
AP EX

EX EX

AP AP
EX AP EX

EX EX

    
        

    
 

   
       

   

 

 
2

2

0 if  0  

2 6 4 0      if  2  

AP AP
AP EX

EX EX

AP AP
EX AP EX

EX EX

    
       

    
 

   
       

   

 

0  OR  if  0  

2  OR       if  2  

AP AP EX AP EX

AP EX AP EX EX AP EX

   
 

   
 

 

and vice versa.  

 

That means that DOK, which is the degree of our knowledge of the random experiment, is 

maximum and is equal to 1 when the approximate result is equal to EX  that means when it is 

equal to the exact result (at the end of the simulation) or 0 or 2EX  (before the beginning of the 

simulation). We can deduce that we have total and perfect knowledge of the random experiment 

at the end of the simulation after the convergence of the numerical method to the exact result and 

hence when relative error is 0 = 0% and as well as before the beginning of the simulation since no 

randomness was introduced yet and thus when relative error is 1 = 100%. 

 

5-4- The Chaotic Factor Chf 

 

We have: 
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1 if  0  if  0  

2 2

2      if  2  1       if  2  

r m

APAP i AP EXAP EX
EXEX

Chf iP P i
AP AP

EX AP EX i EX AP EX
EX EX

           
    

           

  

since 2 1i    then: 

2 1 if  0  

2 2 1      if  2  

AP AP
AP EX

EX EX
Chf

AP AP
EX AP EX

EX EX

   
     

   
 

           

 

 

From CPP we have that 0.5 0Chf    then if 0.5Chf    

2 1 0.5 if  0  

2 2 1 0.5      if  2  

AP AP
AP EX

EX EX

AP AP
EX AP EX

EX EX

   
       

   
 

             

 

 

/ 2 if  0  

3 / 2      if  2  

AP EX AP EX

AP EX EX AP EX

  
 

  
 

 

and vice versa. 

 

That means that Chf is minimum when the approximate result is equal to half of the exact result 

if  0 AP EX   or when the approximate result is equal to three times the half of the exact result 

if  2EX AP EX  , that means at the middle of the simulation.  

In addition, if 0Chf   then: 

2 1 0 if  0  

2 2 1 0      if  2  

AP AP
AP EX

EX EX

AP AP
EX AP EX

EX EX

   
      

   
 

            

 

 

0  OR  if  0  

2  OR       if  2  

AP AP EX AP EX

AP EX AP EX EX AP EX

   
 

   
 

 

And, conversely, if  
0  OR  if  0  

2  OR       if  2  

AP AP EX AP EX

AP EX AP EX EX AP EX

   


   
 then 0Chf  .  

That means that Chf is equal to 0 when the approximate result is equal to EX  that means when it 

is equal to the exact result (at the end of the simulation) or 0 or 2EX  (before the beginning of the 

simulation). 
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5-5- The Magnitude of the Chaotic Factor MChf 

 

We have: 

2

1 if  0  if  0  

          2

2      if  2  1      if  2  

r mMChf Chf iP P

APAP i AP EXAP EX
EXEX

i
AP AP

EX AP EX i EX AP EX
EX EX

  

           
    

           

 

since 2 1i    then: 

2 1 if  0  

2 2 1      if  2  

AP AP
AP EX

EX EX
MChf

AP AP
EX AP EX

EX EX

   
    

   
 

           

 

 

From CPP we have that 0 0.5MChf   then if 0.5MChf   

2 1 0.5 if  0  

2 2 1 0.5      if  2  

AP AP
AP EX

EX EX

AP AP
EX AP EX

EX EX

   
     

   
 

            

 

/ 2 if  0  

3 / 2      if  2  

AP EX AP EX

AP EX EX AP EX

  
 

  
 

 

and vice versa. 

 

That means that MChf is maximum when the approximate result is equal to half of the exact result 

if  0 AP EX   or when the approximate result is equal to three times the half of the exact result 

if  2EX AP EX  , that means at the middle of the simulation. This implies that the magnitude 

of the chaos (MChf) introduced by the variables used in the numerical method is maximum at the 

halfway of the simulation. 

 

In addition, if 0MChf   then: 

2 1 0 if  0  

2 2 1 0      if  2  

AP AP
AP EX

EX EX

AP AP
EX AP EX

EX EX

   
     

   
 

            

 

 

0  OR  if  0  

2  OR       if  2  

AP AP EX AP EX

AP EX AP EX EX AP EX

   
 

   
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And, conversely, if  
0  OR  if  0  

2  OR       if  2  

AP AP EX AP EX

AP EX AP EX EX AP EX

   


   
 then 0MChf  .  

 

That means that MChf is minimum and is equal to 0 when the approximate result is equal to EX  

that means when it is equal to the exact result (at the end of the simulation) or 0 or 2EX  (before 

the beginning of the simulation). We can deduce that the magnitude of the chaos in the random 

experiment is null at the end of the simulation after the convergence of the numerical method to 

the exact result and when randomness has finished its task in the numerical method and experiment 

as well as before the beginning of the simulation since no randomness was introduced yet. 

 

5-6- The Probability Pc in the Probability Set C = R + M 

We have from CPP: 
2

2

2

2 2 1 if  0  

                             

2 6 5      if  2  

2 1 if  0

                             

Pc DOK Chf DOK MChf

AP AP
AP EX

EX EX

AP AP
EX AP EX

EX EX

AP AP

EX EX

   

    
       

    
 

   
      

   

  
    

  


 

2 2 1      if  2  

AP EX

AP AP
EX AP EX

EX EX







           

 

 

2
1 if  0  

1   for  0 2  
1      if  2  

AP EX
Pc AP EX

EX AP EX

 
    

 
 

 

1Pc  = Probability and degree of convergence in C, therefore: 

1 if  0  
if  0  

     if  2  
2 1      if  2  

AP
AP EX

AP EX AP EXEX
Pc

AP AP EX EX AP EX
EX AP EX

EX


     

  
      



 

  

   for  0 2AP EX AP EX     continuously in the probability set C = R + M. This is due to 

the fact that in C we have subtracted in the equation above from our knowledge DOK the chaotic 

factor Chf and consequently we have removed chaos introduced and caused by all the variables 

and the numerical fluctuations that lead to approximate results in the numerical simulation in R. 

Therefore, since in C we have always AP EX  then the simulation which is a random method by 

nature in R becomes after applying the CPP a non-random method in C since the convergence 

probability of any experiment in C is permanently and constantly equal to 1 for any subintervals 

or iterations number N. 
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5-7- The Rates of Change of the Probabilities in R, M, and C 

 

Since 

1 if  0  

Re( ) Im( )

2 1      if  2  

r m

AP AP
i AP EX

EX EX
Z P P Z i Z

AP AP
i EX AP EX

EX EX

  
    

  
    

              

  

Then: 

 

1 if  0  
( )

( ) ( ) ( )
2 1      if  2  

( )

                            

mr

d AP AP
i AP EX

d AP EX EXdPdPdZ

d AP d AP d AP d AP AP
i EX AP EX

d AP EX EX

   
      
   

   
                  

 

                                          

1 if  0  
( ) ( )

2 1         if  2  
( ) ( )

d AP d AP
i AP EX

d AP EX d AP EX

d AP d AP
i EX AP EX

d AP EX d AP EX

     
       

     
 

                 

 

                                          

1 1
(1 ) if  0

1 1
( 1)      if  2

i
i AP EX

EX EX EX

i
i EX AP EX

EX EX EX


    

 
     


 

 

Therefore, 

1
if  0

Re
1( ) ( )

     if  2

r

AP EX
dPdZ EX

d AP d AP
EX AP EX

EX


    

   
    



  

                    
constant 0 if  0   and  0

constant < 0      if  2   and  0

AP EX EX

EX AP EX EX

   
 

  
 

that means that the rate of change or the slope of the probability of convergence in R is 

positive and constant if  0 AP EX  , and negative and constant if  2EX AP EX  , and 

it depends only on 0EX   ; hence, we have a constant increase in rP  (the convergence 

probability which is by definition an absolute value that means always nonnegative) as a 

function of the iterations or subintervals number N as AP  increases from 0 to EX  and as 

AP  decreases from 2EX  to EX  till rP  reaches the value 1 that means till the random 

experiment converges to EX . 
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            And             
constant < 0 if  0  and  0

constant > 0      if  2   and  0

EX AP EX

EX AP EX EX

  
 

  
 

that means that the slope of the probability of convergence in R or its rate of change is 

constant and negative if 0EX AP  , and constant and positive 2EX AP EX  , and it 

depends only on 0EX   ; hence, we have a constant increase in rP  as a function of the 

iterations or subintervals number N as AP  decreases from 0 to EX  and as AP  increases 

from 2EX  to EX  till rP  reaches the value 1 that means till the random experiment 

converges to EX . 
 

1
if  0

( / )1
Im

1( ) ( ) ( )
     if  2

m m

AP EX
dP d P idZ EX

d AP i d AP d AP
EX AP EX

EX


    

    
    



 

                     
constant < 0 if  0   and  0

constant > 0      if  2   and  0

AP EX EX

EX AP EX EX

  
 

  
 

that means that their rates of change or the slopes of the probabilities of divergence in R 

and M are negative and constant if  0 AP EX  , and positive and constant 

if  2EX AP EX  , and they depend only on 0EX  ; hence, we have a constant decrease 

in /mP i  and mP  (the divergence probabilities) as functions of the iterations or subintervals 

number N as AP  increases from 0 to EX  and as AP  decreases from 2EX  to EX  till 

/mP i  and mP  reach the value 0 that means till the random experiment converges to EX . 

 

And              
constant > 0 if  0  and  0

constant < 0      if  2   and  0

EX AP EX

EX AP EX EX

  
 

  
 

that means that the slopes of the probabilities of divergence in R and M or their rates of 

change are constant and positive if  0EX AP  , and constant and negative 

if 2EX AP EX  , and they depend only on 0EX  ; hence, we have a constant decrease 

in /mP i  and mP  as functions of the iterations or subintervals number N as AP  decreases 

from 0 to EX  and as AP  increases from 2EX  to EX  till /mP i  and mP  reach the value 0 

that means till the random experiment converges to EX . 

 

 

Additionally,  
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2 2 2 2 2

2 2

2 2

( / )1

( ) ( ) ( ) ( ) ( )

1 1
if  0

              
1 1

     if  2

m mr r
dP d P idP dPdZ

d AP d AP i d AP d AP d AP

AP EX
EX EX

EX AP EX
EX EX

       
           
       

   
      

   
 

   
      
   

 

                          

2

2 2 2

1 1 2
   for  0 2

( ) ( ) ( ) ( )

dZ
AP EX

d AP EX EX EX
       

                           
2

constant 0,
( )

dZ

d AP EX
     EX ;  

 

that means that its rate of change or the module of the slope of the complex probability vector Z in 

C is positive and constant and it depends only on  EX ; hence, we have a constant increase in 

Re( )Z  and a constant decrease in Im( )Z  as functions of the iterations or subintervals number N 

and as Z goes from (0, i) at N = 0 till (1,0) at the simulation end; hence, till Re( ) rZ P  reaches 

the value 1 that means till the random experiment converges to EX . 

 

Furthermore, since 
2 1Pc DOK Chf DOK MChf      from CPP 

                      then 1Pc    Probability and degree of convergence in C  
  

and consequently:
( ) (1)

0
( ) ( )

d Pc d

d AP d AP
  ;  

 

that means that Pc is constantly equal to 1 for every value of AP , of EX , and of the iterations or 

subintervals number N, that means for any random experiment and for any simulation of the 

numerical methods. So, we conclude that in C we have complete and perfect knowledge of the 

random experiment which has become now a non-random one since the extension in the complex 

probability plane C defined by the CPP axioms has changed all random variables to non-random 

variables and since we have subtracted and eliminated in the equation of Pc above chaos expressed 

by Chf from DOK. Hence, randomness and chaos vanish completely and totally in the probability 

set C = R + M. 

 

6- The Evaluation of the New Paradigm Parameters  

 

 We can deduce from what has been elaborated previously the following: 

 

The real convergence probability: 
( )

( ) 1r

EX AP N
P N

EX


        
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We have 0 CN N   where N = 0 corresponds to the instant before the beginning of the random 

experiment when ( 0) 0  or 2AP N EX   , and where 
CN N  (iterations number needed for 

the method convergence) corresponds to the instant at the end of the random experiments and 

Monte Carlo methods when ( )CAP N N EX  . 

         

The imaginary complementary divergence probability: 
( )

( )m

EX AP N
P N i

EX


                

 

The real complementary divergence probability: 
( )

( ) /m

EX AP N
P N i

EX


   

 

The complex probability and random vector:  

( ) ( )
( ) ( ) ( ) 1r m

EX AP N EX AP N
Z N P N P N i

EX EX

   
     

 
 

 

The Degree of Our Knowledge:

 

 

2 2

22 2

2

2

( ) ( )
( ) ( ) ( ) ( ) / 1

               1 2 ( ) ( ) 1 2 ( ) 1 ( ) 1 2 ( ) 2 ( )

( ) ( )
               1 2 2

r m

r m r r r r

EX AP N EX AP N
DOK N Z N P N P N i

EX EX

iP N P N P N P N P N P N

EX AP N EX AP N

EX EX

     
        

   

       

  
    

 

                  

( )DOK N  is equal to 1 when ( ) (0) 0r rP N P   and when ( ) ( ) 1r r CP N P N  . 

 

The Chaotic Factor: 

  2

2

( ) 2 ( ) ( ) 2 ( ) 1 ( ) 2 ( ) 2 ( )

( ) ( )
             2 2

r m r r r rChf N iP N P N P N P N P N P N

EX AP N EX AP N

EX EX

      

  
    

 

             

( )Chf N  is null when ( ) (0) 0r rP N P   and when ( ) ( ) 1r r CP N P N  . 

 

The Magnitude of the Chaotic Factor MChf:  

  2

2

( ) ( ) 2 ( ) ( ) 2 ( ) 1 ( ) 2 ( ) 2 ( )

( ) ( )
                2 2

r m r r r rMChf N Chf N iP N P N P N P N P N P N

EX AP N EX AP N

EX EX

      

  
   

 

                                   

( )MChf N  is null when ( ) (0) 0r rP N P   and when ( ) ( ) 1r r CP N P N  . 

 

At any iteration number N: 0 CN N  , the probability expressed in the complex probability 

set C is the following: 
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22 2( ) [ ( ) ( ) ] ( ) 2 ( ) ( )

( ) ( )

( ) ( )

1

r m r mPc N P N P N / i Z N iP N P N

             DOK N Chf N

             DOK N MChf N

             

   

 

 



                                                         

then,  

 
22 2 2( ) [ ( ) ( ) ] ( ) [1 ( )] 1 1 ( ) 1r m r rPc N P N P N / i P N P N Pc N          always 

Hence, the prediction of the convergence probabilities of the stochastic Buffon’s needle 

experiment in the set C is permanently certain. 

 

Let us consider thereafter a multidimensional integral and a stochastic experiment to simulate the 

Buffon’s needle method and to draw, to visualize, as well as to quantify all the CPP and prognostic 

parameters. 

 

7- The C++ Algorithms of Buffon’s Needle Method 

 

7-1- The First Algorithm with the C++ Built-in Uniform Random Number Generator 

 

// Buffon's Needle Algorithm with the C++ Built-in Uniform Random    
// Number Generator 
 
#include <iostream> 
#include <cstdlib> 
#include <ctime> 
#include <cmath> 
#include <iomanip> 
 
using namespace std; 
long double total(); 
 
const long double PI = 3.1415926535897931; 
 
int main() 
{ 
 long double summation; 
 long int c; 
 
 cout << fixed << setprecision(16); 
 
 for (c = 1; c <= 7; c++) 
 { 
  cout << "THE EXACT VALUE OF PI = " << PI << endl; 
  summation = (long double) total(); 
  cout << "THE ESTIMATION OF PI = " << summation << endl; 
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  cout << "THE RELATIVE ERROR = " 
       << 100 * (long double) fabs(1 - summation / PI)  

        << "%\n" << endl; 
 } 
 
 return 0; 
} 
 
long double total(void) 
{ 
 long int N, Nc, counter = 0; 
 long double ya = 0, yb = 0, q1 = 0, q2 = 0, AP = 0, alpha = 0,  
       k = 0, j = 0; 
 
 srand(time(0)); 
 
 Nc = 100000000; 
 for (N = 1; N <= Nc; N++) 
 { 
  ya = rand() + (long double) rand() / 32767; 
  k = (long double) rand() / 32767; 
  alpha = 2 * PI * k; 
 
  yb = ya + (long double) sin(alpha); 
  j = (int) fabs(ya) + 1; 
 
  q1 = (long double) fabs(j - ya); 
  q2 = (long double) fabs(yb - ya); 
 
  if (q1 < q2) 
   ++counter; 
 
  ya = 0; yb = 0; j = 0; k = 0; alpha = 0; q1 = 0; q2 = 0; 
 } 
 
 AP = (long double) 2 * Nc / counter; 
 
 return AP; 
} 
 

7-2- The Second Algorithm with a Second Uniform Random Number Generator 

 

// Buffon's Needle Algorithm with Another Second Uniform Random Number 
// Generator 
 
#include <iostream> 
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#include <cstdlib> 
#include <ctime> 
#include <cmath> 
#include <iomanip> 
 
using namespace std; 
 
long double generate(long double, long double); 
long double total(); 
 
const long double PI = 3.1415926535897931; 
const long double BOUND = 2147483647; 
 
int main() 
{ 
 long double summation; 
 long int c; 
 
 cout << fixed << setprecision(16); 
 
 for (c = 1; c <= 7; c++) 
 { 
  cout << "THE EXACT VALUE OF PI = " << PI << endl; 
  summation = (long double) total(); 
  cout << "THE ESTIMATION OF PI = " << summation << endl; 
  cout << "THE RELATIVE ERROR = " 
       << 100 * (long double) fabs(1 - summation / PI)  

         << "%\n" << endl; 
 } 
 
 return 0; 
} 
 
long double gen(long double xn1, long double xn2) 
{ 
 long double xn; 
 
 xn = (long double) fmod(((1999 * xn1) + (4444 * xn2)), BOUND); 
 
 return xn; 
} 
 
long double total(void) 
{ 
 long int N, Nc, counter = 0; 
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 long double ya = 0, yb = 0, q1 = 0, q2 = 0, AP = 0, alpha = 0,  
 k = 0, j = 0, random = 0, 

    sxn1 = 0, sxn2 = 0; 
 
 srand(time(0)); 
 sxn1 = rand(); 
 sxn2 = rand(); 
 
 Nc = 100000000; 
 for (N = 1; N <= Nc; N++) 
 { 
  random = gen(sxn1, sxn2); 
  ya = random; 
  sxn2 = sxn1; 
  sxn1 = random; 
  random = gen(sxn1, sxn2); 
  ya = ya + (long double) random / BOUND; 
 
  sxn2 = sxn1; 
  sxn1 = random; 
  random = gen(sxn1, sxn2); 
  k = (long double) random / BOUND; 
  alpha = 2 * PI*k; 
 
  yb = ya + (long double) sin(alpha); 
  j = (int) fabs(ya) + 1; 
  q1 = (long double) fabs(j - ya); 
  q2 = (long double) fabs(yb - ya); 
  if (q1 < q2) 
   ++counter; 
 
  ya = 0; yb = 0; j = 0; k = 0; alpha = 0; q1 = 0; q2 = 0; 
 } 
 
 AP = (long double) 2 * Nc / counter; 
 
 return AP; 
} 
 

7-3- The Third Algorithm with a Third Uniform Random Number Generator 

 

// Buffon's Needle Algorithm with Another Third Uniform Random Number 
// Generator 
 
#include <iostream> 
#include <cstdlib> 
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#include <ctime> 
#include <cmath> 
#include <iomanip> 
 
using namespace std; 
 
long double generate(long double); 
long double total(); 
 
const long double PI = 3.1415926535897931; 
const long double BOUND = 2147483647; 
 
int main() 
{ 
 long double summation; 
 long int c; 
 
 cout << fixed << setprecision(16); 
 
 for (c = 1; c <= 7; c++) 
 { 
  cout << "THE EXACT VALUE OF PI = " << PI << endl; 
  summation = (long double) total(); 
  cout << "THE ESTIMATION OF PI = " << summation << endl; 
  cout << "THE RELATIVE ERROR = " 
       << 100 * (long double) fabs(1 - summation / PI)  

     << "%\n" << endl; 
 } 
 
 return 0; 
} 
 
long double gen(long double xn1) 
{ 
 long double xn; 
 
 xn = (long double) fmod(((69069 * xn1) + 1), BOUND); 
 
 return xn; 
} 
 
long double total(void) 
{ 
 long int N, Nc, counter = 0; 
 long double ya = 0, yb = 0, q1 = 0, q2 = 0, AP = 0, alpha = 0,  

 k = 0, j = 0, random = 0, sxn1 = 0; 
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 srand(time(0)); 
 sxn1 = rand(); 
 
 Nc = 100000000; 
 for (N = 1; N <= Nc; N++) 
 { 
  random = gen(sxn1); 
  ya = random; 
  sxn1 = random; 
  random = gen(sxn1); 
  ya = ya + (long double) random / BOUND; 
 
  sxn1 = random; 
  random = gen(sxn1); 
  k = (long double) random / BOUND; 
  alpha = 2 * PI*k; 
 
  yb = ya + (long double) sin(alpha); 
  j = (int) fabs(ya) + 1; 
  q1 = (long double) fabs(j - ya); 
  q2 = (long double) fabs(yb - ya); 
 
  if (q1 < q2) 
   ++counter; 
 
  ya = 0; yb = 0; j = 0; k = 0; alpha = 0; q1 = 0; q2 = 0; 
 } 
 
 AP = (long double) 2 * Nc / counter; 
 
 return AP; 
} 
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8- Flowchart of the Complex Probability and Buffon’s Needle Technique Prognostic Model 

The following flowchart summarizes all the procedures of the proposed complex 

probability prognostic model: 

 

 
                                                                                    

                                                                             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Calculate the approximate value  

 

at each simulation and iteration cycles N 

 

Prognostic 

No 

Yes 

Plot all the functions for  

N = 0, NC 

 

   N < NC 

For each iteration  
cycles: N = 0, NC 

Buffon’s Needle Simulation 

Evaluation 

 

Complex Probability 

Paradigm Functions 

 

Calculate the real convergence 

probability:   

Calculate DOK: 

DOK(N) = 1 – 2×Pr(N)×[1 – Pr(N)] 

 

Calculate Chf and MChf: 

Chf(N) = – 2×Pr(N)×[1 – Pr(N)] 

MChf(N) = | Chf(N) | 

 

Calculate: Pc2(N) = DOK(N) – Chf(N) 

                             = DOK(N) + MChf(N) 

Calculate the real divergence 

probability:   

Input the random experiment exact result of  =  

Determine the random numbers generator  
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9- Simulation of the New Paradigm 

 

Note that all the numerical values found in the simulations of the new paradigm for any iteration 

cycles N were computed using the 64-Bit MATLAB version 2024 software. In addition, the reader 

should take care of the rounding and truncation errors since all numerical values in the computation 

of   are represented by at most five significant digits and since we are using Buffon’s needle 

method of simulation which gives approximate results subject to random effects and fluctuations. 

We have considered for this purpose a high-capacity computer system: a workstation computer 

with parallel microprocessors, a 64-Bit operating system, and a 64-GB RAM. Additionally, we 

have replaced in all the simulations ( )AP N  by ( ) / 2AP N  and EX  by / 2 / 2EX   to better see 

and read the simulations and to fit all the data and figures in a nicer and improved view. 

 

9-1- The Uniform Random Numbers Generator Case 

 

We will use in the first case in the computation of  using Buffon’s needle method the uniform 

random numbers generator:    
1 2( , , , , , )a by y j q q (0,10)  

L which is the needle length is taken to be equal to 1.  

1 2
( )

2

NL
AP N

X
    with 1 CN N   after applying Buffon’s needle method. 

 

Moreover, the three figures (Figures 5-7) show the increasing convergence of Buffon’s needle 

method and simulation to the exact result / 2 3.141592654 / 2 1.570796327EX     for  

N = 1000, 30000, and 
CN  400000 iterations. Therefore, we have:  

( )
lim ( ) lim 1 1 1 0 1r

N N

EX AP N EX EX
P N

EX EX 

   
       

 
 which is equal to the 

convergence probability of Buffon’s needle method as N  .  

 

Additionally, Figure 8 illustrates clearly and visibly the relation of Buffon’s needle method to the 

complex probability paradigm with all its parameters ( , , , , , , / ,r mChf MChf DOK EX AP P P i Pc ) 

after applying it to this method. 
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Figure 5- The increasing convergence of Buffon’s needle method up to N = 1000 iterations with 

the Uniform random number generator. 

 
Figure 6- The increasing convergence of Buffon’s needle method up to N = 30,000 iterations 

with the Uniform random number generator. 
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Figure 7- The increasing convergence of Buffon’s needle method up to N = 400,000 iterations 

with the Uniform random number generator. 

 

VII-2-1 The Complex Probability Cubes 

 

In the first cube (Figure 9), the simulation of DOK and Chf as functions of each other and 

of the iterations N for the Buffon’s needle problem can be seen. The thick line in cyan is the 

projection of Pc2(N) = DOK(N) – Chf(N) = 1 = Pc(N) on the plane N = 0 iterations. This line starts 

at the point J (DOK = 1, Chf = 0) when N = 0 iterations, reaches the point (DOK = 0.5, Chf = –0.5) 

when N = 200,000 iterations, and returns at the end to J (DOK = 1, Chf = 0) when N = NC = 400,000 

iterations. The other curves are the graphs of DOK(N) (red) and Chf(N) (green, blue, pink) in 

different planes. Notice that they all have a minimum at the point K (DOK = 0.5, Chf = –0.5,            

N = 200,000 iterations). The point L corresponds to (DOK = 1, Chf = 0, N = NC = 400,000 

iterations). The three points J, K, L are the same as in Figure 8. 

 

In the second cube (Figure 10), we can notice the simulation of the convergence probability 

Pr(N) and its complementary real divergence probability Pm(N)/i in terms of the iterations N for 

the Buffon’s needle problem. The thick line in cyan is the projection of Pc2(N) = Pr(N) + Pm(N)/i 

= 1 = Pc(N) on the plane N = 0 iterations. This line starts at the point (Pr = 0, Pm/i = 1) and ends at 

the point (Pr = 1, Pm/i = 0). The red curve represents Pr(N) in the plane Pr(N) = Pm(N)/i. This curve 

starts at the point J (Pr = 0, Pm/i = 1, N = 0 iterations), reaches the point K (Pr = 0.5, Pm/i = 0.5,    

N = 200,000 iterations), and gets at the end to L (Pr = 1, Pm/i = 0, N = NC = 400,000 iterations). 

The blue curve represents Pm(N)/i in the plane Pr(N) + Pm(N)/i = 1. Notice the importance of the 

point K which is the intersection of the red and blue curves at N = 200,000 iterations and when 

Pr(N) = Pm(N)/i = 0.5. The three points J, K, L are the same as in Figure 8. 
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In the third cube (Figure 11), we can notice the simulation of the complex random vector 

Z(N) in C = R + M as a function of the real convergence probability Pr(N) = Re(Z) in R and of its 

complementary imaginary divergence probability Pm(N) = i×Im(Z) in M , and this in terms of the 

iterations N for the Buffon’s needle problem. The red curve represents Pr(N) in the plane                 

Pm(N) = 0 and the blue curve represents Pm(N) in the plane Pr(N) = 0. The green curve represents 

the complex probability vector Z(N) = Pr(N) + Pm(N) = Re(Z) + i×Im(Z) in the plane                      

Pr(N) = iPm(N) + 1. The curve of Z(N) starts at the point J (Pr = 0, Pm= i, N = 0 iterations) and ends 

at the point L (Pr = 1, Pm = 0, N = NC = 400,000 iterations). The thick line in cyan is                         

Pr(0) = iPm(0) + 1 and it is the projection of the Z(N) curve on the complex probability plane whose 

equation is N = 0 iterations. This projected line starts at the point J (Pr = 0, Pm= i, N = 0 iterations) 

and ends at the point (Pr = 1, Pm = 0, N = 0 iterations). Notice the importance of the point K 

corresponding to N = 200,000 iterations and when Pr = 0.5 and Pm = 0.5i. The three points J, K, L 

are the same as in Figure 8.  

 

 

 
Figure 8- The CPP parameters and the Buffon’s needle method with the Uniform random 

number generator. 
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Figure 9- DOK and Chf in terms of N and of each other for the Buffon’s needle method with the 

Uniform random number generator. 

 
Figure 10- Pr and Pm/i in terms of N and of each other for the Buffon’s needle method with the 

Uniform random number generator. 
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Figure 11- The Complex Probability Vector Z in terms of N for the Buffon’s needle method with 

the Uniform random number generator. 

 

9-2- The Gaussian and Normal Random Numbers Generator Case 

 

 We will use in the second case in the computation of  using Buffon’s needle method the 

Gaussian and normal random numbers generator: 

1 2( , , , , , )a by y j q q ( 0, 1)    

L which is the needle length is taken to be equal to 1.  

1 2
( )

2

NL
AP N

X
    with 1 CN N   after applying Buffon’s needle method. 

 

Moreover, the three figures (Figures 12-14) show the increasing convergence of Buffon’s needle 

method and simulation to the exact result / 2 3.141592654 / 2 1.570796327EX     for  

N = 1000, 30000, and 
CN  400000 iterations. Therefore, we have:  

( )
lim ( ) lim 1 1 1 0 1r

N N

EX AP N EX EX
P N

EX EX 

   
       

 
 which is equal to the 

convergence probability of Buffon’s needle method as N  . 

 

Additionally, Figure 15 illustrates clearly and visibly the relation of Buffon’s needle method to the 

complex probability paradigm with all its parameters ( , , , , , , / ,r mChf MChf DOK EX AP P P i Pc ) 

after applying it to this random method. 
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Figure 12- The increasing convergence of Buffon’s needle method up to N = 1000 iterations with 

the Gaussian and normal random number generator. 

 
Figure 13- The increasing convergence of Buffon’s needle method up to N = 30,000 iterations 

with the Gaussian and normal random number generator. 
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Figure 14- The increasing convergence of Buffon’s needle method up to N = 400,000 iterations 

with the Gaussian and normal random number generator. 

 
Figure 15- The CPP parameters and the Buffon’s needle method with the Gaussian and normal 

random number generator. 
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9-3- The Poisson Random Numbers Generator Case 

 

We will use in the third case in the computation of  using Buffon’s needle method the Poisson 

random numbers generator: 

1 2( , , , , , )a by y j q q ( 5.68)   

 

L which is the needle length is taken to be equal to 1.  

1 2
( )

2

NL
AP N

X
    with 1 CN N   after applying Buffon’s needle method. 

 

Moreover, the three figures (Figures 16-18) show the increasing convergence of Buffon’s needle 

method and simulation to the exact result / 2 3.141592654 / 2 1.570796327EX     for  

N = 1000, 30000, and 
CN  400000 iterations. Therefore, we have:  

( )
lim ( ) lim 1 1 1 0 1r

N N

EX AP N EX EX
P N

EX EX 

   
       

 
 which is equal to the 

convergence probability of Buffon’s needle method as N  . 

 

Additionally, Figure 19 illustrates clearly and visibly the relation of Buffon’s needle method to the 

complex probability paradigm with all its parameters ( , , , , , , / ,r mChf MChf DOK EX AP P P i Pc ) 

after applying it to this random method. 

 
Figure 16- The increasing convergence of Buffon’s needle method up to N = 1000 iterations with 

the Poisson random number generator. 
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Figure 17- The increasing convergence of Buffon’s needle method up to N = 30,000 iterations 

with the Poisson random number generator. 

 
Figure 18- The increasing convergence of Buffon’s needle method up to N = 400,000 iterations 

with the Poisson random number generator. 
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Figure 19- The CPP parameters and the Buffon’s needle method with the Poisson random 

number generator. 

 

9-4- The Weibull Random Numbers Generator Case 

 

We will use in the fourth case in the computation of  using Buffon’s needle method the Weibull 

random numbers generator: 

1 2( , , , , , )a by y j q q ( 1, 2) a b  

 

L which is the needle length is taken to be equal to 1.  

1 2
( )

2

NL
AP N

X
    with 1 CN N   after applying Buffon’s needle method. 

Moreover, the three figures (Figures 20-22) show the increasing convergence of Buffon’s needle 

method and simulation to the exact result / 2 3.141592654 / 2 1.570796327EX     for  

N = 1000, 30000, and 
CN  400000 iterations. Therefore, we have:  

( )
lim ( ) lim 1 1 1 0 1r

N N

EX AP N EX EX
P N

EX EX 

   
       

 
 which is equal to the 

convergence probability of Buffon’s needle method as N  . 

 

Additionally, Figure 23 illustrates clearly and visibly the relation of Buffon’s needle method to the 

complex probability paradigm with all its parameters ( , , , , , , / ,r mChf MChf DOK EX AP P P i Pc ) 

after applying it to this random method. 
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Figure 20- The increasing convergence of Buffon’s needle method up to N = 1000 iterations with 

the Weibull random number generator. 

 
Figure 21- The increasing convergence of Buffon’s needle method up to N = 30,000 iterations 

with the Weibull random number generator. 
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Figure 22- The increasing convergence of Buffon’s needle method up to N = 400,000 iterations 

with the Weibull random number generator. 

 
Figure 23- The CPP parameters and the Buffon’s needle method with the Weibull random 

number generator. 
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10- Conclusion and Perspectives 

 

In the current research chapter, the original extended Kolmogorov model of eight axioms 

(EKA) was connected and applied to the classical and random Buffon’s needle numerical 

technique. Thus, a tight link between Buffon’s needle algorithms and the novel paradigm was 

executed. Accordingly, the model of "Complex Probability” was more expanded beyond the scope 

of my earlier research studies on this subject.  

 

Moreover, as it was proved and illustrated in the new model and in the current chapter and 

in all the book chapters, when the probability is 0 or 1 then the degree of our knowledge (DOK) is 

one and the chaotic factor (Chf and MChf) is 0 since the state of the system is totally known. During 

the random process we have: 0.5 ≤ DOK < 1, –0.5 ≤ Chf < 0, and 0 < MChf ≤ 0.5. Notice that 

during this whole procedure we have always Pc2 = DOK – Chf = DOK + MChf = 1, that means 

that the phenomenon which seems to be random and stochastic in R is now deterministic and 

certain in C = R + M, and this after adding to R the contributions of M and hence after subtracting 

the chaotic factor from the degree of our knowledge. Additionally, the probabilities of convergence 

and divergence of the random Buffon’s needle procedure that correspond to each iteration cycle N 

have been determined in the three sets of probabilities which are R, M, and C by rP , mP , and Pc 

respectively. Subsequently, at each instance of N, the novel Buffon’s needle technique and CPP 

parameters EX , AP , Pr, mP , /mP i , DOK, Chf, MChf, Pc, and Z are perfectly and surely predicted 

in the set of complex probabilities C with Pc kept as equal to 1 continuously and forever.  

 

Furthermore, using all these shown simulations and obtained graphs all over the entire 

research chapter, we can visualize and quantify both the certain knowledge (expressed by DOK 

and Pc) and the system chaos and stochastic influences and effects (expressed by Chf and MChf) 

of Buffon’s needle algorithms. This is definitely very wonderful, fruitful, and fascinating and 

demonstrates once again the advantages of extending the five axioms of probability of 

Kolmogorov and thus the benefits and novelty of this original theory in applied mathematics and 

prognostics that can be called verily: 

  

"The Complex Probability Paradigm". 

 

Moreover, it is important to state here that four essential and very well-known random 

numbers generators were taken into consideration in the current chapter which are the uniform, 

Gaussian, Poisson and Weibull random numbers generators, knowing that the original CPP model 

can be applied to any generator of random numbers that exist in literature. This will lead certainly 

to analogous results and conclusions and will confirm without any doubt the success of my 

innovative theory.  

 

As a prospective and future work and concerning some applications to pure and applied 

mathematics, it is planned to more develop the novel proposed mathematical prognostic paradigm 

and to apply it to a wide set of random and stochastic systems in various fields of science and 

disciplines of knowledge. 
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CHAPTER FOUR 

 

THE PARADIGM OF COMPLEX PROBABILITY  

AND THE NEUTRON SHIELDING PROBLEM 
 

 

“It is not certain that everything is uncertain.” 

            Blaise Pascal, Pascal's Pensées. 

 

“A mathematician, like a painter or poet, is a maker of patterns. If his patterns are more 

permanent than theirs, it is because they are made with ideas.” 

 Godfrey Harold Hardy, A Mathematician's Apology. 

 

“I would prefer an intelligent hell to a stupid paradise.” 

                    Blaise Pascal. 

 

“A mathematical proof should resemble a simple and clear-cut constellation, not a scattered 

cluster in the Milky Way.” 

Godfrey Harold Hardy, A Mathematician's Apology. 

 

 

Abstract: The concept of mathematical probability was established in 1933 by 

Andrey Nikolaevich Kolmogorov by defining a system of five axioms. This system can be 

enhanced to encompass the imaginary numbers set after the addition of three novel axioms. As a 

result, any random experiment can be executed in the complex probabilities set C which is the sum 

of the real probabilities set R and the imaginary probabilities set M. We aim here to incorporate 

supplementary imaginary dimensions to the random experiment occurring in the “real” laboratory 

in R and therefore to compute all the probabilities in the sets R, M, and C. Accordingly, the 

probability in the whole set C = R + M is constantly equivalent to one independently of the 

distribution of the input random variable in R, and subsequently the output of the stochastic 

experiment in R can be determined absolutely in C. This is the consequence of the fact that the 

probability in C is computed after the subtraction of the chaotic factor from the degree of our 

knowledge of the nondeterministic experiment. We will apply this innovative paradigm to the 

well-known neutron shielding problem and to its random algorithms and procedures in a novel 

way. 

 

Keywords: Degree of our knowledge, Chaotic factor, Complex probability set, Probability norm, 

Complex random vector, Convergence probability, Divergence probability, Simulation. 

 

NOMENCLATURE 

 

R = the events real set 

M = the events imaginary set  

C = the events complex set 
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i         = the imaginary number with 2 1i    or 1i     

EKA = Extended Kolmogorov's Axioms 

CPP     = Complex Probability Paradigm 

Prob = any event probability 

Pr      = the probability in the real set R = convergence probability in R 

Pm = the probability in the complementary imaginary set M that corresponds to the real  

               probability set in R = divergence probability in M 

Pc      = the event probability in R with its associated event in M = probability in the complex  

               probability set C = R + M 

EX        = the random experiment exact result  

AP        = the random experiment approximate result  

Z      = complex probability number = complex random vector = sum of Pr and Pm 

DOK      = 
2

Z = the degree of our knowledge of the stochastic experiment or system, it is the  

                  square of the norm of Z 

Chf       = the chaotic factor of Z 

MChf     = the magnitude of the chaotic factor of Z 

N   = the number of iterations cycles = number of random vectors 

CN         = the number of iterations cycles till the convergence of neutron shielding problem  

                 to EX = the number of random vectors till convergence. 

 

1- Introduction [1-90] 

 

Calculating probabilities is the crucial task of classical probability theory. Adding 

supplementary dimensions to nondeterministic experiments will yield a deterministic expression 

of the theory of probability. This is the novel and original idea at the foundations of my complex 

probability paradigm. Aa a matter of fact, probability theory is a stochastic system of axioms in its 

essence; that means that the phenomena outputs are due to randomness and chance. By adding 

novel imaginary dimensions to the nondeterministic phenomenon happening in the set R will lead 

to a deterministic phenomenon and thus a stochastic experiment will have a certain output in the 

complex probability set C. If the chaotic experiment becomes completely predictable then we will 

be fully capable to predict the output of random events that arise in the real world in all stochastic 

processes. Accordingly, the task that has been achieved here was to extend the random real 

probabilities set R to the deterministic complex probabilities set C = R + M and this by 

incorporating the contributions of the set M which is the complementary imaginary set of 

probabilities to the set R. Consequently, since this extension reveals to be successful, then an 

innovative paradigm of stochastic sciences and prognostic was put forward in which all 

nondeterministic phenomena in R was expressed deterministically in C. I coined this novel model 

by the term "The Complex Probability Paradigm" that was initiated and established in my earlier 

research works. 

 

2- The Purpose and the Advantages of the Current Chapter [37-90] 

 

The advantages and the purpose of the present chapter are to: 
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1- Extend the theory of classical probability to cover the complex numbers set, hence to 

connect the probability theory to the field of complex variables and analysis. This task was 

started and elaborated in my earlier papers. 

 

2- Apply the novel probability axioms and paradigm to the neutron shielding problem. 

 

3- Show that all nondeterministic phenomena can be expressed deterministically in the 

complex probabilities set which is C. 

 

4- Compute and quantify both the degree of our knowledge and the chaotic factor of the 

neutron shielding problem. 

 

5- Represent and show the graphs of the functions and parameters of the innovative paradigm 

related to the neutron shielding algorithm. 

 

6- Demonstrate that the classical concept of probability is permanently equal to one in the set 

of complex probabilities; hence, no chaos, no randomness, no ignorance, no uncertainty, 

no unpredictability, no nondeterminism, and no disorder exist in: 

 

C (complex set) = R (real set) + M (imaginary set). 

 

7- Pave the way to implement this inventive model to other topics in prognostics and to the 

field of stochastic processes. These will be the goals of my future research works.  

 

Concerning some applications of the novel established paradigm and as a future work, it can 

be applied to any nondeterministic phenomena using the neutron shielding algorithm in any 

random case.  

 

Moreover, compared with existing literature, the major contribution of the current research 

chapter is to apply the innovative paradigm of complex probability to the concept and technique 

of the probabilistic neutron shielding simulation and algorithms. The next figure displays the major 

aims and purposes of the Complex Probability Paradigm (CPP) (Figure 1). 
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Figure 1- The diagram of the major aims of the Complex Probability Paradigm and the neutron 

shielding problem. 

 

3- The Complex Probability Paradigm [37-141] 

 

3-1- The Original Andrey Nikolaevich Kolmogorov System of Axioms  

 

The simplicity of Kolmogorov’s system of axioms may be surprising. Let E be a collection 

of elements {E1, E2, …} called elementary events and let F be a set of subsets of E called random 

events. The five axioms for a finite set E are: 

 

Axiom 1:  F is a field of sets. 

Axiom 2:  F contains the set E. 

Axiom 3:  A non-negative real number Prob(A), called the probability of A, is assigned to each 

                  set A in F. We have always 0  Prob(A)  1. 

Axiom 4:  Prob(E) equals 1. 

Axiom 5:  If A and B have no elements in common, the number assigned to their union is: 

( ) ( ) ( )rob rob robP A B P A P B    

      hence, we say that A and B are disjoint; otherwise, we have: 

( ) ( ) ( ) ( )rob rob rob robP A B P A P B P A B      

 

And we say also that: ( ) ( ) ( / ) ( ) ( / )rob rob rob rob robP A B P A P B A P B P A B      which is the 

conditional probability. If both A and B are independent then: ( ) ( ) ( )rob rob robP A B P A P B   . 

 

Moreover, we can generalize and say that for N disjoint (mutually exclusive) events 

1 2, , , , ,j NA A A A  (for 1 j N  ), we have the following additivity rule:   

Complex
Probability 
Paradigm

Neutron 
Shielding 
Problem

Complex 
Analysis

Probability 
Theory

Stochastic 
Phenomena

Applied to 

 

Applied to 

 
Applied to 

Applied to 
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 
11

N N

rob j rob j

jj

P A P A


 
 

 
  

 

And we say also that for N independent events 
1 2, , , , ,j NA A A A  (for 1 j N  ), we have the 

following product rule:   

 
11

N N

rob j rob j

jj

P A P A


 
 

 
  

 

 3-2- Adding the Imaginary Part M 

 
Now, we can add to this system of axioms an imaginary part such that: 

 

Axiom 6:  Let (1 )m rP i P    be the probability of an associated complementary event in M (the 

imaginary part) to the event A in R (the real part). It follows that / 1r mP P i   where i is the 

imaginary number with 1i    or 2 1i   . 

Axiom 7:  We construct the complex number or vector (1 )r m r rZ P P P i P       having a 

norm Z  such that:    

2 2 2( / )r mZ P P i  . 

Axiom 8:  Let Pc denote the probability of an event in the complex probability universe C where 

C = R + M. We say that Pc is the probability of an event A in R with its associated event in M 

such that: 
22 2( / ) 2r m r mPc P P i Z iP P      and is always equal to 1. 

We can see that by taking into consideration the set of imaginary probabilities we added three new 

and original axioms and consequently the system of axioms defined by Kolmogorov was hence 

expanded to encompass the set of imaginary numbers. 

 

 3-3- A Brief Interpretation of the Novel Paradigm 

 

To summarize the novel paradigm, we state that in the real probability universe R our degree of 

our certain knowledge is undesirably imperfect and hence unsatisfactory, thus we extend our 

analysis to the set of complex numbers C which incorporates the contributions of both the set of 

real probabilities which is R and the complementary set of imaginary probabilities which is M. 

Afterward, this will yield an absolute and perfect degree of our knowledge in the probability 

universe C = R + M because Pc = 1 constantly. As a matter of fact, the work in the complex 

universe C gives way to a sure prediction of any stochastic experiment, because in C we remove 

and subtract from the computed degree of our knowledge the measured chaotic factor. This will 

generate a probability in the universe C equal to 1 (Pc2 = DOK Chf = DOK + MChf = 1 = Pc). 

Many illustrations taking into consideration numerous continuous and discrete probability 

distributions in my previous research papers confirm this hypothesis and innovative paradigm. The 

Extended Kolmogorov Axioms (EKA for short) or the Complex Probability Paradigm (CPP for 

short) can be shown and summarized in the next illustration (Figure 2): 
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Figure 2- The EKA or the CPP diagram 
 
 

4- The Neutron Shielding Method Problem and Solution 

 

The Neutron Shielding Problem: The work done in this paper concerns the neutron shielding. 

We take a simple model of neutrons penetrating a lead wall. It is assumed that each neutron enters 

the lead wall at a right angle to the wall and travels a unit distance. Then it collides with a lead 

atom and rebounds in a random direction. Again, it travels a unit distance before colliding with 

another lead atom. It rebounds in a random direction and so on. Assume that after 11 collisions, 

all the neutron’s energy is spent. Assume also that the lead wall is 5 units thick in the X direction 

and for all practical purposes infinitely thick in the Y direction. The question is: what percentage 

of neutrons can be expected to emerge from the other side of the lead wall? 

 

The Neutron Shielding Solution: Let x be the distance measured from the initial surface where the 

neutron enters. From trigonometry, we recall that in a right triangle with hypotenuse 1, one side is 

cos . Also note that cos 0   when / 2    . The first collision occurs at a point where         

x = 1. The second occurs at a point where 
11 cosx   . The third collision occurs at a point where 

1 21 cos cosx     , and so on. If 5x  , the neutron has exited. If x < 5 for all eight collisions, 

the wall has shielded the area from that particular neutron. The figures below justify our 

mathematical analysis (Figures 3 and 4): 

 

 

5 original 

Kolmogorov 

axioms 

Real Probability Pr 

Pr 

Input: 

Real set R 

Output: 

Complex set C 

A total of 8 axioms 

Complex number Z = Pr + Pm 

Complex Probability Pc = 1 

Pc2 = DOK – Chf = 1 

     Pc2 = DOK + MChf = 1 
 

Adding 3 axioms 

Imaginary Probability Pm 

 Chf  = 2iPrPm 

 MChf  = |Chf|= –2iPrPm 

 

 

Add: 

Imaginary set M 
 

Total 

Determinism 

Chance 

and 

Luck 
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Figure 3- The neutrons penetrating a lead wall 
 

 

 

 

 

        

                                                                                                                                

 

     

                                                                                                                                                                               

                                                                                 

 

Figure 4- The neutrons travelling a unit distance 

 

          After running the program, we can say that: Exact Result = 5.1875%EX  . So, 5.187% of 

the neutrons can be expected to emerge from the lead wall and which is the correct answer up to 

four significant digits after truncation, and that was taken from the programs’ simulations. Inside 

the computer program, the variable counter counts the number of times the neutrons emerge from 

the other side of the lead wall, and the variable N = number of iterations such that: 0 CN N  ; 

therefore:  

Approximate Result =100 %
counter

N
 = the variable AP in the whole work. 

 

5- The Neutron Shielding Method and the Complex Probability Paradigm Parameters 

 

5-1- The Convergence and Divergence Probabilities 

Let EX  be the experiment exact result like of a multidimensional or a simple integral that is not 

possible always to determine by ordinary methods or calculus or numerical deterministic methods. 

And let AP  be the experiment approximate result and therefore let it be the value of these random 

experiments found by Monte Carlo Techniques like the neutron shielding problem.  
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The absolute error in the numerical analysis method is: Abs. Error EX AP    

The relative error in the numerical method is: 
Abs. Error

Rel. Error  1
EX AP AP

EX EX EX


      

In addition, the percent relative error is = 100%
EX AP

EX


  and is always between 0% and 100%. 

Therefore, the relative error is always between 0 and 1. Hence: 

 

 

0 1 if 
0

0 1
2

0 1 if 

EX AP
AP EX

AP EXEXEX AP

EX AP EXEX EX AP
AP EX

EX

  
        

    
          

 

 

Moreover, we define the real probability by: 

 

1 1 if  0  

1 1 1

1 1      if  2  

if  0  

                                                 

2      if  2  

r

AP
AP EX

EXEX AP AP
P

EX EX AP
EX AP EX

EX

AP
AP EX

EX

AP
EX AP EX

EX

  
    

   
      

        


 

 
   


 

= 1 – the relative error in the numerical method  

= Probability and degree of the numerical method convergence in R 

= Probability and ratio of the approximate result to the exact result.  

And therefore: 

 

 1 1 1 1 1 1 1

1 if  0  1 if  0  

                     

1      if  2  1       if 

m r

EX AP AP AP
P i P i i i

EX EX EX

AP AP
i AP EX i AP EX

EX EX

AP AP
i EX AP EX i

EX EX

       
                

      

    
        

    
 

              
 2  EX AP EX





  


 

= The relative error in the numerical method in M 

= Probability and degree of the numerical method divergence in the imaginary probability set M   

   since it is the imaginary complement of rP .  

 

Consequently,  
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1 if  0  

/ 1 1

1      if  2  
m r

AP
AP EX

AP EX
P i P

APEX
EX AP EX

EX


  

     
   


 

= The relative error in the numerical method in R 

= Probability and degree of the numerical method divergence in R since it is the real complement 

   of rP . 

In the case where 0 AP EX   we have 0 1
AP

EX
  0 1rP    and we deduce also that 

0 1 1
AP

EX

 
   
 

0 / 1mP i    and 0 mP i    

And in the case where 2EX AP EX  1 2
AP

EX
    0 2 1

AP

EX

 
    

 
0 1rP    and we 

deduce also that 0 1 1
AP

EX

 
   
 

0 / 1mP i    and 0 mP i    

Therefore, if 0AP   or 2AP EX  that means before the beginning of the numerical method and 

the simulation, then: 

rP  = Prob (convergence) in R = 0 

mP = Prob (divergence) in M = i 

/mP i  = Prob (divergence) in R = 1 

 

And if AP EX  that means at the end of the simulation and the numerical method then: 

rP  = Prob (convergence) in R = 1 

mP = Prob (divergence) in M = 0 

/mP i  = Prob (divergence) in R = 0 

 

5-2- The Complex Random and Random Vector Z in C = R + M 

 

We have 

1 if  0  

2 1      if  2  

r m

AP AP
i AP EX

EX EX
Z P P

AP AP
i EX AP EX

EX EX

  
    

  
   

              

  

 

where 

if  0  

Re( )

2      if  2  
r

AP
AP EX

EX
Z P

AP
EX AP EX

EX


 

  
   


= the real part of Z  
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and 

1 if  0  

Im( ) /

1      if  2  
m

AP
AP EX

EX
Z P i

AP
EX AP EX

EX


  

  
   


= the imaginary part of Z.  

That means that the complex random vector Z is the sum in C of the convergence real probability 

in R and of the divergence imaginary probability in M. 

If 0AP   or 2AP EX  (before beginning of the simulation) then 
0

0r

AP
P

EX EX
    or 

2
2 2 2 2 0r

AP EX
P

EX EX
        and 

0
1 1 (1 0)m

AP
P i i i i

EX EX

   
         
   

 or 

2
1 1 (2 1)m

AP EX
P i i i i

EX EX

   
         
   

 therefore 0Z i i   . 

 

If 
2

EX
AP   or 

3

2

EX
AP   (at the middle of the simulation) then: 

 

if  0  0.5 if  0  
2

3
2      if  2  2 0.5      if  2  

2

r

AP EX
AP EX AP EX

EX EX
P

AP EX
EX AP EX EX AP EX

EX EX

 
      

  
       
  

  

0.5rP   

and 

1 if  0  1 0.5 if  0  
2

3
1      if  2  1 0.5      if  2  

2

m

AP EX
i AP EX i i AP EX

EX EX
P

AP EX
i EX AP EX i i EX AP EX

EX EX

    
          

     
  

                  

  

0.5mP i   

therefore 0.5 0.5Z i  . 

If AP EX  (at the simulation end) then: 

 

1 if  0  

1

2 2 2 1 1      if  2  
r r

AP EX
AP EX

EX EX
P P

AP EX
EX AP EX

EX EX


   

  
        


  

And 
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1 if  0  1 if  0  

1      if  2  1      if  2  

0 if  0  
    

0      if  2  

0

m

m

AP EX
i AP EX i AP EX

EX EX
P

AP EX
i EX AP EX i EX AP EX

EX EX

AP EX

EX AP EX

P

    
         

     
  

                 

 
 

 

 

  

therefore 1 0 1Z i   . 

 

5-3- The Degree of Our Knowledge of the Random Experiment DOK 

 

We have: 
2 2 2

2 2

2 2

( / )

if  0  1 if  0  

        

2      if  2  1      if  2  

r mDOK Z P P i

AP AP
AP EX AP EX

EX EX

AP AP
EX AP EX EX AP EX

EX EX

  

    
        

    
  

    
         

    

 

      

2 2

2 2

1 if  0  

   

2 1      if  2  

AP AP
AP EX

EX EX

AP AP
EX AP EX

EX EX

    
       

    
 

   
       

   

 

 

2

2

2 2 1 if  0  

        

2 6 5      if  2  

AP AP
AP EX

EX EX

AP AP
EX AP EX

EX EX

    
       

    
 

   
      

   

 

 

From CPP we have that 0.5 1DOK   then if  
2

2

2 2 1 0.5 if  0  

2 6 5 0.5      if  2  

AP AP
AP EX

EX EX

AP AP
EX AP EX

EX EX

    
        

    
 

   
       

   

  

then solving the two second-degree equations for 
AP

EX
 gives: 

1/ 2 if  0  
/ 2 if  0  

3 / 2      if  2  
3 / 2      if  2  

AP
AP EX

AP EX AP EXEX

AP AP EX EX AP EX
EX AP EX

EX


     

 
     



 

0.5DOK 
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and vice versa.  

 

That means that DOK is minimum when the approximate result is equal to half of the exact result 

if  0 AP EX   or when the approximate result is equal to three times the half of the exact result 

if  2EX AP EX  , that means at the middle of the simulation.  

 

In addition, if 1DOK   then: 

 
2

2

2 2 1 1 if  0  

2 6 5 1      if  2  

AP AP
AP EX

EX EX

AP AP
EX AP EX

EX EX

    
        

    
 

   
       

   

 

 
2

2

0 if  0  

2 6 4 0      if  2  

AP AP
AP EX

EX EX

AP AP
EX AP EX

EX EX

    
       

    
 

   
       

   

 

0  OR  if  0  

2  OR       if  2  

AP AP EX AP EX

AP EX AP EX EX AP EX

   
 

   
 

 

and vice versa.  

 

That means that DOK, which is the degree of our knowledge of the random experiment, is 

maximum and is equal to 1 when the approximate result is equal to EX  that means when it is 

equal to the exact result (at the end of the simulation) or 0 or 2EX  (before the beginning of the 

simulation). We can deduce that we have total and perfect knowledge of the random experiment 

at the end of the simulation after the convergence of the numerical method to the exact result and 

hence when relative error is 0 = 0% and as well as before the beginning of the simulation since no 

randomness was introduced yet and thus when relative error is 1 = 100%. 

 

5-4- The Chaotic Factor Chf 

 

We have: 

 

 

1 if  0  if  0  

2 2

2      if  2  1       if  2  

r m

APAP i AP EXAP EX
EXEX

Chf iP P i
AP AP

EX AP EX i EX AP EX
EX EX

           
    

           

  

since 2 1i    then: 
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2 1 if  0  

2 2 1      if  2  

AP AP
AP EX

EX EX
Chf

AP AP
EX AP EX

EX EX

   
     

   
 

           

 

 

From CPP we have that 0.5 0Chf    then if 0.5Chf    

2 1 0.5 if  0  

2 2 1 0.5      if  2  

AP AP
AP EX

EX EX

AP AP
EX AP EX

EX EX

   
       

   
 

             

 

 

/ 2 if  0  

3 / 2      if  2  

AP EX AP EX

AP EX EX AP EX

  
 

  
 

 

and vice versa. 

 

That means that Chf is minimum when the approximate result is equal to half of the exact result 

if  0 AP EX   or when the approximate result is equal to three times the half of the exact result 

if  2EX AP EX  , that means at the middle of the simulation.  

In addition, if 0Chf   then: 

2 1 0 if  0  

2 2 1 0      if  2  

AP AP
AP EX

EX EX

AP AP
EX AP EX

EX EX

   
      

   
 

            

 

 

0  OR  if  0  

2  OR       if  2  

AP AP EX AP EX

AP EX AP EX EX AP EX

   
 

   
 

 

And, conversely, if  
0  OR  if  0  

2  OR       if  2  

AP AP EX AP EX

AP EX AP EX EX AP EX

   


   
 then 0Chf  .  

That means that Chf is equal to 0 when the approximate result is equal to EX  that means when it 

is equal to the exact result (at the end of the simulation) or 0 or 2EX  (before the beginning of the 

simulation). 

 

5-5- The Magnitude of the Chaotic Factor MChf 

 

We have: 
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2

1 if  0  if  0  

          2

2      if  2  1      if  2  

r mMChf Chf iP P

APAP i AP EXAP EX
EXEX

i
AP AP

EX AP EX i EX AP EX
EX EX

  

           
    

           

 

since 2 1i    then: 

2 1 if  0  

2 2 1      if  2  

AP AP
AP EX

EX EX
MChf

AP AP
EX AP EX

EX EX

   
    

   
 

           

 

 

From CPP we have that 0 0.5MChf   then if 0.5MChf   

2 1 0.5 if  0  

2 2 1 0.5      if  2  

AP AP
AP EX

EX EX

AP AP
EX AP EX

EX EX

   
     

   
 

            

 

/ 2 if  0  

3 / 2      if  2  

AP EX AP EX

AP EX EX AP EX

  
 

  
 

 

and vice versa. 

 

That means that MChf is maximum when the approximate result is equal to half of the exact result 

if  0 AP EX   or when the approximate result is equal to three times the half of the exact result 

if  2EX AP EX  , that means at the middle of the simulation. This implies that the magnitude 

of the chaos (MChf) introduced by the variables used in the numerical method is maximum at the 

halfway of the simulation. 

 

In addition, if 0MChf   then: 

2 1 0 if  0  

2 2 1 0      if  2  

AP AP
AP EX

EX EX

AP AP
EX AP EX

EX EX

   
     

   
 

            

 

 

0  OR  if  0  

2  OR       if  2  

AP AP EX AP EX

AP EX AP EX EX AP EX

   
 

   
 

 

And, conversely, if  
0  OR  if  0  

2  OR       if  2  

AP AP EX AP EX

AP EX AP EX EX AP EX

   


   
 then 0MChf  .  
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That means that MChf is minimum and is equal to 0 when the approximate result is equal to EX  

that means when it is equal to the exact result (at the end of the simulation) or 0 or 2EX  (before 

the beginning of the simulation). We can deduce that the magnitude of the chaos in the random 

experiment is null at the end of the simulation after the convergence of the numerical method to 

the exact result and when randomness has finished its task in the numerical method and experiment 

as well as before the beginning of the simulation since no randomness was introduced yet. 

 

5-6- The Probability Pc in the Probability Set C = R + M 
We have from CPP: 

2

2

2

2 2 1 if  0  

                             

2 6 5      if  2  

2 1 if  0

                             

Pc DOK Chf DOK MChf

AP AP
AP EX

EX EX

AP AP
EX AP EX

EX EX

AP AP

EX EX

   

    
       

    
 

   
      

   

  
    

  


 

2 2 1      if  2  

AP EX

AP AP
EX AP EX

EX EX







           

 

 

2
1 if  0  

1   for  0 2  
1      if  2  

AP EX
Pc AP EX

EX AP EX

 
    

 
 

 

1Pc  = Probability and degree of convergence in C, therefore: 

1 if  0  
if  0  

     if  2  
2 1      if  2  

AP
AP EX

AP EX AP EXEX
Pc

AP AP EX EX AP EX
EX AP EX

EX


     

  
      



 

  

   for  0 2AP EX AP EX     continuously in the probability set C = R + M. This is due to 

the fact that in C we have subtracted in the equation above from our knowledge DOK the chaotic 

factor Chf and consequently we have removed chaos introduced and caused by all the variables 

and the numerical fluctuations that lead to approximate results in the numerical simulation in R. 

Therefore, since in C we have always AP EX  then the simulation which is a random method by 

nature in R becomes after applying the CPP a non-random method in C since the convergence 

probability of any experiment in C is permanently and constantly equal to 1 for any subintervals 

or iterations number N. 
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5-7- The Rates of Change of the Probabilities in R, M, and C 

 

Since 

1 if  0  

Re( ) Im( )

2 1      if  2  

r m

AP AP
i AP EX

EX EX
Z P P Z i Z

AP AP
i EX AP EX

EX EX

  
    

  
    

              

  

Then: 

 

1 if  0  
( )

( ) ( ) ( )
2 1      if  2  

( )

                            

mr

d AP AP
i AP EX

d AP EX EXdPdPdZ

d AP d AP d AP d AP AP
i EX AP EX

d AP EX EX

   
      
   

   
                  

 

                                          

1 if  0  
( ) ( )

2 1         if  2  
( ) ( )

d AP d AP
i AP EX

d AP EX d AP EX

d AP d AP
i EX AP EX

d AP EX d AP EX

     
       

     
 

                 

 

                                          

1 1
(1 ) if  0

1 1
( 1)      if  2

i
i AP EX

EX EX EX

i
i EX AP EX

EX EX EX


    

 
     


 

 

Therefore, 

1
if  0

Re
1( ) ( )

     if  2

r

AP EX
dPdZ EX

d AP d AP
EX AP EX

EX


    

   
    



  

                    
constant 0 if  0   and  0

constant < 0      if  2   and  0

AP EX EX

EX AP EX EX

   
 

  
 

that means that the rate of change or the slope of the probability of convergence in R is 

positive and constant if  0 AP EX  , and negative and constant if  2EX AP EX  , and 

it depends only on 0EX   ; hence, we have a constant increase in rP  (the convergence 

probability which is by definition an absolute value that means always nonnegative) as a 

function of the iterations or subintervals number N as AP  increases from 0 to EX  and as 

AP  decreases from 2EX  to EX  till rP  reaches the value 1 that means till the random 

experiment converges to EX . 
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            And             
constant < 0 if  0  and  0

constant > 0      if  2   and  0

EX AP EX

EX AP EX EX

  
 

  
 

that means that the slope of the probability of convergence in R or its rate of change is 

constant and negative if 0EX AP  , and constant and positive 2EX AP EX  , and it 

depends only on 0EX   ; hence, we have a constant increase in rP  as a function of the 

iterations or subintervals number N as AP  decreases from 0 to EX  and as AP  increases 

from 2EX  to EX  till rP  reaches the value 1 that means till the random experiment 

converges to EX . 
 

1
if  0

( / )1
Im

1( ) ( ) ( )
     if  2

m m

AP EX
dP d P idZ EX

d AP i d AP d AP
EX AP EX

EX


    

    
    



 

                     
constant < 0 if  0   and  0

constant > 0      if  2   and  0

AP EX EX

EX AP EX EX

  
 

  
 

that means that their rates of change or the slopes of the probabilities of divergence in R 

and M are negative and constant if  0 AP EX  , and positive and constant 

if  2EX AP EX  , and they depend only on 0EX  ; hence, we have a constant decrease 

in /mP i  and mP  (the divergence probabilities) as functions of the iterations or subintervals 

number N as AP  increases from 0 to EX  and as AP  decreases from 2EX  to EX  till 

/mP i  and mP  reach the value 0 that means till the random experiment converges to EX . 

 

And              
constant > 0 if  0  and  0

constant < 0      if  2   and  0

EX AP EX

EX AP EX EX

  
 

  
 

that means that the slopes of the probabilities of divergence in R and M or their rates of 

change are constant and positive if  0EX AP  , and constant and negative 

if 2EX AP EX  , and they depend only on 0EX  ; hence, we have a constant decrease 

in /mP i  and mP  as functions of the iterations or subintervals number N as AP  decreases 

from 0 to EX  and as AP  increases from 2EX  to EX  till /mP i  and mP  reach the value 0 

that means till the random experiment converges to EX . 

 

Additionally,  
2 2 2 2 2

2 2

2 2

( / )1

( ) ( ) ( ) ( ) ( )

1 1
if  0

              
1 1

     if  2

m mr r
dP d P idP dPdZ

d AP d AP i d AP d AP d AP

AP EX
EX EX

EX AP EX
EX EX

       
           
       

   
      

   
 

   
      
   
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2

2 2 2

1 1 2
   for  0 2

( ) ( ) ( ) ( )

dZ
AP EX

d AP EX EX EX
       

                           
2

constant 0,
( )

dZ

d AP EX
     EX ;  

 

that means that its rate of change or the module of the slope of the complex probability vector Z in 

C is positive and constant and it depends only on  EX ; hence, we have a constant increase in 

Re( )Z  and a constant decrease in Im( )Z  as functions of the iterations or subintervals number N 

and as Z goes from (0, i) at N = 0 till (1,0) at the simulation end; hence, till Re( ) rZ P  reaches 

the value 1 that means till the random experiment converges to EX . 

 

Furthermore, since 
2 1Pc DOK Chf DOK MChf      from CPP 

                      then 1Pc    Probability and degree of convergence in C  

  

and consequently:
( ) (1)

0
( ) ( )

d Pc d

d AP d AP
  ;  

 

that means that Pc is constantly equal to 1 for every value of AP , of EX , and of the iterations or 

subintervals number N, that means for any random experiment and for any simulation of the 

numerical methods. So, we conclude that in C we have complete and perfect knowledge of the 

random experiment which has become now a non-random one since the extension in the complex 

probability plane C defined by the CPP axioms has changed all random variables to non-random 

variables and since we have subtracted and eliminated in the equation of Pc above chaos expressed 

by Chf from DOK. Hence, randomness and chaos vanish completely and totally in the probability 

set C = R + M. 

 

6- The Evaluation of the New Paradigm Parameters  

 

 We can deduce from what has been elaborated previously the following: 

 

The real convergence probability: 
( )

( ) 1r

EX AP N
P N

EX


        

We have 0 CN N   where N = 0 corresponds to the instant before the beginning of the random 

experiment when ( 0) 0  or 2AP N EX   , and where 
CN N  (iterations number needed for 

the method convergence) corresponds to the instant at the end of the random experiments and 

Monte Carlo methods when ( )CAP N N EX  . 

         

The imaginary complementary divergence probability: 
( )

( )m

EX AP N
P N i

EX


                
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The real complementary divergence probability: 
( )

( ) /m

EX AP N
P N i

EX


   

 

The complex probability and random vector:  

( ) ( )
( ) ( ) ( ) 1r m

EX AP N EX AP N
Z N P N P N i

EX EX

   
     

 
 

 

The Degree of Our Knowledge:

 

 

2 2

22 2

2

2

( ) ( )
( ) ( ) ( ) ( ) / 1

               1 2 ( ) ( ) 1 2 ( ) 1 ( ) 1 2 ( ) 2 ( )

( ) ( )
               1 2 2

r m

r m r r r r

EX AP N EX AP N
DOK N Z N P N P N i

EX EX

iP N P N P N P N P N P N

EX AP N EX AP N

EX EX

     
        

   

       

  
    

 

                  

( )DOK N  is equal to 1 when ( ) (0) 0r rP N P   and when ( ) ( ) 1r r CP N P N  . 

 

The Chaotic Factor: 

  2

2

( ) 2 ( ) ( ) 2 ( ) 1 ( ) 2 ( ) 2 ( )

( ) ( )
             2 2

r m r r r rChf N iP N P N P N P N P N P N

EX AP N EX AP N

EX EX

      

  
    

 

             

( )Chf N  is null when ( ) (0) 0r rP N P   and when ( ) ( ) 1r r CP N P N  . 

 

The Magnitude of the Chaotic Factor MChf:  

  2

2

( ) ( ) 2 ( ) ( ) 2 ( ) 1 ( ) 2 ( ) 2 ( )

( ) ( )
                2 2

r m r r r rMChf N Chf N iP N P N P N P N P N P N

EX AP N EX AP N

EX EX

      

  
   

 

                                   

( )MChf N  is null when ( ) (0) 0r rP N P   and when ( ) ( ) 1r r CP N P N  . 

 

At any iteration number N: 0 CN N  , the probability expressed in the complex probability 

set C is the following: 
22 2( ) [ ( ) ( ) ] ( ) 2 ( ) ( )

( ) ( )

( ) ( )

1

r m r mPc N P N P N / i Z N iP N P N

             DOK N Chf N

             DOK N MChf N

             

   

 

 



                                                         

then,  

 
22 2 2( ) [ ( ) ( ) ] ( ) [1 ( )] 1 1 ( ) 1r m r rPc N P N P N / i P N P N Pc N          always 

Hence, the prediction of the convergence probabilities of the stochastic the neutron shielding 

experiment in the set C is permanently certain. 
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Let us consider thereafter a multidimensional integral and a stochastic experiment to simulate the 

neutron shielding method and to draw, to visualize, as well as to quantify all the CPP and 

prognostic parameters. 

 

7- The C++ Algorithms of the Neutron Shielding Method 

 

7-1- The First Algorithm with the C++ Built-in Uniform Random Number Generator 

 

// The Neutron Shielding Algorithm with the C++ Built-in Uniform     
// Random Number Generator 
 
#include <iostream> 
#include <cstdlib> 
#include <ctime> 
#include <cmath> 
#include <iomanip> 
 
using namespace std; 
 
const long double PI = 3.1415926535897931; 
 
int main() 
{ 
 long int i, j, N, Nc; 
 long double d, alpha, counter, AP; 
 
 cout << "        THE NEUTRON SHIELDING PROGRAM" << endl; 
 cout <<  
      "        ------------------------------------------------------"  

     << "\n" << endl; 
 
 for (i = 1; i <= 10; i++) 
 { 
  srand(time(0)); 
 
  Nc = 100000000; counter = 0; 
  for (N = 1; N <= Nc; N++) 
  { 
   d = 1; j = 1; 
   while ((j <= 10) && (d > 0) && (d < 5)) 
   { 
    alpha = 2 * PI * (long double) rand() / 32767; 
    d = d + (long double) cos(alpha); 
    alpha = 0; 
    j++; 
   } 
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   if (d >= 5) 
    ++counter; 
  } 
 
  AP = 100 * (long double) counter / Nc; 
  cout << fixed << setprecision(0) << "AFTER A SIMULATION OF "  

     << Nc << " PARTICLES," << "\n" << "ONLY "  
     << fixed << setprecision(5) << AP 

       << "% OF THE NEUTRONS EMERGED FROM THE LEAD WALL" 
       << "\n" << endl; 
 } 
 
 return 0; 
} 
 

7-2- The Second Algorithm with a Second Uniform Random Number Generator 

 

// The Neutron Shielding Algorithm with Another Second Uniform Random 
// Number Generator 
 
#include <iostream> 
#include <cstdlib> 
#include <ctime> 
#include <cmath> 
#include <iomanip> 
 
using namespace std; 
 
long double generate(long double, long double); 
long double total(); 
 
const long double PI = 3.1415926535897931; 
const long double BOUND = 2147483647; 
 
int main() 
{ 
 long double Nc, summation; 
 int c; 
 
 cout << "        THE NEUTRON SHIELDING PROGRAM" << endl; 
 cout <<  
      "        ------------------------------------------------------"  

     << "\n" << endl; 
 
 Nc = 100000000; 
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 for (c = 1; c <= 10; c++) 
 { 
  summation = (long double) total(); 
  cout << fixed << setprecision(0) << "AFTER A SIMULATION OF "  

     << Nc << " PARTICLES," << "\n" << "ONLY "  
        << fixed << setprecision(5) << summation 

       << "% OF THE NEUTRONS EMERGED FROM THE LEAD WALL" 
       << "\n" << endl; 
 } 
 
 return 0; 
} 
 
long double gen(long double xn1, long double xn2) 
{ 
 long double xn; 
 
 xn = (long double) fmod(((1999 * xn1) + (4444 * xn2)), BOUND); 
 
 return xn; 
} 
 
long double total(void) 
{ 
 long int N, Nc, counter = 0; 
 long double sxn1 = 0, sxn2 = 0, d = 0, j = 0, random = 0,  

            alpha = 0, AP = 0; 
 
 srand(time(0)); 
 sxn1 = rand(); 
 sxn2 = rand(); 
 
 Nc = 100000000; 
 for (N = 1; N <= Nc; N++) 
 { 
  d = 1; j = 1; 
  while ((j <= 10) && (d > 0) && (d < 5)) 
  { 
   random = gen(sxn1, sxn2); 
   alpha = 2 * PI * (long double) random / BOUND; 
   d = d + (long double) cos(alpha); 
   alpha = 0; 
   sxn2 = sxn1; 
   sxn1 = random; 
   j++; 
  } 
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  if (d >= 5) 
   ++counter; 
 } 
 
 AP = 100 * (long double) counter / Nc; 
 
 return AP; 
} 
 

7-3- The Third Algorithm with a Third Uniform Random Number Generator 

 

// The Neutron Shielding Algorithm with Another Third Uniform Random 
// Number Generator 
 
#include <iostream> 
#include <cstdlib> 
#include <ctime> 
#include <cmath> 
#include <iomanip> 
 
using namespace std; 
 
long double generate(long double, long double); 
long double total(); 
 
const long double PI = 3.1415926535897931; 
const long double BOUND = 2147483647; 
 
int main() 
{ 
 long double Nc, summation; 
 int c; 
 
 cout << "       THE NEUTRON SHIELDING PROGRAM" << endl; 
 cout <<  
       "       ------------------------------------------------------"  

     << "\n" << endl; 
 
 Nc = 100000000; 
 for (c = 1; c <= 10; c++) 
 { 
  summation = (long double) total(); 
 
  cout << fixed << setprecision(0) << "AFTER A SIMULATION OF "  

     << Nc << " PARTICLES," << "\n" << "ONLY "  
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           << fixed << setprecision(5) << summation 
       << "% OF THE NEUTRONS EMERGED FROM THE LEAD WALL" 
       << "\n" << endl; 
 } 
 return 0; 
} 
 
long double gen(long double xn1) 
{ 
 long double xn; 
 xn = (long double) fmod(((69069 * xn1) + 1), BOUND); 
 return xn; 
} 
 
long double total(void) 
{ 
 long int N, Nc, counter = 0; 
 long double sxn1 = 0, d = 0, j = 0, random = 0, alpha = 0,  

   AP = 0; 
 
 srand(time(0)); 
 sxn1 = rand(); 
 
 Nc = 100000000; 
 for (N = 1; N <= Nc; N++) 
 { 
  d = 1; j = 1; 
  while ((j <= 10) && (d > 0) && (d < 5)) 
  { 
   random = gen(sxn1); 
   alpha = 2 * PI * (long double) random / BOUND; 
   d = d + (long double) cos(alpha); 
   alpha = 0; 
   sxn1 = random; 
   j++; 
  } 
 
  if (d >= 5) 
   ++counter; 
 } 
 
 AP = 100 * (long double) counter / Nc; 
 
 return AP; 
} 
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8- Flowchart of the Complex Probability and the Neutron Shielding Prognostic Model 

The following flowchart summarizes all the procedures of the proposed complex 

probability prognostic model: 

 

 
                                                                                    

                                                                             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Calculate the approximate value  

 

at each simulation and iteration cycles N 

 

Prognostic 

No 

Yes 

Plot all the functions for  

N = 0, NC 

 

   N < NC 

For each iteration  
cycles: N = 0, NC 

Neutron Shielding Simulation 

Evaluation 

 

Complex Probability 

Paradigm Functions 

 

Calculate the real convergence 

probability:   

Calculate DOK: 

DOK(N) = 1 – 2×Pr(N)×[1 – Pr(N)] 

 

Calculate Chf and MChf: 

Chf(N) = – 2×Pr(N)×[1 – Pr(N)] 

MChf(N) = | Chf(N) | 

 

Calculate: Pc2(N) = DOK(N) – Chf(N) 

                             = DOK(N) + MChf(N) 

Calculate the real divergence 

probability:   

Input the random experiment exact result  

Determine the random numbers generator  
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9- Simulation of the New Paradigm 

 

Note that all the numerical values found in the simulations of the new paradigm for any iteration 

cycles N were computed using the 64-Bit MATLAB version 2024 software. In addition, the reader 

should take care of the rounding and truncation errors since all numerical values in the solution of 

the problem are represented by at most five significant digits and since we are using the neutron 

shielding method of simulation which gives approximate results subject to random effects and 

fluctuations. We have considered for this purpose a high-capacity computer system: a workstation 

computer with parallel microprocessors, a 64-Bit operating system, and a 64-GB RAM. 

Additionally, we have replaced in all the simulations ( )AP N  by ( ) / 4AP N  and EX  by / 4EX to 

better see and read the simulations and to fit all the data and figures in a nicer and improved view. 

 

9-1- The Uniform Random Numbers Generator Case 

 

We will use in the first case in the solution of the neutron shielding problem the uniform random 

numbers generator:    ( , , )random d (0,10)  

1
( ) 100 %

4

counter
AP N

N
     with 1 CN N   after applying the neutron shielding method. 

 

Moreover, the three figures (Figures 5-7) show the increasing convergence of the neutron shielding 

method and simulation to the exact result 5.1875/ 4 1.296875 1.2969%EX     for N = 1000, 

30000, and 
CN  400000 iterations. Therefore, we have:  

( )
lim ( ) lim 1 1 1 0 1r

N N

EX AP N EX EX
P N

EX EX 

   
       

 
 which is equal to the 

convergence probability of the neutron shielding method as N  .  

 

Additionally, Figure 8 illustrates clearly and visibly the relation of the neutron shielding method 

to the complex probability paradigm with all its parameters (

, , , , , , / ,r mChf MChf DOK EX AP P P i Pc ). 
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Figure 5- The increasing convergence of the neutron shielding algorithm up to N = 1000 

iterations with the Uniform random number generator. 

 

 
Figure 6- The increasing convergence of the neutron shielding algorithm up to N = 30,000 

iterations with the Uniform random number generator. 
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Figure 7- The increasing convergence of the neutron shielding algorithm up to N = 400,000 

iterations with the Uniform random number generator. 

 

VII-2-1 The Complex Probability Cubes 

 

In the first cube (Figure 9), the simulation of DOK and Chf as functions of each other and 

of the iterations N for the neutron shielding problem can be seen. The thick line in cyan is the 

projection of Pc2(N) = DOK(N) – Chf(N) = 1 = Pc(N) on the plane N = 0 iterations. This line starts 

at the point J (DOK = 1, Chf = 0) when N = 0 iterations, reaches the point (DOK = 0.5, Chf = –0.5) 

when N = 200,000 iterations, and returns at the end to J (DOK = 1, Chf = 0) when N = NC = 400,000 

iterations. The other curves are the graphs of DOK(N) (red) and Chf(N) (green, blue, pink) in 

different planes. Notice that they all have a minimum at the point K (DOK = 0.5, Chf = –0.5,            

N = 200,000 iterations). The point L corresponds to (DOK = 1, Chf = 0, N = NC = 400,000 

iterations). The three points J, K, L are the same as in Figure 8. 

 

In the second cube (Figure 10), we can notice the simulation of the convergence probability 

Pr(N) and its complementary real divergence probability Pm(N)/i in terms of the iterations N for 

the neutron shielding problem. The thick line in cyan is the projection of Pc2(N) = Pr(N) + Pm(N)/i 

= 1 = Pc(N) on the plane N = 0 iterations. This line starts at the point (Pr = 0, Pm/i = 1) and ends at 

the point (Pr = 1, Pm/i = 0). The red curve represents Pr(N) in the plane Pr(N) = Pm(N)/i. This curve 

starts at the point J (Pr = 0, Pm/i = 1, N = 0 iterations), reaches the point K (Pr = 0.5, Pm/i = 0.5,    

N = 200,000 iterations), and gets at the end to L (Pr = 1, Pm/i = 0, N = NC = 400,000 iterations). 

The blue curve represents Pm(N)/i in the plane Pr(N) + Pm(N)/i = 1. Notice the importance of the 

point K which is the intersection of the red and blue curves at N = 200,000 iterations and when 

Pr(N) = Pm(N)/i = 0.5. The three points J, K, L are the same as in Figure 8. 
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In the third cube (Figure 11), we can notice the simulation of the complex random vector 

Z(N) in C = R + M as a function of the real convergence probability Pr(N) = Re(Z) in R and of its 

complementary imaginary divergence probability Pm(N) = i×Im(Z) in M , and this in terms of the 

iterations N for the neutron shielding problem. The red curve represents Pr(N) in the plane                 

Pm(N) = 0 and the blue curve represents Pm(N) in the plane Pr(N) = 0. The green curve represents 

the complex probability vector Z(N) = Pr(N) + Pm(N) = Re(Z) + i×Im(Z) in the plane                      

Pr(N) = iPm(N) + 1. The curve of Z(N) starts at the point J (Pr = 0, Pm= i, N = 0 iterations) and ends 

at the point L (Pr = 1, Pm = 0, N = NC = 400,000 iterations). The thick line in cyan is                         

Pr(0) = iPm(0) + 1 and it is the projection of the Z(N) curve on the complex probability plane whose 

equation is N = 0 iterations. This projected line starts at the point J (Pr = 0, Pm= i, N = 0 iterations) 

and ends at the point (Pr = 1, Pm = 0, N = 0 iterations). Notice the importance of the point K 

corresponding to N = 200,000 iterations and when Pr = 0.5 and Pm = 0.5i. The three points J, K, L 

are the same as in Figure 8.  

 

 

 

 

 

 
Figure 8- The CPP parameters and the neutron shielding algorithm with the Uniform random 

number generator. 
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Figure 9- DOK and Chf in terms of N and of each other for the neutron shielding algorithm with 

the Uniform random number generator. 

 
Figure 10- Pr and Pm/i in terms of N and of each other for the neutron shielding algorithm with 

the Uniform random number generator. 
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Figure 11- The Complex Probability Vector Z in terms of N for the neutron shielding algorithm 

with the Uniform random number generator. 

 

9-2- The Gaussian and Normal Random Numbers Generator Case 

 

 We will use in the second case in the solution of the neutron shielding problem the Gaussian 

and normal random numbers generator: 

( , , )random d ( 0, 1)    

 

1
( ) 100 %

4

counter
AP N

N
     with 1 CN N   after applying the neutron shielding method. 

 

Moreover, the three figures (Figures 12-14) show the increasing convergence of the neutron 

shielding method and simulation to the exact result 5.1875/ 4 1.296875 1.2969%EX     for     

N = 1000, 30000, and 
CN  400000 iterations. Therefore, we have:  

( )
lim ( ) lim 1 1 1 0 1r

N N

EX AP N EX EX
P N

EX EX 

   
       

 
 which is equal to the 

convergence probability of the neutron shielding method as N  .  

 

Additionally, Figure 15 illustrates clearly and visibly the relation of the neutron shielding 

method to the complex probability paradigm with all its parameters                                                                  

( , , , , , , / ,r mChf MChf DOK EX AP P P i Pc ) after applying it to this method. 
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Figure 12- The increasing convergence of the neutron shielding algorithm up to N = 1000 

iterations with the Gaussian and normal random number generator. 

 
Figure 13- The increasing convergence of the neutron shielding algorithm up to N = 30,000 

iterations with the Gaussian and normal random number generator. 
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Figure 14- The increasing convergence of the neutron shielding algorithm up to N = 400,000 

iterations with the Gaussian and normal random number generator. 

 
Figure 15- The CPP parameters and the neutron shielding algorithm with the Gaussian and 

normal random number generator. 
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9-3- The Poisson Random Numbers Generator Case 

 

We will use in the third case in the solution of the neutron shielding problem the Poisson random 

numbers generator: 
( , , )random d ( 5.68)   

 

1
( ) 100 %

4

counter
AP N

N
     with 1 CN N   after applying the neutron shielding method. 

Moreover, the three figures (Figures 16-18) show the increasing convergence of the neutron 

shielding method and simulation to the exact result 5.1875/ 4 1.296875 1.2969%EX     for  N 

= 1000, 30000, and 
CN  400000 iterations. Therefore, we have:  

( )
lim ( ) lim 1 1 1 0 1r

N N

EX AP N EX EX
P N

EX EX 

   
       

 
 which is equal to the 

convergence probability of the neutron shielding method as N  .  

 

Additionally, Figure 19 illustrates clearly and visibly the relation of the neutron shielding method 

to the complex probability paradigm with all its parameters (

, , , , , , / ,r mChf MChf DOK EX AP P P i Pc ) after applying it to this method. 

 

 
Figure 16- The increasing convergence of the neutron shielding algorithm up to N = 1000 

iterations with the Poisson random number generator. 
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Figure 17- The increasing convergence of the neutron shielding algorithm up to N = 30,000 

iterations with the Poisson random number generator. 

 
Figure 18- The increasing convergence of the neutron shielding algorithm up to N = 400,000 

iterations with the Poisson random number generator. 
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Figure 19- The CPP parameters and the neutron shielding algorithm with the Poisson random 

number generator. 

 

9-4- The Weibull Random Numbers Generator Case 

 

We will use in the fourth case in the solution of the neutron shielding problem the Weibull random 

numbers generator: 

( , , )random d ( 1, 2) a b  

 

1
( ) 100 %

4

counter
AP N

N
     with 1 CN N   after applying the neutron shielding method. 

Moreover, the three figures (Figures 20-22) show the increasing convergence of the neutron 

shielding method and simulation to the exact result 5.1875/ 4 1.296875 1.2969%EX     for  N 

= 1000, 30000, and 
CN  400000 iterations. Therefore, we have:  

( )
lim ( ) lim 1 1 1 0 1r

N N

EX AP N EX EX
P N

EX EX 

   
       

 
 which is equal to the 

convergence probability of the neutron shielding method as N  .  

 

Additionally, Figure 23 illustrates clearly and visibly the relation of the neutron shielding method 

to the complex probability paradigm with all its parameters                                                                                        

( , , , , , , / ,r mChf MChf DOK EX AP P P i Pc ) after applying it to this method. 
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Figure 20- The increasing convergence of the neutron shielding algorithm up to N = 1000 

iterations with the Weibull random number generator. 

 
Figure 21- The increasing convergence of the neutron shielding algorithm up to N = 30,000 

iterations with the Weibull random number generator. 

UNDER PEER REVIEW



 

222 

 

 
Figure 22- The increasing convergence of the neutron shielding algorithm up to N = 400,000 

iterations with the Weibull random number generator. 

 
Figure 23- The CPP parameters and the neutron shielding algorithm with the Weibull random 

number generator. 
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10- Conclusion and Perspectives 

 

In the current research chapter, the original extended Kolmogorov model of eight axioms 

(EKA) was connected and applied to the classical and random neutron shielding numerical 

technique. Thus, a tight link between the neutron shielding algorithms and the novel paradigm was 

executed. Accordingly, the model of "Complex Probability” was more expanded beyond the scope 

of my earlier research studies on this subject.  

 

Also, as it was verified and demonstrated in the original model, when N = 0 (before the 

random simulation beginning) and when N = NC (when the neutron shielding algorithm converges 

to the exact result) then the degree of our knowledge (DOK) is 1 and the chaotic factor (Chf and 

MChf) is 0 since the stochastic effects and fluctuations have either not commenced yet or they 

have terminated their task on the random experiment. During the course of the nondeterministic 

experiment (N > 0) we have: 0.5 ≤ DOK < 1, –0.5 ≤ Chf < 0, and 0 < MChf ≤ 0.5. We notice that 

during this entire process we have continually and incessantly Pc2 = DOK – Chf = DOK + MChf 

= 1 = Pc, that means that the simulation which looked to be random and nondeterministic in the 

set R is now deterministic and certain in the set C = R + M, and this after adding the contributions 

of M to the experiment happening in R and thus after removing and subtracting the chaotic factor 

from the degree of our knowledge. Additionally, the probabilities of convergence and divergence 

of the random neutron shielding procedure that correspond to each iteration cycle N have been 

determined in the three sets of probabilities which are R, M, and C by rP , mP , and Pc respectively. 

Subsequently, at each instance of N, the novel neutron shielding technique and CPP parameters 

EX , AP , Pr, mP , /mP i , DOK, Chf, MChf, Pc, and Z are perfectly and surely predicted in the set 

of complex probabilities C with Pc kept as equal to 1 continuously and forever.  

 

Furthermore, using all these shown simulations and obtained graphs all over the entire 

research chapter, we can visualize and quantify both the certain knowledge (expressed by DOK 

and Pc) and the system chaos and stochastic influences and effects (expressed by Chf and MChf) 

of the neutron shielding algorithms. This is definitely very wonderful, fruitful, and fascinating and 

demonstrates once again the advantages of extending the five axioms of probability of 

Kolmogorov and thus the benefits and novelty of this original theory in applied mathematics and 

prognostics that can be called verily: 

  

"The Complex Probability Paradigm". 

 

Moreover, it is important to state here that four essential and very well-known random 

numbers generators were taken into consideration in the current chapter which are the uniform, 

Gaussian, Poisson and Weibull random numbers generators, knowing that the original CPP model 

can be applied to any generator of random numbers that exist in literature. This will lead certainly 

to analogous results and conclusions and will confirm without any doubt the success of my 

innovative theory.  

 

As a prospective and future challenges and research, we intend to more develop the novel 

conceived prognostic paradigm and to apply it to a diverse set of nondeterministic events like for 

other stochastic phenomena as in the classical theory of probability and in stochastic processes. 

Additionally, we will implement CPP to the field of prognostic in engineering and also to other 
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scientific problems which have huge consequences when applied to economics, to chemistry, to 

physics, to pure and applied mathematics. 

 

Data Availability 

 

The data used to support the findings of this study are available from the author upon request.  
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