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CHAPTER ONE

THE PARADIGM OF COMPLEX PROBABILITY
APPLIED TO MONTE CARLO METHODS

“Thus, joining the rigor of the demonstrations of science to the uncertainty of fate, and
reconciling these two seemingly contradictory things, it can, taking its name from both,
appropriately arrogate to itself this astonishing title: the geometry of chance.”
Blaise Pascal.

“You believe in the God who plays dice, and I in complete law and order.”
Albert Einstein, Letter to Max Born.

Abstract: In 1933, Andrey Nikolaevich Kolmogorov established the system of five axioms that
define the concept of mathematical probability. This system can be developed to include the set of
imaginary numbers and this by adding a supplementary three original axioms. Therefore, any
experiment can be performed in the set € of complex probabilities which is the summation of the
set R of real probabilities and the set J of imaginary probabilities. The purpose here is to include
additional imaginary dimensions to the experiment taking place in the "real™ laboratory in & and
hence to evaluate all the probabilities. Consequently, the probability in the entire set €= R + M
is permanently equal to one no matter what the stochastic distribution of the input random variable
in R is, therefore the outcome of the probabilistic experiment in € can be determined perfectly.
This is due to the fact that the probability in € is calculated after subtracting from the degree of
our knowledge the chaotic factor of the random experiment. This novel complex probability
paradigm will be applied to the classical probabilistic Monte Carlo numerical methods and to prove
as well the convergence of these stochastic procedures in an original way.

Keywords: complex set, degree of our knowledge, chaotic factor, complex random vector,
probability norm, simulation, convergence probability, divergence probability.

NOMENCLATURE

R = real set of events

M = imaginary set of events
(¢ = complex set of events

i = the imaginary number where i=+-1 or i?=-1

EKA = Extended Kolmogorov's Axioms

CPP = Complex Probability Paradigm

Prob = probability of any event

Pr = probability in the real set R = probability of convergence in R

Pm = probability in the imaginary set M corresponding to the real probability in R =
probability of divergence in M
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Pc = probability of an event in R with its associated event in M = probability in the complex
probability set €
R. = the exact result of the random experiment
R, = the approximate result of the random experiment
z = complex probability number = sum of Pr and P, = complex random vector
DOK = |z|2 = the degree of our knowledge of the random system or experiment, it is the square
of the norm of z
Chf = the chaotic factor of z
MChf = magnitude of the chaotic factor of z
N = number of random vectors = number of iterations cycles
N = number of random vectors = number of iterations cycles till the convergence of
Monte Carlo method to R;
N
z = the resultant complex random vector = )"z,
j=1
2| -
DOK, = N7 = the degree of our knowledge of the whole stochastic system
Chf : .
Chf, = Nz = the chaotic factor of the whole stochastic system

MChf, = magnitude of the chaotic factor of the whole stochastic system

Z, = the resultant complex random vector corresponding to a uniform random distribution

DOKZU = the degree of our knowledge of the whole stochastic system corresponding to a
uniform random distribution

Chfzu = the chaotic factor of the whole stochastic system corresponding to a uniform random
distribution

MChf, = the magnitude of the chaotic factor of the whole stochastic system corresponding to a
uniform random distribution

Pc, = probability in the complex probability set € of the whole stochastic system
corresponding to a uniform random distribution

I- Introduction

Firstly, in this introductory section an overview of Monte Carlo methods will be done. Before
the Monte Carlo method was developed, simulations tested a previously understood deterministic
problem, and statistical sampling was used to estimate uncertainties in the simulations. Monte
Carlo simulations invert this approach, solving deterministic problems using a probabilistic analog
(once can refer to Simulated annealing).

An early variant of the Monte Carlo method can be seen in the Buffon's needle experiment, in
which 7 can be estimated by dropping needles on a floor made of parallel and equidistant strips.
In the 1930s, Enrico Fermi first experimented with the Monte Carlo method while studying neutron
diffusion, but did not publish anything on it. [1]
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The modern version of the Markov Chain Monte Carlo method was invented in the late 1940s
by Stanislaw Ulam, while he was working on nuclear weapons projects at the Los Alamos National
Laboratory. Immediately after Ulam's breakthrough, John von Neumann understood its importance
and programmed the ENIAC computer to carry out Monte Carlo calculations. In 1946, physicists
at Los Alamos Scientific Laboratory were investigating radiation shielding and the distance that
neutrons would likely travel through various materials. Despite having most of the necessary data,
such as the average distance a neutron would travel in a substance before it collided with an atomic
nucleus, and how much energy the neutron was likely to give off following a collision, the Los
Alamos physicists were unable to solve the problem using conventional, deterministic
mathematical methods. Ulam had the idea of using random experiments. He recounts his
inspiration as follows:

“The first thoughts and attempts | made to practice [the Monte Carlo Method] were suggested
by a question which occurred to me in 1946 as | was convalescing from an illness and playing
solitaires. The question was what are the chances that a Canfield solitaire laid out with 52 cards
will come out successfully? After spending a lot of time trying to estimate them by pure
combinatorial calculations, | wondered whether a more practical method than "abstract thinking"
might not be to lay it out say one hundred times and simply observe and count the number of
successful plays. This was already possible to envisage with the beginning of the new era of fast
computers, and | immediately thought of problems of neutron diffusion and other questions of
mathematical physics, and more generally how to change processes described by certain
differential equations into an equivalent form interpretable as a succession of random operations.
Later [in 1946], | described the idea to John von Neumann, and we began to plan actual
calculations.” [2]

Being secret, the work of von Neumann and Ulam required a code name. [3] A colleague of
von Neumann and Ulam, Nicholas Metropolis, suggested using the name Monte Carlo, which
refers to the Monte Carlo Casino in Monaco where Ulam's uncle would borrow money from
relatives to gamble. [1] Using lists of "truly random™ random numbers was extremely slow, but
von Neumann developed a way to calculate pseudorandom numbers, using the middle-square
method. Though this method has been criticized as crude, von Neumann was aware of this: he
justified it as being faster than any other method at his disposal, and also noted that when it went
awry it did so obviously, unlike methods that could be subtly incorrect. [4]

Monte Carlo methods were central to the simulations required for the Manhattan Project,
though severely limited by the computational tools at the time. In the 1950s they were used at Los
Alamos for early work relating to the development of the hydrogen bomb, and became popularized
in the fields of physics, physical chemistry, and operations research. The Rand Corporation and
the U.S. Air Force were two of the major organizations responsible for funding and disseminating
information on Monte Carlo methods during this time, and they began to find a wide application
in many different fields.

The theory of more sophisticated mean field type particle Monte Carlo methods had certainly
started by the mid-1960s, with the work of Henry P. McKean Jr. on Markov interpretations of a
class of nonlinear parabolic partial differential equations arising in fluid mechanics. [5,6] We also
quote an earlier pioneering article by Theodore E. Harris and Herman Kahn, published in 1951,
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using mean field genetic-type Monte Carlo methods for estimating particle transmission energies.
[7] Mean field genetic type Monte Carlo methodologies are also used as heuristic natural search
algorithms (a.k.a. Metaheuristic) in evolutionary computing. The origins of these mean field
computational techniques can be traced to 1950 and 1954 with the work of Alan Turing on genetic
type mutation-selection learning machines [8] and the articles by Nils Aall Barricelli at the Institute
for Advanced Study in Princeton, New Jersey. [9,10]

Quantum Monte Carlo, and more specifically Diffusion Monte Carlo methods can also be
interpreted as a mean field particle Monte Carlo approximation of Feynman-Kac path integrals.
[11-17] The origins of Quantum Monte Carlo methods are often attributed to Enrico Fermi and
Robert Richtmyer who developed in 1948 a mean field particle interpretation of neutron-chain
reactions, [18] but the first heuristic-like and genetic type particle algorithm (a.k.a. Resampled or
Reconfiguration Monte Carlo methods) for estimating ground state energies of quantum systems
(in reduced matrix models) is due to Jack H. Hetherington in 1984 [17] In molecular chemistry,
the use of genetic heuristic-like particle methodologies (a.k.a. pruning and enrichment strategies)
can be traced back to 1955 with the seminal work of Marshall. N. Rosenbluth and Arianna. W.
Rosenbluth. [19]

The use of Sequential Monte Carlo in advanced signal processing and Bayesian inference is
more recent. It was in 1993, that Gordon et al., published in their seminal work [20] the first
application of a Monte Carlo resampling algorithm in Bayesian statistical inference. The authors
named their algorithm ‘the bootstrap filter', and demonstrated that compared to other filtering
methods, their bootstrap algorithm does not require any assumption about that state-space or the
noise of the system. We also quote another pioneering article in this field of Genshiro Kitagawa
on a related "Monte Carlo filter", [21] and the ones by Pierre Del Moral [22] and Himilcon
Carvalho, Pierre Del Moral, André Monin and Gérard Salut [23] on particle filters published in
the mid-1990s. Particle filters were also developed in signal processing in the early 1989-1992 by
P. Del Moral, J.C. Noyer, G. Rigal, and G. Salut in the LAAS-CNRS in a series of restricted and
classified research reports with STCAN (Service Technique des Constructions et Armes Navales),
the IT company DIGILOG, and the LAAS-CNRS (the Laboratory for Analysis and Architecture
of Systems) on RADAR/SONAR and GPS signal processing problems. [24-29] These Sequential
Monte Carlo methodologies can be interpreted as an acceptance-rejection sampler equipped with
an interacting recycling mechanism.

From 1950 to 1996, all the publications on Sequential Monte Carlo methodologies including
the pruning and resample Monte Carlo methods introduced in computational physics and
molecular chemistry, present natural and heuristic-like algorithms applied to different situations
without a single proof of their consistency, nor a discussion on the bias of the estimates and on
genealogical and ancestral tree-based algorithms. The mathematical foundations and the first
rigorous analysis of these particle algorithms are due to Pierre Del Moral [22,30] in 1996.
Branching type particle methodologies with varying population sizes were also developed in the
end of the 1990s by Dan Crisan, Jessica Gaines and Terry Lyons, [31-33] and by Dan Crisan,
Pierre Del Moral and Terry Lyons. [34] Further developments in this field were developed in 2000
by P. Del Moral, A. Guionnet and L. Miclo. [12,35,36]
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Finally, and to conclude, this research work is organized as follows: After the introduction in
section I, the purpose and the advantages of the present work are presented in section I1. Afterward,
in section 111, we will explain and illustrate the complex probability paradigm with its original
parameters and interpretation. In section IV, the Monte Carlo techniques of integration and
simulation will be explained. In section V, I will extend Monte Carlo methods to the imaginary
and complex probability sets and hence link this concept to my novel complex probability
paradigm. Moreover, in section VI, | will prove the convergence of Monte Carlo methods using
the concept of the resultant complex random vector Z. Furthermore, in section V11 we will evaluate
the original paradigm parameters and in section VIII a flowchart of the complex probability and
Monte Carlo methods prognostic model will be drawn. Additionally, in section IX simulations of
Monte Carlo methods will be accomplished in the continuous and discrete cases. Finally, I
conclude the work by doing a comprehensive summary in section X, and then present the list of
references cited in the current research work.

- The Purpose and the Advantages of the Present Work [37-90]

In this section we will present the purpose and the advantages of the current research work.
Computing probabilities is the main work of classical probability theory. Adding new dimensions
to the stochastic experiments will lead to a deterministic expression of probability theory. This is
the original idea at the foundations of this work. Actually, the theory of probability is a
nondeterministic system in its essence; that means that the events outcomes are due to chance and
randomness. The addition of novel imaginary dimensions to the chaotic experiment occurring in
the set R will yield a deterministic experiment and hence a stochastic event will have a certain
result in the complex probability set €. If the random event becomes completely predictable then
we will be fully knowledgeable to predict the outcome of stochastic experiments that arise in the
real world in all stochastic processes. Consequently, the work that has been accomplished here
was to extend the real probabilities set R to the deterministic complex probabilities set € = R +
M by including the contributions of the set M which is the imaginary set of probabilities.
Therefore, since this extension was found to be successful, then a novel paradigm of stochastic
sciences and prognostic was laid down in which all stochastic phenomena in R was expressed
deterministically. | called this original model "the Complex Probability Paradigm™ that was
initiated and illustrated in my previous research publications.

Accordingly, the advantages and the purpose of the current paper are to:
1- Extend classical probability theory to the set of complex numbers, therefore to link the
theory of probability to the field of complex variables and analysis. This job was started
and elaborated in my previous works.

2- Apply the new axioms of probability and paradigm to Monte Carlo methods.

3- Show that all stochastic phenomena can be expressed deterministically in the set of
complex probabilities C.

4- Measure and compute both the degree of our knowledge and the chaotic factor of Monte
Carlo methods.



UNDER PEER REVI EW

5- Draw and illustrate the graphs of the parameters and functions of the original paradigm
corresponding to Monte Carlo methods.

6- Show that the classical concept of probability is always equal to one in the complex set;
hence, no randomness, no chaos, no uncertainty, no ignorance, no disorder, and no
unpredictability exist in:

€ (complex set) = R (real set) + M (imaginary set).

7- Prove the convergence of the stochastic Monte Carlo procedures in an original way by
using the newly defined axioms and paradigm.

8- Pave the way to implement this novel model to other areas in stochastic processes and to
the field of prognostics. These will be the topics of my future research works.

Concerning some applications of the original elaborated paradigm and as a future work, it can be
applied to any random phenomena using Monte Carlo methods whether in the discrete or in the
continuous cases.

Furthermore, compared with existing literature, the main contribution of the present research work
is to apply the novel paradigm of complex probability to the concepts and techniques of the
stochastic Monte Carlo methods and simulations.

The following figure shows the main purposes of the Complex Probability Paradigm (CPP)

(Figure 1).
Applied to
Probability Complex
\The°rV \Analysis
- Complex q
Applied to Probability J Applied to

\ Paradigm
Monte ‘

Stochastic

Carlo -
Methods Phenomena
Applied to

Figure 1. The diagram of the main purposes of the Complex Probability Paradigm
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I11-  The Complex Probability Paradigm
I11-1- The Original Andrey Nikolaevich Kolmogorov System of Axioms

The simplicity of Kolmogorov’s system of axioms may be surprising. Let E be a collection
of elements {E1, E», ...} called elementary events and let F be a set of subsets of E called random
events. The five axioms for a finite set E are [91-96]:

Axiom 1: Fisa field of sets.

Axiom 2: F contains the set E.

Axiom 3: A non-negative real number Pron(A), called the probability of A, is assigned to each
set A in F. We have always 0 < Prop(A) < 1.

Axiom 4: Prop(E) equals 1.

Axiom 5: If A and B have no elements in common, the number assigned to their union is:

I:)rob (AU B) = Prob(A) + F)rob(B)
hence, we say that A and B are disjoint; otherwise, we have:
I:’rob (AU B) = Prob (A) + Prob(B) - Prob(Am B)
And we say also that: Py, (ANB) = Py, (A) X Py, (B/ A) = Py, (B) x Py (A/ B) which is the
conditional probability. If both A and B are independent then: P, (ANB) =P (A)xP(B).

Moreover, we can generalize and say that for N disjoint (mutually exclusive) events
A A, A, A (for 1< j<N), we have the following additivity rule:

Pron (LNJ A, j = ZN: Pas (A)

j=L =1

And we say also that for N independent events A, A,,..., Ao A (for 1< j<N), we have the
following product rule:

=1

[t

I11-2- Adding the Imaginary Part M
Now, we can add to this system of axioms an imaginary part such that:

Axiom 6: Let P, =ix(1—P.) be the probability of an associated event in Ji (the imaginary
part) to the event A in & (the real part). It follows that P, +P, /i =1 where i is the imaginary
number with i=+~1 or i2=—1.

Axiom 7: We construct the complex number or vector Z=P, +P, =P. +i(1-P) havinga
norm |Z| such that:

1z =P?+ (P, 1i)*.
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Axiom 8: Let Pc denote the probability of an event in the complex probability universe € where
C =R+ M. We say that Pc is the probability of an event A in R with its associated event in M
such that:

Pc? = (P, + P, /i)? =|z|° - 2iP,P, and is always equal to 1.

We can see that by taking into consideration the set of imaginary probabilities we added three
new and original axioms and consequently the system of axioms defined by Kolmogorov was
hence expanded to encompass the set of imaginary numbers.

111-3- The Purpose of Extending the Axioms

After adding the new three axioms, it becomes clear that the addition of the imaginary
dimensions to the real stochastic experiment yields a probability always equal to one in the
complex probability set C. Actually, we will understand directly this result when we realize that
the set of probabilities is formed now of two parts: the first part is real and the second part is
imaginary. The stochastic event that is happening in the set R of real probabilities (like in the

experiment of coin tossing and getting a tail or a head) has a corresponding real probability P. and
a corresponding imaginary probability P, . In addition, let J( be the set of imaginary probabilities

and let |Z[" be the Degree of Our Knowledge (DOK for short) of this experiment. According to
the axioms of Kolmogorov, P. is always the probability of the phenomenon in the set R. [97-102]

e In fact, a total ignorance of the set J leads to:
Pros(event)=P. =05, P, = Prop(imaginary part) = 0.5, and |Z|" = DOK in this case is
equal to: 1-2P (1-P) =1—-(2x0.5) x(1-0.5) =0.5=50%

e Conversely, a total knowledge of the set in R leads to:
Pros(event)=P. =1 and P = Pron(imaginary part) = 0. Here we have

m

DOK =1-(2x1)x(1—1) =1 because the phenomenon is totally known, that is, all the

variables and laws affecting the experiment are determined completely, therefore; our
degree of our knowledge (DOK) of the system is 1 = 100%.

e Now, if we are for sure that an event will never happen i.e. like ‘getting nothing’ (the empty
set), P. is accordingly = 0, that is the event will never occur in R. P, will be equal to:
i1-P)=i(1-0)=i, and |Z|2 =DOK =1-(2x0)x(1-0) =1, because we are sure that the

event of getting nothing will never happen; therefore, the Degree of Our Knowledge (DOK)
of the system is 1 = 100%.

We can deduce that we have always:
05<(z['<1, VP: 0<P <1
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and |Z|" = DOK = P? + (P, /i)?, where 0<P,P, /i<1
And what is crucial is that in all cases we have:
Pc? = (P, +P, /i)* =|z| - 2iP.P, =[P. + 1-P)]' =1* =1

Actually, according to an experimenter in &, the phenomenon is random: the experimenter ignores
the outcome of the chaotic phenomenon. Each outcome will be assigned a probability P. and he

will say that the outcome is nondeterministic. But in the complex probability universe C = R +
M, the outcome of the random phenomenon will be totally predicted by the observer since the
contributions of the set J were taken into consideration, so this will give:

Pc’ =(P. +P, /i)’

Therefore Pc is always equal to 1. Actually, adding the imaginary set to our stochastic
phenomenon leads to the elimination of randomness, of ignorance, and of nondeterminism.
Subsequently, conducting experiments of this class of phenomena in the set € is of great
importance since we will be able to foretell with certainty the output of all random phenomenon.
In fact, conducting experiments in the set R leads to uncertainty and unpredictability. So, we place
ourselves in the set € instead of placing ourselves in the set R, then study the random events, since
in C we take into consideration all the contributions of the set J and therefore a deterministic
study of the stochastic experiment becomes possible. Conversely, by taking into consideration the
contributions of the probability set M we place ourselves in the set € and by disregarding M we
restrict our experiment to nondeterministic events in R. [103-112]

Furthermore, we can deduce from the above axioms and definitions that:
2IPP, =2ixP xix(1-P)

=2"x P, x(1-R)=-2P,(1-R)

= Chf

2iP.P. will be called the Chaotic factor in our stochastic event and will be denoted accordingly by
‘Chf’. We will understand why we have named this term the chaotic factor; in fact:

e Incase P =1, that means in the case of a certain event, then the chaotic factor of the event

is equal to 0.
e Incase P =0, that means in the case of an impossible event, then Chf = 0. Therefore, in

both two last cases, there is no chaos because the output of the event is certain and is known
in advance.

e Incase B, =0.5, Chf =-0.5.

So, we deduce that: -0.5<Chf <0, VP: 0<P <1. (Figures 2-4)
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Consequently, what is truly interesting here is therefore we have quantified both the degree of our
knowledge and the chaotic factor of any stochastic phenomenon and hence we can state

accordingly:
Pc? =|z[* - 2iP,P, = DOK — Chf
Then we can conclude that:
Pc? = Degree of our knowledge of the system — Chaotic factor = 1,
therefore Pc =1 permanently and constantly.

This directly leads to the following crucial conclusion: if we succeed to subtract and eliminate the
chaotic factor in any stochastic phenomenon, then we will have the outcome probability always
equal to one. [37-90] [113-122]

The Complex Probability Paradigm Parameters for Any Probability Distribution

A
1
8} DOK
o
S 05
C
©
S
o)
[
£ 0
0.5
0 0.5 1 -

Real Probability Pr
Figure 2. Chf, DOK, and Pc for any probability distribution in 2D

10
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The Complex Probability Paradigm Parameters for Any Probability Distribution

Y
c
Q
DOK 05 0 "~ Real Probability Pr
Figure 3. DOK, Chf, and Pc for any probability distribution in 3D with
Pc? = DOK —Chf =1=Pc
The Complex Probability Paradigm Paragpatars for a Weibull Distribution
.
=
Q

DOK 05 0 Random Variable X

Figure 4. DOK, Chf, and Pc for a Weibull probability distribution in 3D with
Pc? = DOK —Chf =1=Pc

11
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The graph below illustrates the linear relation between both DOK and Chf. (Figure 5)

The Complex Probability Paradigm Parameters for Any Probability Distribution
A : :

Y

DOK

Figure 5. Graph of Pc? = DOK —Chf =1=Pc for any probability distribution

Furthermore, we require in our present analysis the absolute value of the chaotic factor that will
quantify for us the magnitude of the chaotic and stochastic influences on the random system
considered which is materialized by the real probability P and a probability density function, and

which lead to an increasing or decreasing system chaos in R. This additional and original term
will be denoted accordingly MChf or Magnitude of the Chaotic factor. Therefore, we define this

new term by:
MChf =|Chf| =|2iRPm| =—2iPP, =2P(1-P)>0, VP: 0<P <1,
And
Pc® = DOK —Chf
=DOK +|Chf| , since —0.5<Chf <0
= DOK + MChf =1,

<0< MChf <0.5 where 0.5<DOK <1.

The graph below (Figure 6) illustrates the linear relation between both DOK and MChf. Moreover,
Figures 7 to 13 illustrate the graphs of Chf, MChf, DOK, and Pc as functions of the real probability
Pr and of the random variable X for any probability distribution and for a Weibull probability
distribution. [37-90]

12
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The Complex Probability Paradigm Parameters for Any Probability Distribution
A : :

(Y| R— S —— -

MChf

Y

DOK
Figure 6. Graph of Pc® = DOK +MChf =1=Pc for any probability distribution

The Complex Probability Paradigm Parameters for Any Probability Distribution
A ! i '

1

MChf, DOK, and Pc
o
n
|

hJ

i I
0 0 0.5 1
Real Probability Pr

Figure 7. MChf, DOK, and Pc for any probability distribution in 2D
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The Complex Probability Paradigm Parameters for Any Probability Distribution

0.5 -
0.4 -
R DEI- =
S
Q
= 0.2
0.1 -
D
1 .
1
0.6
04 05
0.2
DOK 05 0 Real Probability Pr
Figure 8. DOK, MChf, and Pc for any probability distribution in 3D with
Pc? = DOK +MChf =1=Pc
The Complex Probability Paradigm Parameters for a Weibull Distribution
0.5 —
0.4 -
u— 0.3
=
Qo
= 0.2
0.1
U

253

, 1665
DOK 05 0 Random Variable X
Figure 9. DOK, MChf, and Pc for a Weibull probability distribution in 3D with
Pc? = DOK +MChf =1=Pc

14
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The Complex Probability Paradigm Parameters for Any Probability Distribution

A
0.5
0.4
0.3
0.2
0.1

0

Chf and MChf

-0.1
-0.2
-0.3

-0.4

-0.5

i i i i i
0 0.2 04 05 06 0.8 1
Real Probability Pr

Figure 10. Chf and MChf for any probability distribution in 2D

The Complex Probability Parameters for Any Probability Distribution

MChf

05 06

0.4

Chf 05 0 ~ Real Probability Pr
Figure 11. Chf and MChf for any probability distribution in 3D with MChf + Chf =0

15
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The Complex Probability Paradigm Parameters for a Weibull Distribution

MChf

3

2.5

1 1.665

Chf 05 0 Random Variable X
Figure 12. Chf and MChf for a Weibull probability distribution in 3D with
MChf + Chf=0

The Complex Probability Paradigm Parameters for Any Probability Distribution
A H H H H H H H
1 :

0.5

Chf, MChf, DOK, and Pc

i i i i i
0 0.2 04 05 0.6 0.8 1
Real Probability Pr

Figure 13. Chf, MChf, DOK, and Pc for any probability distribution in 2D
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To conclude and to summarize, in the real probability universe R our degree of our certain
knowledge is regrettably imperfect, therefore we extend our study to the complex set € which
embraces the contributions of both the real probabilities set £ and the imaginary probabilities set
M. Subsequently, this will lead to a perfect and complete degree of knowledge in the universe
C=R+ M (since Pc = 1). In fact, working in the complex universe € leads to a certain prediction
of any random event, because in € we eliminate and subtract from the calculated degree of our
knowledge the quantified chaotic factor. This will yield a probability in the universe € equal to
one (Pc?=DOK - Chf = DOK + MChf =1 = Pc). Many illustrations considering various continuous
and discrete probability distributions in my previous research papers verify this hypothesis and
novel paradigm. [37-90] The Extended Kolmogorov Axioms (EKA for short) or the Complex
Probability Paradigm (CPP for short) can be summarized and shown in the following figure

(Figure 14):
Input: Tk . Output:
Real set R [ - Complex set €
v
Adding 3 axioms
Add: Complex number Z = P, + Pp,
Imaginar .set M Complex Probability Pc = 1
[ Real Probability P, ] gthary Pc?=DOK-Chf=1

Pc? = DOK + MChf=1

Imaginary Probability P
= Chf = 2iPer
= MChf = |Chf| = -2iP/Pn,

= DOK=|Z]" = P? +(B,, /i)’

L3
|

Figure 14- The EKA or the CPP diagram

IV-  The Monte Carlo Techniques of Integration and Simulation [123-133]

In applied mathematics, the name Monte Carlo is given to the method of solving problems by
means of experiments with random numbers. This name, after the casino at Monaco, was first
applied around 1944 to the method of solving deterministic problems by reformulating them in
terms of a problem with random elements which could then be solved by large-scale sampling.
But, by extension, the term has come to mean any simulation that uses random numbers.

17
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The development and proliferation of computers has led to the widespread use of Monte
Carlo methods in virtually all branches of science, ranging from nuclear physics (where computer-
aided Monte Carlo was first applied) to astrophysics, biology, engineering, medicine, operations
research, and the social sciences.

The Monte Carlo Method of solving problems by using random numbers in a computer —
either by direct simulation of physical or statistical problems or by reformulating deterministic
problems in terms of one incorporating randomness — has become one of the most important tools
of applied mathematics and computer science. A significant proportion of articles in technical
journals in such fields as physics, chemistry, and statistics contain articles reporting results of
Monte Carlo simulations or suggestions on how they might be applied. Some journals are devoted
almost entirely to Monte Carlo problems in their fields. Studies in the formation of the universe or
of stars and their planetary systems use Monte Carlo techniques. Studies in genetics, the
biochemistry of DNA, and the random configuration and knotting of biological molecules are
studied by Monte Carlo methods. In number theory, Monte Carlo methods play an important role
in determining primality or factoring of very large integers far beyond the range of deterministic
methods. Several important new statistical techniques such as “bootstrapping” and “jackknifing”
are based on Monte Carlo methods.

Hence, the role of Monte Carlo methods and simulation in all of the sciences has increased
in importance during the past several years. These methods play a central role in the rapidly
developing subdisciplines of the computational physical sciences, the computational life sciences,
and the other computational sciences. Therefore, the growing power of computers and the evolving
simulation methodology have led to the recognition of computation as a third approach for
advancing the natural sciences, together with theory and traditional experimentation. At the kernel
of Monte Carlo simulation is random number generation.

Now we turn to the approximation of a definite integral by the Monte Carlo method. If we
select the first N elements X, X,,...,X, from arandom sequence in the interval (0,1), then:

1
1-0) & 138

j f(x).dx = (N—)Z f(x,) :WZ f(x,)

0 j=1 j=1
Here the integral is approximated by the average of N numbers f(x), f (X,),..., f(Xy). When this
1
N
algorithms, such as the Romberg method. However, in higher dimensions, the Monte Carlo method
can be quite attractive. For example,

is actually carried out, the error is of order , Which is not at all competitive with good

-0)x(@1-0)]
N

f(x, y,z).dx.dy.dz = [A-0)x(

O ey
O ey
O e

N l N
Zf(xj,yj,zj)zﬁzf(xj,yj,zj)
=1 j=1
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where (X;,Y;,Z;) is a random sequence of N points in the unit cube 0<x<1, 0<y<1, and
0<z<1. To obtain random points in the cube, we assume that we have a random sequence in
(0,1) denoted by &,¢&,,6,,6,,&,&,...To get our first random point p, in the cube, just let
p, =(&,4,,&). The second is, of course, p, =(&,,&,&;) and so on.

If the interval (in a one-dimensional integral) is not of length 1, but say is the general case
(a, b), then the average of f over N random points in (a, b) is not simply an approximation for the
integral but rather for:

l b
— j f (x).dx

which agrees with our intention that the function f (x) =1 has an average of 1. Similarly, in higher
dimensions, the average of f over a region is obtained by integrating and dividing by the area,

volume, or measure of that region. For instance,
1
63

753
I.[,[ f (X1 Y, Z)dXdydz —
4-20

B —
Lo

[(7—2)x(5- (2» G-0)] [ 1oy 2)dedya

is the average of f over the parallelepiped described by the following three inequalities:

0<x<3,-2<y<5,4<z<7.
To keep the limits of integration straight, we recall that:

ﬁ f(x y).dxdy = .[D f(x, y),dx}.dy

and

TTT f(x,Yy,2).dx.dy.dz = T{Tﬁ f(x,Y, z).dx}.dy}dz

alblcl al (bl cl

So, if (x;, y;)denote random points with appropriate uniform distribution, the following examples
illustrate Monte Carlo techniques:

Jf(x).dx;wi f(x,.)ziif(xj)

”f(x,y).dx.dy~[(8 4> (5= 2)]Zf( y)_ Zf(xj,yj)
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In each case, the random points should be uniformly distributed in the regions involved.

In general, we have:

J f = (measure of A) x (average of f over N random points in A)
A

Here we are using the fact that the average of a function on a set is equal to the integral of the
function over the set divided by the measure of the set.

V- The Complex Probability Paradigm and Monte Carlo Methods Parameters
[37-90] [134-141]

V-1- The Probabilities of Convergence and Divergence

Let R. be the exact result of the random experiment or of a simple or a multidimensional integral

that are not always possible to evaluate by ordinary methods of probability theory or calculus or
deterministic numerical methods. And let R, be the approximate result of these experiments and

integrals found by Monte Carlo methods.

Re-R, :‘1_&

The relative error in the Monte Carlo methods is: Rel. Error = -
E

E

. . i R. —R .
In addition, the percent relative error is = 100% x|—=——=| and is always between 0% and 100%.

E
Therefore, the relative error is always between 0 and 1. Hence:

Os(RE_RAjsl ifR, <R,

E
<le =

_ R. <R, <2R
OS—[RE R)ﬂ ifR, >R AT

E

0<[Re—Ra

E

Moreover, we define the real probability by:

1-[1-%} if 0<R, <R. Ry if 0<R, <R
P _1_ Re —Ra| 4 E

r

1. R, .

1+(1—&j if R. <R, <2R. Z—R—A if Re <R, <2R;
E E

= 1 —the relative error in the Monte Carlo method

= Probability of Monte Carlo method convergence in R.

And therefore:
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R. -R,

[Nl

i(l—ﬁj if 0<R, <R. i(l—&] if 0<R, <R.

E E

szi(l—Pr)zi{l{l—

E

i (1—&] if R. <R, <2R. i(&—1] if R. <R, <2R.
E E
= Probability of Monte Carlo method divergence in the imaginary probability set M since it is the
imaginary complement of P..

Consequently,

1-22  if 0<R, <R
R
P /i=1-P =‘1——A =

E

I:\)A
Re
= The relative error in the Monte Carlo method

= Probability of Monte Carlo method divergence in R since it is the real complement of P..

~1 if R_<R, <2R.

In the case where 0<R,<R. we have 03&31:O£P <1 and we deduce also that

Re '

0£(1—%J£1:>0£ P /i<land =0<P, <i

E
And in the case where R <R, <2R. :>1§%£2 :03(2—%)31:>O£Prg1 and we
E E

deduce also that Os[%—l}ﬂ:ﬂg P./i<land =0<P, <i

E

Therefore, if R, =0 or R, =2R; that means before the beginning of the simulation, then:
P. = Prob (convergence) in R =0
P, = Prob (divergence) in M = i
P, /1 =Prop (divergence) in R =1

And if R, =R: that means at the end of Monte Carlo simulation then:
P =Pron (convergence) in R =1
P, = Prob (divergence) in M= 0
P, /i = Prop (divergence) in R =0
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V-2- The Complex Random Vector Z in C

&+i(1—&j if 0<R, <R
R Re
Wehave Z=P. +P, = g

2-Ra li[Bayq] it R <R, <2R.
RE RE

% if 0<R,<R;
where Re(Z)=P = ER = the real part of Z
2—RA if Re <R, <2R.
E
R i o<Rr, <R
and Im(Z2)=P, /i= : = the imaginary part of Z.
R—:—l if R <R, <2R.

That means that the complex random vector Z is the sum in € of the real probability of convergence
in R and of the imaginary probability of divergence in M.

If R,=0 (before the simulation begins) then Prz%:o and Pm=i[1—%)=i(l—0)=i

therefore Z =0+i=i.

E E

If R, = % or R, =3% (at the middle of the simulation) then:
Ry if 0<R, <R Re =05 if 0<R,<R;
E 2|:QE
Ry . 3R; :
——A jf R_.<R,<2R. [2->E =05 if R.<R,<2R.
E E
(. R, . (. R o
|1--- if 0<R,<R; i|1- =051 if 0<R,<R;
Re 2R,

and P, =

E

therefore Z =0.5+0.5i.

i(%—l} if R <R, <2R; i(iEE —1):0.5i if R <R, <2R;

< P =05

E

If R, =R (at the simulation end) then:

Ri_Re 4 if 0<R, <R.

) Re R _
P=d . A &P =1
“Sa_p Te_p 121 if R.<R,<2R

RE E
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And

i[1-Ra if 0<R, <R il 1-Re if 0<R, <R _

Re Re 0 if0<R,<R

P = = = A E
" 0 if R_<R,<2R

i[Raq] iR <R <2r. il Re_1| if R <R, <2R. FTOATTE

I:\>E RE

<P, =0

therefore Z =1+0i =1.

V-3- The Degree of Our Knowledge DOK

We have:

2 2
(ﬁj if 0<R, <R, (1—&] if 0<R, <R,
2 2 N2 RE I:QE
DOK =[2f = + (B /1) = . (

2
R .
(Z—R—Aj if R <R, <2R.

E

2
——1J if R.<R, <2R.

2 2 2
Ral if1-Ba if 0<Rr, <R |2[Ra| ol Ralis ifo<r, <R
I:QE I:QE RE I:QE

2 2 - 2
2—& + &—1 if Rc <R, <2R. 2 & -6 & +5 iIf R <R, <2R;
RE RE RE I:QE
From CPP we have that 0.5<DOK <1 then if DOK =0.5

2
2] -4 Befia-os irosr,<r
I:\)E RE

2
2| Ba| _6[ Ba|i5-05 if R.<R, <2R.
RE RE

then solving the second-degree equation for Ry gives:
E

&=1/2 if 0<SR,<R: _

Re R,=R./2 if 0<R, <R, _

R R —3R /2 if R.<R <2R and vice versa.
—£=3/2 if R <R, <2R, ATYE E=Ra=eRe

E
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That means that DOK is minimum when the approximate result is equal to half of the exact result
if 0<R, <R or when the approximate result is equal to three times the half of the exact result

if Rz <R, <2R_, that means at the middle of the simulation.

In addition, if DOK =1 then:

2 2
o[ Ba) _o[Baliio1 ifo<r, <R Ral [Ral_g if 0<R, <R
I:{E RE RE RE
< 2 < 2
o Ba| _6[Ra|i5-1 it Ro<R,<2r, |2[Re| 6| Ralia=0 if R.<R, <2R,
RE I:\)E RE RE

R,=0 OR R, =R if 0<R, <R
{ A rAOE A7 F  and vice versa.

=
R,=2R. OR R, =R_ if R. <R, <2R.

That means that DOK is maximum when the approximate result is equal to 0 or 2R (before the

beginning of the simulation) and when it is equal to the exact result (at the end of the simulation).
We can deduce that we have perfect and total knowledge of the stochastic experiment before the
beginning of Monte Carlo simulation since no randomness was introduced yet, as well as at the
end of the simulation after the convergence of the method to the exact result.

V-4- The Chaotic Factor Chf

We have:

(. R :
% if 0<R, <R |(1—R—Aj if 0<R, <R
Chf =2iPP, =2ix{ °© x .

R, .
2-2% if R <R, <2R i(&—lj if R; <R, <2R,

E E

since i =—1 then:

o[ Balf1_Ra if 0<R, <R,
RE RE

Chf =
ofaB(5r) e con

RE E

From CPP we have that —0.5<Chf <0 then if Chf =-0.5
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o[ Rl Ral_ 05 ifo<Rr, <R _
R, R, R,=R./2 if 0<R, <R

< Q{R ~3R./2 if R. <R, <2R

—2[2—ﬁ](ﬁ—1j=—0.5 if R, <R, <2R. AE AT
RE E

and vice versa.

That means that Chf is minimum when the approximate result is equal to half of the exact result

if 0<R, <R or when the approximate result is equal to three times the half of the exact result

if Rz <R, <2R;, that means at the middle of the simulation.

In addition, if Chf =0 then:

—2(ﬁ](1—ﬁj=o if 0<R, <R _
R, Re {RA:O OR R,=R. if 0<R, <R,

R,=2R. OR R, =R_ if R, <R, <2R
—2[2—ﬁJ[ﬁ—1j=o if R, <R, <2R. ATE AOE AT
RE E

=

R,=0 OR R,=R.  if 0<R, <R.
R,=2R. OR R, =R. if R.<R, <2R_

And, conversely, if { then Chf =0.

That means that Chf is equal to 0 when the approximate result is equal to 0 or 2R (before the
beginning of the simulation) and when it is equal to the exact result (at the end of the simulation).

V-5- The Magnitude of the Chaotic Factor MChf

We have:

Ra it 0<R, <R, i(l—ﬁ] if 0<R, <R
R Re
MChf =|Chf|=-2iPP, =-2ixs © x

R, .
Z—R—A if Re <R, <2R; i(&—lj if R_. <R, <2R_

E E

since i =—1 then:

of Ball1_Ra if 0<R, <R,
I:\)E RE

MChf =

E E

From CPP we have that 0 < MChf <0.5 then if MChf =0.5
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o Ball1-Ral 05  ifo<r, <R _
R, R R,=R./2 if 0<R,<R.

< Q{R _3R./2 if R.<R,<2R
2(2—%}[ﬁ—1]=0.5 if R, <R, <2R. ATE AT E
E E

and vice versa.

That means that MChf is maximum when the approximate result is equal to half of the exact result
if 0<R, <R or when the approximate result is equal to three times the half of the exact result

if R <R, <2R;, that means at the middle of the simulation. This implies that the magnitude of

the chaos (MChf) introduced by the random variables used in Monte Carlo method is maximum at
the halfway of the simulation.

In addition, if MChf =0 then:

o Balli_Ral_o  ifo<Rr, <R
RE E
=

2{2—ﬁj[ﬁ—1jzo if R. <R, <2R.

E E

R,=0 OR R,=R.  if 0<R, <R
R,=2R. OR R, =R. if R. <R, <2R.

R,=0 OR R,=R.  if 0<R, <R
R,=2R. OR R, =R. if R.<R, <2R_

And, conversely, if @{ then MChf =0.

That means that MChf is minimum and is equal to O when the approximate result is equal to O or
2R. (before the beginning of the simulation) and when it is equal to the exact result (at the end of
the simulation). We can deduce that the magnitude of the chaos in the stochastic experiment is null
before the beginning of Monte Carlo simulation since no randomness was introduced yet, as well
as at the end of the simulation after the convergence of the method to the exact result when
randomness has finished its task in the stochastic Monte Carlo method and experiment.

V-6- The Probability Pc in the Probability Set € = % + M

We have:
Pc? = DOK —Chf = DOK + MChf
2
of Bl _p[Ralig if 0<R, <R o[ Baff1-Ra if 0<R, <R
RE I:QE RE I:QE
= 2 [
R R ]
o Ra| _g[Ralys it R.<R,<2R. |2|2-="|=A-1] if Re<R,<2R
Re Re Re )\ Re
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1 if 0<R,<R.
1 if R_<R, <2R.

< Pc®=1 for 0<R, <2R,

< Pc =1= Probability of convergence in €, therefore:

Raci ifo<R, <R _
el %, Sfn poenen
2-2=1 if R <R, <2R, a=Re I Re SR =eRe

<R, =R for 0<R, <2R. continuously in the probability set € = R + JM. This is due to the

fact in C we have subtracted in the equation above the chaotic factor Chf from our knowledge DOK
and therefore we have eliminated chaos caused and introduced by all the random variables and the
stochastic fluctuations that lead to approximate results in the Monte Carlo simulation in R.

Therefore, since in € we have always R, =R then the Monte Carlo simulation which is a

stochastic method by nature in R becomes after applying the CPP a deterministic method in €
since the probability of convergence of any random experiment in € is constantly and permanently

E

equal to 1 for any iterations number N.

V-7- The Rates of Change of the Probabilities in R, M, and C

Since Z=PF +P, =

Then:

dz dP

dP

dR,

+
dR,

dR,

ﬁn(l—ﬁj if 0<R, <R,

RE RE

(2—ﬁj+i[ﬁ—1) if R, <R, <2R.
RE RE
d {ﬂn( —ﬁﬂ if 0<R, <R
0R, | R, R,

d [o_RalyifRasq]| it r <R, <2R.
dRA RE RE

d |Ra|, d |if1_Ra if 0<R, <R
&R, R | R, R.

d 1o Rel 4 B[R q)| if R<R, <2R.
dR, |~ R.| dR,| | R
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1 T _Lai ifos<r <R
_ RE RE RE
Lt Yisy iR <R <2R
RE RE RE

Therefore,
+Ri if 0<R,<R:
) Re{j: }32 nig
A A N if Re <R, <2R;

E

constant >0 if 0<R,<R; and R. >0
:{constant <0 if Re<R,<2R; and R; >0
that means that the slope of the probability of convergence in R or its rate of change is
constant and positive if 0<R, <R, and constant and negative if R. <R, <2R., and it
depends only on R ; hence, we have a constant increase in P. (the convergence
probability) as a function of the iterations number N as R, increases from 0 to R. and as
R, decreases from 2R. to R till P. reaches the value 1 that means till the random
experiment converges to R..

-2 ifosRr, <R
Im{dz}_}de_d(Pmll)_ Re

drR, | idrR, dR, T R <R, <2R.

E
constant<0 if 0<R,<R. and R. >0
- {constant >0 if Re<R,<2R; and R; >0
that means that the slopes of the probabilities of divergence in R and JM or their rates of
change are constant and negative if O<R,<R., and constant and positive

if R. <R, <2R;, and they depend only on R¢; hence, we have a constant decrease in
P /i and P, (the divergence probabilities) as functions of the iterations number N as R,
increases from 0 to R. and as R, decreases from 2R: to R: till P, /i and P, reach the
value 0 that means till the random experiment converges to R..

Additionally,
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dz[ [ar T [1ap, T [dp 2+ dp, /i) T’
dR, dR, i dR, | dr, dR,
1Y (1Y
— |+ = if 0<R, <R
RE F\)E
Y (1Y
(——J +(— if R <R, <2R;
RE RE
9zh 1,1 _2 for0<R,<2R,
dRA RE RE E
dz | 2 .
= R =—=constant >0 if R. >0; that means that the module of the slope of the complex
A E

probability vector Z in € or of its rate of change is constant and positive and it depends only on R.
; hence, we have a constant increase in Re(Z) and a constant decrease in Im(2Z) as functions of
the iterations number N and as Z goes from (0, i) at N = 0 till (1,0) at the simulation end; hence,
till Re(Z) =P reaches the value 1 that means till the random experiment converges to R; .

Furthermore, since Pc®=DOK —Chf =DOK +MChf =1 then Pc=1= Probability of
d(Pc) d(@)
drR, dR,
for every value of R,, of R, and of the iterations number N, that means for any stochastic

experiment and for any simulation of Monte Carlo method. So, we conclude that in € we have
complete and perfect knowledge of the random experiment which has become now a deterministic
one since the extension in the complex probability plane € defined by the CPP axioms has changed
all stochastic variables to deterministic variables.

convergence in € and consequently : =0, that means that Pc is constantly equal to 1

VI- The Resultant Complex Random Vector Z and the Convergence of Monte Carlo
Methods [37-90]

A powerful tool will be described in the current section which was developed in my
personal previous research papers and which is founded on the concept of a complex random
vector that is a vector combining the real and the imaginary probabilities of a random outcome,
defined in the three added axioms of CPP by the term z; =B, + B, ;. Accordingly, we will define
the vector Z as the resultant complex random vector which is the sum of all the complex random
vectors z; in the complex probability plane €. This procedure is illustrated by considering first a
general Bernoulli distribution, then we will discuss a discrete probability distribution with N
equiprobable random vectors as a general case. In fact, if z represents one output from the uniform
distribution U, then Z, represents the whole system of outputs from the uniform distribution U

that means the whole random distribution in the complex probability plane €. So, it follows directly
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that a Bernoulli distribution can be understood as a simplified system with two random outputs
(section VI-1), whereas the general case is a random system with N random outputs (section VI-
2). Afterward, I will prove the convergence of Monte Carlo methods using this new powerful
concept (section VI-3).

VI-1- The Resultant Complex Random Vector Z of a General Bernoulli Distribution
(A Distribution with Two Random Outputs)

First, let us consider the following general Bernoulli distribution and let us define its complex
random vectors and their resultant (Table 1):

Outcome X; X, X,
In 7 PrJ' P.=p P.=q
In M ij I:)mlzi(l_ p)=|q PmZ =|(1—C])=Ip
InC=R+M | z, 2z, =P, +P, z,=P,+P,,

Table 1. A general Bernoulli distribution in R, M, and C

Where,
X, and X, are the outcomes of the first and second random vectors respectively.

Pr1 and Py are the real probabilities of X, and X, respectively.
Pm1 and Pm are the imaginary probabilities of X, and X, respectively.

We have

2

> P;=P,+P,=p+q=1

j=1

and
2

> P, =P,+P,=iq+ip=i{l- p)+ip
-1

—i—ip+ip=i=i(2-1)=i(N-1)

Where N is the number of random vectors or outcomes which is equal to 2 for a Bernoulli
distribution.

The complex random vector corresponding to the random outcome x, is:
z,=PB,+PR,=p+ill-p)=p+iq

The complex random vector corresponding to the random outcome X, is:
z,=R,+R,=q+i0-q)=q+ip

The resultant complex random vector is defined as follows:
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2 2 2
Z=>17,=2,+2,=) P;+> P,
=1 = =1

=(p+ig)+(q+ip) =(p+a)+i(p+q)
=1+1=1+1i1(2-1)
=Z=1+i(N-1)

The probability Pc, in the complex plane € = R + M which corresponds to the complex random
vector z, is computed as follows:

|z =P?+ (P, /i)’ = p*+0°
Chf, =-2P,P.,/i=-2pq
= Pc? =|z|" -Chf,
=p*+q°+2pq=(p+q)*=1"=1
= Pc, =1
This is coherent with the three novel complementary axioms defined for the CPP.
Similarly, Pc, corresponding to z, is:
2] =P +(P, /)" ="+ p?
Chf,=-2P,P.,/i=-2qp
= Pc? =|z,[ —Chf,
=q°+p’+20p=(q+p)° =1"=1

= Pc, =1

The probability Pc in the complex plane € which corresponds to the resultant complex random
vector Z =1+i is computed as follows:

2 2 2 2
z|* :[ZP”} +[mej /ij =1 +12=2
j=1 j=1
2 2
Chf =2 P, > R, /i=-2)1)=-2
=L j=L

Lets®=|z| ~Chf =2+2=4=5=2

s |z[-chf |z chf 4 4
:}PCZZ—ZZ 7 = 2— 7 :—2:—:1
N N N N 2° 4
N 2

Where sis an intermediary quantity used in our computation of Pc.
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Pc is the probability corresponding to the resultant complex random vector Z in the probability
universe € = R + A and is also equal to 1. Actually, Z represents both z, and z, that means the
whole distribution of random vectors of the general Bernoulli distribution in the complex plane €
and its probability Pc is computed in the same way as Pc, and Pc,.

By analogy, for the case of one random vector z; we have:
Pc? =|z,[ ~chf, with (N=1).

In general, for the vector Z we have:
2

. _|2]" chf .

ERES

(N >1)

Z
Where the degree of our knowledge of the whole distribution is equal to DOK, = |I\I_2 its relative

|2

. . hf . . . : .
chaotic factor is Chf, = CI:\I_Z , and its relative magnitude of the chaotic factor is MChf, =|Chf,|.

Notice, if N = 1 in the previous formula, then:
izI° chf |z[* chf
:NZ_N2:12_12:
which is coherent with the calculations already done.

To illustrate the concept of the resultant complex random vector Z, | will use the following graph
(Figure 15).

Pc? [ -chf =[z,[ -cnf, =Pc

A . . .
Imaginary Dimension

Real Dimension
Prj

O p g
Figure 15. The resultant complex random vector Z =z, + z, for a general Bernoulli distribution
in the complex probability plane €
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VI-2- The General Case: A Discrete Distribution with N Equiprobable Random
Vectors (A Uniform Distribution U with N Random Outputs)

As a general case, let us consider then this discrete probability distribution with N
equiprobable random vectors which is a discrete uniform probability distribution U with N outputs

(Table 2):
Outcome X; X, X, . Xy
| .
nfR Pr] F)rl:1 Pr2:£ F)rN:i
In M , . ) )
ij Pml =1 1_i Pm2 =1 1_£ PmN =1 1_i
InC=2R+M Z; z=F,+PF, z,=B,+PR,; zy =Fy+Pw

Table 2. A discrete uniform distribution with N equiprobable random vectors in R, M, and €

We have here in €= R + M.

z;=R;+P,;, Vj: 1<j<N,

1 i(N-1

and z=72,=..=2, =—4+—~—— "7~
o "N N

N i _
=Z,=22,=2,+2,+..42, =Nz, = N[%ﬁL%j:l”(N -1)

=1

Moreover, we can notice that: |z,|=|z,|=---=|z,|, hence,
|Z,|=|z,+2,+...+2,|=N|z]=N|z,|=...=N|z,|
2
=z, = Nz\zj\z = N2($+ (NN_zl) j=1+(N —1)2, where 1< j<N:

And

Chf = N2 xChf, =—2x P, x (P, /i)xN? =—2N* X&j(NT_lj 2N -1)=—2(N-1)

= 2 =[Z,[" ~Chf =1+ (N -1)?+2(N -1) =[L+ (N -1’ = N*

SZ N2
=P N
1z, Chf 1+(N-1)? —2(N-1) 1+(N-12+2(N-1) [+(N-DF N?
N2 N2 N2 NZ N? =N Nt
= Pc, =1

Where sis an intermediary quantity used in our computation of Pcuy.
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Therefore, the degree of our knowledge corresponding to the resultant complex vector Z;,
representing the whole uniform distribution is:

z [ _1)?
DOK, | U2| :1+(N21) |
v N N
and its relative chaotic factor is:
Chf 2(N -1)
ChfZU = N2 = NZ I}

Similarly, its relative magnitude of the chaotic factor is:

MChf, ‘Chf ‘_ Chf| ~2(N 1)‘ 2(N 1)
Thus, we can verify that we have always:
YA
Pc’ = | | Chf =DOK,, —-Chf, =DOK, +MChf, =1« Pg, =1

What is important here is that we can notice the following fact. Take for example:

N =2= DOK, M =05 and Chf, 2(22_1) =-05
N=4= DOK, = % =0.625>05 and Chf, = _2(22_1) =-0.375>-05
2
=5=DOK, = % =0.68>0.625 and Chf, = @ =-0.32>-0.375
2
N =10=> DOK,, :% -082>068 and Chf, = _2207) 418> 032
2
N =100 DOK, = U0 508025082 and cnr, =240 _ 108> 018
v 100 v 100
2
N =1000 = DOK,, = % ~0.998002>0.9802 and
Chf, = M =-0.001998 > -0.0198
v 1000°
We can deduce mathematically using calculus that:
_1\2
im 20 _ i pok,, = lim XNy
No+o |\ N —-+o0 N —+o0 N
and lim Ch: = lim Chf, = lim — 2N 2‘1) =0,
No+oo N —+o0 U N —>+o0

From the above, we can also deduce this conclusion:
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As much as N increases, as much as the degree of our knowledge in R corresponding to the
resultant complex vector is perfect and absolute, that means, it is equal to one, and as much as the
chaotic factor that prevents us from foretelling exactly and totally the outcome of the stochastic
phenomenon in R approaches zero. Mathematically we state that: If N tends to infinity then the
degree of our knowledge in R tends to one and the chaotic factor tends to zero.

V1-3- The Convergence of Monte Carlo Methods using Z and CPP

Subsequently, if Jmo Chf,, =0 then Nli%rerCthC =0 (the chaotic factor of Monte Carlo methods)

provided that:
1) The Monte Carlo algorithm used to solve the stochastic process or integral is correct
2) The integral that we want to solve using Monte Carlo methods is convergent

Therefore:
P—-0 P -0
1) = NILrpm Chf,,c = JLan—ZRPm /i=0 = OR = OR
P./li—0 P=1-P /i—>1-0=1
P, (convergence) — 0
=<0R
P, (convergence) —1
that means either the simulation has not started yet ( P, (convergence) =0) or the Monte Carlo
algorithm result or output has converged to the exact result (P, (convergence) —1) since
Chf,,. =0 in only two places whichare N =0 and N — -+oo.
lim —2(ﬁj(1—ﬁj if 0<R, <R,
N> | R R

E

2) And lim Chf,,. =
N —+0 ] RA RA ]
lim -2 2—R— R——l if Rc <R, <2R;

=0

N —+o0
E E
&—>0 OR l—&—>0
Re Re R,—»0 OR R, >R
=< OR =< OR
2_&%0 OR &_1_)0 R,—»2R. OR R, >R
E E

that means either:
e the simulation has not started yet (R, =0 or R, =2R.) since at this instant the percent

relative error is maximum and is equal to 100%,
o or the Monte Carlo algorithm output has converged to the exact result (R, — R;) since at

this instant the percent relative error is minimum and is equal to 0%,
this is due to the fact that Chf,,. =0 in only two places whichare N =0 and N — +o.
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Moreover, the speed of the convergence of Monte Carlo methods depends on:
1) The algorithm used

2) The integrand function of the original integral that we want to evaluate ( f (x) or in general
f(X,%,...,X,)) since in Monte Carlo methods:

jf(x)dx~—2f(x)

a

Or in general:

bb, by
LB—a)x (b, —a)x..x(b,-a)]§
J.J. .[f(xi Xgsoen X )-UX X, ....OX N Zf(xu’ 2j1e n])

)

3) The random numbers generator that provides the integrand function with random inputs
for the Monte Carlo methods. In the current research work we have used one specific
uniform random numbers generator although many others exist in literature.

Z[ 1+ (1-1)°
Furthermore, forN =1= |N_|2 =DOK,, =% =1= DOK,,. =1 (the DOK of Monte
Carlo methods)

Chf —201-1)

And W = Chfo = 12 =0= CthC =0

This means that we have a random experiment with only one outcome or vector, hence, either
P =1 (always converging) or P. =0 (always diverging), that means we have respectively either

a sure event or an impossible event in R. Consequently, we have surely the degree of our
knowledge is equal to one (perfect experiment knowledge) and the chaotic factor is equal to zero
(no chaos) since the experiment is either certain (that means we have used a deterministic
algorithm so the stochastic Monte Carlo methods are replaced by deterministic methods that do
not use random numbers like the classical and ordinary methods of numerical integration) or
impossible (an incorrect or divergent algorithm or integral), which is absolutely logical.

Consequently, we have proved here the law of large numbers (already discussed in the published
papers [37-90]) as well as the convergence of Monte Carlo methods using CPP. The following
figures (Figures 16 and 17) show the convergence of Chf, to 0 and of DOK, to 1 as functions

of the uniform samples number N (Number of inputs/outputs).
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The CPP parameters as functions of N
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Number N of inputs/outputs

Figure 16. Chf, ,DOK, ,and Pc,, as functions of N in 2D

The CPP parameters as functions of N
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Figure 17. Chf, ,DOK, ,and Pc,, as functions of N in 3D
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VII- The Evaluation of the New Paradigm Parameters

We can deduce from what has been elaborated previously the following:

Re —R\(N)
RE

We have 0< N < N. where N = 0 corresponds to the instant before the beginning of the random

experimentwhen R, (N =0)=0 or =2R_,and N = N_ (iterations number needed for the method

convergence) corresponds to the instant at the end of the random experiments and Monte Carlo
methods when R,(N=N.) > R:.

The real convergence probability: P.(N)=1-

The imaginary divergence probability: P, (N) =i

Re —R,(N)
RE

The real complementary divergence probability: P, (N)/i=

Re —R,(N)
RE

The complex probability and random vector:
R~ mmqﬂ

E

R R, (N)|

RE

Re—Ru(M)| | [[Re R[]
Re | Re |

=1+ 2iP,(N)P,(N) =1-2P.(N)[1- P.(N)] =1- 2P, (N) + 2P*(N)

RE _RA(N)|+2|:RE _RA(N):|2
RE

Z(N)= R(N)+Pm(N)={1—

The Degree of Our Knowledge:

DOK (N) =|Z(N)|" = PZ(N) +[P,(N)/i]’ {1—

=1-2

c |

The Chaotic Factor:
Chf (N) = 2iP,(N)P, (N) = -2P,(N)[1- P.(N)] = -2P.(N) + 2P*(N)

2
RE _RA(N)|+2 RE_RA(N)
RE I:QE

Chf (N) is null when P.(N)=P (0)=0 and when P.(N)=P (N;)=1.

=2

The Magnitude of the Chaotic Factor MChf:
MChf(N):|Chf(N)|:—ZiR(N)Pm(N)=ZR(N)[1— Pr(N)]=2Pr(N)—2P,2(N)

RE _RA(N)|_2 RE _RA(N) i
RE RE

=2
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MChf (N) is null when P.(N)=P (0)=0 and when P.(N)=P.(N.)=1.

At any iteration number N: 0<VN < N, the probability expressed in the complex probability
set € is the following:
Pc?(N) =[P, (N) +P, (N) /i]* =|Z(N)[* — 2iP,(N)P, (N)
= DOK(N)—Chf (N)
= DOK (N) +MChf (N)
=1
then,
Pc2(N) =[P.(N)+P,(N) /i]> ={P.(N) +[1- P.(N)]}* =1? < Pc =1 always

Hence, the prediction of the convergence probabilities of the stochastic Monte Carlo experiments
in the set € is permanently certain.

Let us consider thereafter some stochastic experiments and some single and multidimensional
integrals to simulate the Monte Carlo methods and to draw, to visualize, as well as to quantify all
the CPP and prognostic parameters.
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VI111- Flowchart of the Complex Probability and Monte Carlo Methods Prognostic Model
The following flowchart summarizes all the procedures of the proposed complex
probability prognostic model:

Input the random experiment exact result: R,
Determine the random numbers generator

For each iteration
cycles: N=1, N¢ A

Random variables set sampling
(xu,xzj,...,x”) , J=1LLN

v

Monte Carlo simulation Calculate the approximate value R,(N)
evaluation at each simulation cycles N

Plot all the functions for
N=1, Nc
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IX- Simulation of the New Paradigm

Note that all the numerical values found in the simulations of the new paradigm for any
iteration cycles N were computed using the MATLAB version 2024 software and compared to the
values found by Microsoft Visual C++ programs (included in all section 1X-2). In addition, the
reader should take care of the rounding errors since all numerical values are represented by at most
five significant digits and since we are using Monte Carlo methods of integration and simulation
which give approximate results subject to random effects and fluctuations.
IX-1- The Continuous Random Case
IX-1-1- The First Simple Integral: A Linear Function
Let us consider the integral of the following linear function:

ot

1 2

.[xdx = {X?} :1?—0 = % =0.5 < R. =0.5 by the deterministic methods of calculus.
0 0

< f(X)=x, x—U(0,2)

1 N
S _[xdx = %Z X; =R, with 1< N <N, after applying Monte Carlo method.
0

=t

Moreover, the four figures (Figures 18-21) show the increasing convergence of Monte Carlo
method and simulation to the exact result R. =0.5 for N = 50, 100, 500, and N = N. =100,000

iterations. Therefore, we have:

Re —R\(N)|{ _,_
R. -

probability of Monte Carlo method as N — +oo.

Re—Re =1-0=1 which is equal to the convergence

N —-+o0
E

lim B(N) = lim {1—

Additionally, Figure 22 illustrates clearly and visibly the relation of Monte Carlo method to the
complex probability paradigm with all its parameters (Chf,R,,P,MChf,R.,DOK,P. /i,Pc)
after applying it to this linear function.
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0 CPP and Monte Carlo Methods
55

: A Linear Function

RA and RE

L 1 1 Il
15 20 25 30 35 40
Number of Iterations N : 0 <= N <= 50

45 50

Figure 18. The increasing convergence of the Monte Carlo method up to N = 50 iterations

06 CPP and Monte Carlo Methods: A Linear Function
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1

1 1
30 40 50 60 70 80

90 100
Number of Iterations N : 0 <= N <= 100

Figure 19. The increasing convergence of the Monte Carlo method up to N = 100 iterations.
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055 CPP and Monte Carlo Methods: A Linear Function
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Figure 20. The increasing convergence of the Monte Carlo method up to N = 500 iterations.

0 CPP and Monte Carlo Methods: A Linear Function
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Figure 21. The increasing convergence of the Monte Carlo method up to N = 100,000 iterations.
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CPP and Monte Carlo Methods: A Linear Function
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Figure 22. The CPP parameters and the Monte Carlo method for a linear function.

IX-1-2- The Second Simple Integral: A Parabolic Function

Let us consider the integral of the following parabolic function:

1 3Tt 43

szdx = [%} = 15— 0= % =0.3333333... & R. =0.3333333... by the deterministic methods of
0 0

calculus.

< f(X) =%, x—U(0,2)
1 N

= fxzdx = %fo =R, with 1< N < N, after applying Monte Carlo method.
0 =1

Moreover, the four figures (Figures 23-26) show the increasing convergence of Monte Carlo
method and simulation to the exact result R. =0.3333333... for N = 50, 100, 500, and

N =N, =100,000 iterations. Therefore, we have:
NIim P(N)= N|im {1_ w}=1_ Re —Re

probability of Monte Carlo method as N — +o0.

=1-0=1 which is equal to the convergence

E E

Additionally, Figure 27 illustrates clearly and visibly the relation of Monte Carlo method to the
complex probability paradigm with all its parameters (Chf,R,,P,MChf,R.,DOK,P, /i,Pc)

after applying it to this parabolic function.
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04 CPP and Monte Carlo Methods: A Parabolic Function
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Figure 23. The increasing convergence of the Monte Carlo method up to N = 50 iterations.
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Figure 24. The increasing convergence of the Monte Carlo method up to N = 100 iterations.

45



UNDER PEER REVI EW

CPP and Monte Carlo Methods: A Parabolic Function
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Figure 25. The increasing convergence of the Monte Carlo method up to N = 500 iterations.
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Figure 26. The increasing convergence of the Monte Carlo method up to N = 100,000 iterations.
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CPP and Monte Carlo Methods: A Parabolic Function
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Figure 27. The CPP parameters and the Monte Carlo method for a parabolic function.

IX-1-3- The Third Simple Integral: A Cubic Function
Let us consider the integral of the following cubic function:

1 4Tt 4
fx3dx = {XZ} :11—0 = % =0.25 & R. =0.25 by the deterministic methods of calculus.
0 0

< fX)=x, x—>U(@0,1
1 N

= Idex = %fo =R, with 1< N <N, after applying Monte Carlo method.
0 j=t

Moreover, the four figures (Figures 28-31) show the increasing convergence of Monte Carlo
method and simulation to the exact result R. =0.25 for N =50, 100, 500, and N = N. =100,000

iterations. Therefore, we have:
lim P.(N)= lim {1— w‘}:l—
N —-+o0 N RE

probability of Monte Carlo method as N — +o0.

Re —Re =1-0=1 which is equal to the convergence
E

Additionally, Figure 32 illustrates clearly and visibly the relation of Monte Carlo method to the
complex probability paradigm with all its parameters (Chf,R,,P,MChf,R.,DOK,P, /i,Pc)
after applying it to this cubic function.
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03 CPP and Monte Carlo Methods: A Cubic Function
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Figure 28. The increasing convergence of the Monte Carlo method up to N = 50 iterations.
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Figure 29. The increasing convergence of the Monte Carlo method up to N = 100 iterations.
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03 CPP and Monte Carlo Methods: A Cubic Function
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Figure 30. The increasing convergence of the Monte Carlo method up to N = 500 iterations
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Figure 31. The increasing convergence of the Monte Carlo method up to N = 100,000 iterations.
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CPP and Monte Carlo Methods: A Cubic Function
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Figure 32. The CPP parameters and the Monte Carlo method for a cubic function.

IX-1-4- The Fourth Simple Integral: An Increasing Exponential Function
Let us consider the integral of the following increasing exponential function:

Jl'exp(x)dx = [exp(x)]ﬁ =exp(l) —exp(0) =e—1=2.718281828...-1=1.718281828...

Z:> Re =1.718281828. .. by the deterministic methods of calculus.

< f(X)=exp(x), x—U(0,2)

& Jjexp(x)dx = %gexp(xj) =R, with 1< N < N, after applying Monte Carlo method.

Moreover, the four figures (Figures 33-36) show the increasing convergence of Monte Carlo
method and simulation to the exact result R. =1.718281828... for N = 50, 100, 500, and

N =N, =100,000 iterations. Therefore, we have:
fim P(N) = fim {1m}1u

probability of Monte Carlo method as N — +o0.
Additionally, Figure 37 illustrates clearly and visibly the relation of Monte Carlo method to the
complex probability paradigm with all its parameters (Chf,R,,P,MChf,R.,DOK,P, /i,Pc)

after applying it to this increasing exponential function.

=1-0=1 which is equal to the convergence

E E
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CPP and Monte Carlo Methods: An Increasing Exponential Function
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Figure 33. The increasing convergence of the Monte Carlo method up to N = 50 iterations.
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Figure 34. The increasing convergence of the Monte Carlo method up to N = 100 iterations.
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19 CPP and Monte Carlo Methods: An Increasing Exponential Function

1mM¥FF-———"—""—"—"—"~—"~"~"~—~"~—~"~—~"—"~—~"—"—"~—~"———— — — — — — —
1.6

141

1.2

08

RA and RE

0 1 1 1 1 1 1 1 1 1 |
0 50 100 150 200 250 300 350 400 450 500

Number of Iterations N : 0 <= N <= 500

Figure 35. The increasing convergence of the Monte Carlo method up to N = 500 iterations.
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Figure 36. The increasing convergence of the Monte Carlo method up to N = 100,000 iterations.
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CPP and Monte Carlo Methods: An Increasing Exponential Function
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Figure 37. The CPP parameters and the Monte Carlo method for an increasing exponential
function.

IX-1-5- The Fifth Simple Integral: A Decreasing Exponential Function
Let us consider the integral of the following decreasing exponential function:

1

jexp(—x)dx = [—exp(—x)]z =—exp(-1) +exp(0) = -0.367879441...+1= 0.632120558...

0

<> R =0.632120558. .. by the deterministic methods of calculus.

< f(X) =exp(-x), x+—U(0,1)
1 N

2SS Iexp(—x)dx = %Zexp(—xj) =R, with 1< N < N_ after applying Monte Carlo method.
0 =1

Moreover, the four figures (Figures 38-41) show the increasing convergence of Monte Carlo
method and simulation to the exact result R. =0.632120558... for N = 50, 100, 500, and

N =N, =100,000 iterations. Therefore, we have:
fim P(N) = fim {1m}1u

probability of Monte Carlo method as N — +o0.
Additionally, Figure 42 illustrates clearly and visibly the relation of Monte Carlo method to the
complex probability paradigm with all its parameters (Chf,R,,P,MChf,R.,DOK,P, /i,Pc)

after applying it to this decreasing exponential function.

=1-0=1 which is equal to the convergence

E E
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CPP and Monte Carlo Methods: A Decreasing Exponential Function
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Figure 38. The increasing convergence of the Monte Carlo method up to N = 50 iterations.
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Figure 39. The increasing convergence of the Monte Carlo method up to N = 100 iterations.
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0.7 CPP and Monte Carlo Methods: A Decreasing Exponential Function
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Figure 40. The increasing convergence of the Monte Carlo method up to N = 500 iterations.

07 CPP and Monte Carlo Methods: A Decreasing Exponential Function
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Figure 41. The increasing convergence of the Monte Carlo method up to N = 100,000 iterations.
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CPP and Monte Carlo Methods: A Decreasing Exponential Function
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Figure 42. The CPP parameters and the Monte Carlo method for a decreasing exponential
function.

IX-1-6- The Sixth Simple Integral: A Logarithmic Function
Let us consider the integral of the following logarithmic function:

2
[Ln()dx =[xLn(x) - x]; = 2Ln2~1=0.386294361... <> R, =0.38629436L.... by the
1

deterministic methods of calculus.
< f(X)=Ln(x), x—U(L2)

1 N
= j Ln(x)dx = %Z Ln(x;) =R, with 1< N <N, after applying Monte Carlo method.
0 =t

Moreover, the four figures (Figures 43-46) show the increasing convergence of Monte Carlo
method and simulation to the exact result R. =0.386294361... for N = 50, 100, 500, and

N =N, =100,000 iterations. Therefore, we have:
RE _RA(N) }:l— RE _RE

E
probability of Monte Carlo method as N — +o0.

=1-0=1 which is equal to the convergence

—>+0

NILrPOO P(N)= NI|m {1—

E

Additionally, Figure 47 illustrates clearly and visibly the relation of Monte Carlo method to the
complex probability paradigm with all its parameters (Chf,R,,P,MChf,R.,DOK,P, /i,Pc)
after applying it to this logarithmic function.

56



UNDER PEER REVI EW

CPP and Monte Carlo Methods: A Logarithmic Function
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Figure 43. The increasing convergence of the Monte Carlo method up to N = 50 iterations.
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Figure 44. The increasing convergence of the Monte Carlo method up to N = 100 iterations.
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CPP and Monte Carlo Methods: A Logarithmic Function
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Figure 45. The increasing convergence of the Monte Carlo method up to N = 500 iterations.
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Figure 46. The increasing convergence of the Monte Carlo method up to N = 100,000 iterations.
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CPP and Monte Carlo Methods: A Logarithmic Function
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Figure 47. The CPP parameters and the Monte Carlo method for a logarithmic function.
IX-1-7- A Multiple Integral
Let us consider the multidimensional integral of the following function:

3/23/23/2 3123021 2 13/2 3/23/2

X 9
.([ }[ !xyz.dxdydz= _([ _([_7_0 yz.dydz:'([ .([gyz.dydz
32 2 32 312 2732
:gJ’ Y z.dz:gjgz.dz:§{z—}
8 al 2 o 8 0 8 64| 2 0
_81.9_729 4 423828125...
64 8 512

< R =1.423828125. .. by the deterministic methods of calculus.

< f(xy,2)=xyz, x—U(0,3/2), y—U(0,3/2), z—U(0,3/2)
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3/23/23/2 _ _ _ N
@HIXyzldxdde;[(s/z 0)><(3/2N 0)x(3/2 0)]ijy,-2,-
000 j=1

27/8Q .
_T;xjyjzj =R,
j=

with 1< N < N, after applying Monte Carlo method.
Moreover, the four figures (Figures 48-51) show the increasing convergence of Monte Carlo

method and simulation to the exact result R. =1.423828125... for N = 50, 100, 500, and
N =N, =100,000 iterations. Therefore, we have:

RE—RA<N>‘}:1_
RE E

probability of Monte Carlo method as N — +o0.

Re—Re =1-0=1 which is equal to the convergence

N —-+o0

lim B(N) = lim {1—

Additionally, Figure 52 illustrates clearly and visibly the relation of Monte Carlo method to the
complex probability paradigm with all its parameters (Chf,R,,P,MChf,R.,DOK,P, /i,Pc)
after applying it to this three-dimensional integral.

16 CPP and Monte Carlo Methods: A Multiple Integral
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Figure 48. The increasing convergence of the Monte Carlo method up to N = 50 iterations.
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16 CPP and Monte Carlo Methods: A Multiple Integral

1428 ———————————————————————————— %~ — —

0.8

RA and RE

0.6

0.2

0 I I I I I I I I I |
0 10 20 30 40 50 60 70 80 90 100

Number of Iterations N: 0 <= N <= 100

Figure 49. The increasing convergence of the Monte Carlo method up to N = 100 iterations.
CPP and Monte Carlo Methods: A Multiple Integral
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Figure 50. The increasing convergence of the Monte Carlo method up to N = 500 iterations.
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CPP and Monte Carlo Methods: A Multiple Integral
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Figure 51. The increasing convergence of the Monte Carlo method up to N = 100,000 iterations.

CPP and Monte Carlo Methods: A Multiple Integral
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Figure 52. The CPP parameters and the Monte Carlo method for a multiple integral.
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IX-2- The Discrete Random Case

IX-2-1- The First Random Experiment: A Random Walk in a Plane

We will try in this problem to simulate random walks in a plane, each walk starting at
0O(0,0) and consisting of s = 10000 steps of length = L = 0.008. The probability theory says that

after s steps, the expected distance from the starting point will be Lx\/E . So, the estimated

distance in the program will be =0.OO8><\/10000:0.008><100=0.8=RE. The figure below
shows a random walk in a plane (Figure 53):

L =0.008
L =0.008

0, <
s L =0.008

Figure 53. A random walk simulation in a plane

The algorithm in Microsoft Visual C++ is the following:

#include <iostream>
#include <cstdlib>
#include <ctime>
#include <cmath>
#include <iomanip>

using namespace std;

int main()

{
const long double PI = 3.1415926535897931;

long int i, j, s, k, N;
long double d, di, d2, alpha, sum, L, f, F;

cout << " THE RANDOM WALK PROBLEM"
<< endl;
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}

cout <<
L e e e e e e e e e e e e e e e e e e e \nll

<< endl;

srand(time(0));

N = 100000; L = 0.008;
for (i = 1; i <= 3; i++)

{
sum = 0;
for (k = 1; k <= N; k++)
{
d =dl = d2 = 9;
s = 10000; alpha = 0; f = 0; F = 0;
for (j = 1; j <= s; Jj++)
{
f = (long double) rand() / 32767;
alpha = 2*PI*f;
dl = d1 + (long double) L*f*cos(alpha);
d2 = d2 + (long double) L*f*sin(alpha);
F=F+ f;
¥
dl = (long double) di / F;
d2 = (long double) d2 / F;
d = (long double) PI*sqrt(s)*pow((dl*dl)+(d2*d2),0.5);
sum = sum + d;
}
sum = (long double) sum / N;
cout << fixed << setprecision(3);
cout << "AFTER " << s << " STEPS OF LENGTH = " << L
<< " THE PARTICLE IS AT A DISTANCE " << sum << endl;
cout << "THE ESTIMATED DISTANCE IS = " << L*sqgrt(s) << "\n"
<< endl;
¥
return 0;

Moreover, the four figures (Figures 54-57) show the increasing convergence of Monte Carlo
method and simulation to the exact result R. =0.8 for N = 50, 100, 500, and N = N, =100,000

iterations. Therefore, we have:
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R. —R.

—>+%0

NILrEO P(N)= NI|m {1—

RE—RA<N>‘}:1_
RE E

probability of Monte Carlo method as N — +o0.

=1-0=1 which is equal to the convergence

Additionally, Figure 58 illustrates clearly and visibly the relation of Monte Carlo method to the

complex probability paradigm with all its parameters (Chf,R,,P,MChf,R.,DOK,P, /i,Pc)
after applying it to this random walk problem.

00 CPP and Monte Carlo Methods: The Random Walk Problem

RA and RE

O | | | | |

0 5 10 15 20 25 30 35 40 45 50
Number of Iterations N: 0 <= N <= 50

Figure 54. The increasing convergence of the Monte Carlo method up to N = 50 iterations.
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0.9 CPP and Monte Carlo Methods: The Random Walk Problem
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Figure 55. The increasing convergence of the Monte Carlo method up to N = 100 iterations.
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Figure 56. The increasing convergence of the Monte Carlo method up to N = 500 iterations.
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0.9 CPP and Monte Carlo Methods: The Random Walk Problem
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Figure 57. The increasing convergence of the Monte Carlo method up to N = 100,000 iterations.

11 CPP and Monte Carlo Methods: The Random Walk Problem
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Figure 58. The CPP parameters and the Monte Carlo method for the random walk problem.
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IX-2-1-1 The Complex Probability Cubes

In the first cube (Figure 59), the simulation of DOK and Chf as functions of each other and
of the iterations N for the random walk problem can be seen. The line in cyan is the projection of
Pc?(N) = DOK(N) - Chf(N) = 1 = Pc(N) on the plane N = 0 iterations. This line starts at the point
J (DOK =1, Chf = 0) when N = 0 iterations, reaches the point (DOK = 0.5, Chf =-0.5) when N =
50,000 iterations, and returns at the end to J (DOK =1, Chf = 0) when N = Nc = 100,000 iterations.
The other curves are the graphs of DOK(N) (red) and Chf(N) (green, blue, pink) in different planes.
Notice that they all have a minimum at the point K (DOK = 0.5, Chf =-0.5, N = 50,0000 iterations).
The point L corresponds to (DOK =1, Chf =0, N = Nc = 100,000 iterations). The three points J,
K, L are the same as in Figure 58.

The Random Walk Problem: DOK and Chf in terms of N and of each other
L

10

Number of iterations N

—— DOK : Degree of our knowledge
— Chf : Chaotic factor
Chf : Chaotic factor

Figure 59. DOK and Chf in terms of N and of each other for the random walk problem.
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In the second cube (Figure 60), we can notice the simulation of the convergence probability
Pr(N) and its complementary real divergence probability Pm(N)/i in terms of the iterations N for
the random walk problem. The line in cyan is the projection of Pc2(N) = P¢(N) + Pm(N)/i = 1 =
Pc(N) on the plane N = 0 iterations. This line starts at the point (Pr = 0, Pm/i = 1) and ends at the
point (Pr = 1, Pw/i = 0). The red curve represents Pr(N) in the plane P(N) = Pm(N)/i. This curve
starts at the point J (Pr = 0, Pw/i =1, N = 0 iterations), reaches the point K (Pr = 0.5, Pm/i = 0.5, N
= 50,000 iterations), and gets at the end to L (Pr = 1, Pw/i = 0, N = Nc = 100,000 iterations). The
blue curve represents Pm(N)/i in the plane Pr(N) + Pm(N)/i = 1. Notice the importance of the point
K which is the intersection of the red and blue curves at N = 50,000 iterations and when P((N) =
Pm(N)/i = 0.5. The three points J, K, L are the same as in Figure 58.

The Random Walk Problem: The Probabilities Pr and Pm /iin terms of N

Number of iterations N

—— Pu/i : Real Complementary Divergence Probability
—— Pr: Real Convergence Probability

Figure 60- Pr and Pw/i in terms of N and of each other for the random walk problem.
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In the third cube (Figure 61), we can notice the simulation of the complex random vector
Z(N) in € as a function of the real convergence probability P-(N) = Re(Z) in R and of its
complementary imaginary divergence probability Pm(N) = ixIm(Z) in M , and this in terms of the
iterations N for the random walk problem. The red curve represents Pr(N) in the plane Pm(N) = 0
and the blue curve represents Pm(N) in the plane Pr(N) = 0. The green curve represents the complex
probability vector Z(N) = P¢(N) + Pm(N) = Re(Z) + ixIm(Z) in the plane Pr(N) = iPn(N) + 1. The
curve of Z(N) starts at the point J (Pr = 0, Pm=1, N = 0 iterations) and ends at the point L (Pr =1,
Pm =0, N =Nc = 100,000 iterations). The line in cyan is Pr(0) = iPm(0) + 1 and it is the projection
of the Z(N) curve on the complex probability plane whose equation is N = 0O iterations. This
projected line starts at the point J (Pr =0, Pm=1i, N = 0 iterations) and ends at the point (Pr =1, Pm
=0, N =0 iterations). Notice the importance of the point K corresponding to N = 50,000 iterations
and when Py = 0.5 and Pm = 0.5i. The three points J, K, L are the same as in Figure 58.

%x10%
10

Number of iterations N

0.6i_ _.
0.5i

0.4i 0.6

0.5
0.2i 04

*Im(Z) =P _ 0 0 ' Re(Z) =P,

—— P, : Real Convergence Probability in the set # = Re(2)
—— P : Complementary Imaginary Divergence Probability in the set M = ixIm(Z)

Figure 61- The Complex Probability Vector Z in terms of N for the random walk problem.
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IX-2-2- The Second Random Experiment: The Birthday Problem

The given of the second random experiment is the following: Find the probability that n people
(n<365) selected at random will have n different birthdays.

Theoretical Analysis
We assume that there are only 365 days in a year (not a leap year) and that all birthdays are equally
probable, assumptions which are not quite met in reality.

The first of the n people has of course some birthday with probability 365/365 = 1. Then, if the
second is to have a different birthday, it must occur on one of the other days. Therefore, the
probability that the second person has a birthday different from the first is 364/365. Similarly, the
probability that the third person has a birthday different from the first two is 363/365. Finally, the
probability that the nth person has a birthday different from the others is (365—n+1)/365. We

therefore have:

P(all n birthdays are different) =

365)(364)(363 x(l— n—lj= R

365 365 365\ 365

The table below gives the theoretical probabilities of different birthdays for a selected number of
people n (Table 3).

Number of People n Theoretical Probability = R_
n=1 P=1
n=2 P =0.99726
n=3 P =0.991796
n=4 P =0.983644
n=>5 P =0.972864
n=10 P =0.883052
n=20 P =0.588562
n =50 P _=0.0296264
n=75 P =0.000280122
n =100 P _=0.000000307249
n > 365 P=0

Table 3. The theoretical probabilities of distinct birthdays for n people where n > 1.
The algorithm in Microsoft Visual C++ is the following:

#include <iostream>
#include <iomanip>
#include <cstdlib>
#include <ctime>
#include <cmath>
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using namespace std;

void theoretical(int);
void simulated(int);

int main()

{

}

int n;
cout <«
<< endl;
cout << "
<< endl;

n = 13;
cout << fixed << setprecision(4);

theoretical(n);

cout << "WAIT .. vttt eeeneennnnnnn

<< endl;
simulated(n);

return 0;

void theoretical(int n)

{

}

int i;
long double prod;
long double P;

prod = 1;
for (1 =0; 1 <= (n - 1); i++)

THE BIRTHDAY PROGRAM"

prod = (long double) prod * (365 - i) / 365;

P = prod;

cout << "The theoretical probability of " << n
<< " distinct birthday(s) is = " << P << "\n" << endl;

void simulated(int n)

{
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int table[366] = { © };
long int random, match;
long double P, sum, N;
int i, j;

srand(time(0));
N = 500000000;

sum = ©; random = ©9; P = 0; match = 0;
for (j = 1; j <= N; j++)

{
for (i = 1; i <= n; i++)
{
random = 1 + rand() % 365;
table[random] += 1;
random = 0;
}
i=0;
while ((i <= 365) && (match == 0))
{
if (table[i] »>= 2)
match = 1;
++1;
}
if (match == 0)
sum += 1;
for (i = @; i <= 365; i++)
table[i] = ©;
match = 0;
}

P = (long double) sum / N;

cout << "The simulated probability of " << n

<< " distinct birthday(s) is = " << P << "\n" << endl;

}

Moreover, the four figures (Figures 62-65) show the increasing convergence of Monte Carlo
method and simulation to the exact result R. =0.80558972... for n=13 people and for N = 50,

100, 500, and N =N, =500,000,000 iterations. Therefore, we have:
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Re—Re =1-0=1 which is equal to the convergence

—>+00
E

NILrEO P(N)= NI|m {1—

Re —R\(N)|{ _,_
R. -

probability of Monte Carlo method as N — +o0.

Additionally, Figure 66 illustrates clearly and visibly the relation of Monte Carlo method to the
complex probability paradigm with all its parameters (Chf,R,,P,MChf,R.,DOK,P, /i,Pc)
after applying it to this birthday problem.

0.9 CPP and Monte Carlo Methods: The Birthday Problem
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Figure 62. The increasing convergence of the Monte Carlo method up to N = 50 iterations.

74



UNDER PEER REVI EW

0.9 CPP and Monte Carlo Methods: The Birthday Problem
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Figure 63. The increasing convergence of the Monte Carlo method up to N = 100 iterations.

CPP and Monte Carlo Methods: The Birthday Problem
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Figure 64. The increasing convergence of the Monte Carlo method up to N = 500 iterations.
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0.9 CPP and Monte Carlo Methods: The Birthday Problem
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Figure 65. The increasing convergence of the Monte Carlo method up to N = 500,000,000
iterations.
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Figure 66. The CPP parameters and the Monte Carlo method for the birthday problem.
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IX-2-2-1 The Complex Probability Cubes

In the first cube (Figure 67), the simulation of DOK and Chf as functions of each other and
of the iterations N for the birthday problem can be seen. The line in cyan is the projection of Pc(N)
= DOK(N) - Chf(N) = 1 = Pc(N) on the plane N = 0 iterations. This line starts at the point J (DOK
= 1, Chf = 0) when N = O iterations, reaches the point (DOK = 0.5, Chf = -0.5) when N =
250,000,000 iterations, and returns at the end to J (DOK = 1, Chf = 0) when N = N¢ = 500,000,000
iterations. The other curves are the graphs of DOK(N) (red) and Chf(N) (green, blue, pink) in
different planes. Notice that they all have a minimum at the point K (DOK = 0.5, Chf =-0.5, N =
250,000,000 iterations). The point L corresponds to (DOK =1, Chf =0, N = Nc = 500,000,000
iterations). The three points J, K, L are the same as in Figure 66.

The Birthday Problem: DOK and Chf in terms of N and of each other
L

Number of iterations N

—— DOK : Degree of our knowledge
— Chf : Chaotic factor
Chf : Chaotic factor

Figure 67. DOK and Chf in terms of N and of each other for the birthday problem.
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In the second cube (Figure 68), we can notice the simulation of the convergence probability
Pr(N) and its complementary real divergence probability Pm(N)/i in terms of the iterations N for
the birthday problem. The line in cyan is the projection of Pc?(N) = Pr(N) + Pm(N)/i = 1 = Pc(N)
on the plane N = 0 iterations. This line starts at the point (Pr = 0, Pw/i = 1) and ends at the point
(Pr=1, Pw/i = 0). The red curve represents Pr(N) in the plane Pr(N) = Pm(N)/i. This curve starts at
the point J (Pr = 0, Pw/i = 1, N = O iterations), reaches the point K (Pr = 0.5, Pn/i = 0.5, N =
250,000,000 iterations), and gets at the end to L (Pr =1, Pm/i =0, N = Nc = 500,000,000 iterations).
The blue curve represents Pm(N)/i in the plane P+(N) + Pm(N)/i = 1. Notice the importance of the
point K which is the intersection of the red and blue curves at N = 250,000,000 iterations and when
Pr(N) = Pm(N)/i = 0.5. The three points J, K, L are the same as in Figure 66.

The Birthday Problem: The Probabilities Pr and Pm /iin terms of N

Number of iterations N

— Pu/i : Real Complementary Divergence Probability
— P:: Real Convergence Probability

Figure 68. Pr and Pw/i in terms of N and of each other for the birthday problem.
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In the third cube (Figure 69), we can notice the simulation of the complex random vector
Z(N) in € as a function of the real convergence probability P-(N) = Re(Z) in R and of its
complementary imaginary divergence probability Pm(N) = ixIm(Z) in M , and this in terms of the
iterations N for the birthday problem. The red curve represents Pr(N) in the plane Pm(N) = 0 and
the blue curve represents Pm(N) in the plane P(N) = 0. The green curve represents the complex
probability vector Z(N) = Pr(N) + Pm(N) = Re(Z) + ixIm(Z) in the plane Pr(N) = iPm(N) + 1. The
curve of Z(N) starts at the point J (Pr = 0, Pm=1, N = 0 iterations) and ends at the point L (Pr =1,
Pm = 0, N = Nc = 500,000,000 iterations). The line in cyan is Pr(0) = iPn(0) + 1 and it is the
projection of the Z(N) curve on the complex probability plane whose equation is N = 0 iterations.
This projected line starts at the point J (Pr =0, Pm=1, N = 0 iterations) and ends at the point (P =
1, Pm =0, N =0 iterations). Notice the importance of the point K corresponding to N = 250,000,000
iterations and when Py = 0.5 and Pm = 0.5i. The three points J, K, L are the same as in Figure 66.

Number of iterations N

0.6
04 9°

i*Im(Z) =P _ 0 o Re(2) =P,

P : Real Convergence Probability in the set R = Re(2)
Pm : Complementary Imaginary Divergence Probability in the set M = ixIm(2)

Figure 69. The Complex Probability Vector Z in terms of N for the birthday problem.
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IX-2-3- The Third Random Experiment: The Two Dice Problem

The following program has an analytic solution beside a simulated solution. This is
advantageous for us because we wish to compare the results of Monte Carlo simulations with
theoretical solutions. Consider the experiment of tossing two dice. For an unloaded die, the
numbers 1,2,3,4,5, and 6 are equally likely to occur. We ask: What is the probability of throwing
a 12 (i.e., 6 appearing on each die) in 14 throws of the dice?

There are six possible outcomes from each die for a total of 36 possible combinations. Only
one of these combinations is a double 6, so 35 out of the 36 combinations are not correct. With 14

14
throws, we have [%j as the probability of a wrong outcome. Hence,

14
1—(2—2) =0.325910425... is the exact answer and therefore the value of R.. Not all random

problems of this type can be analyzed like this.
The algorithm in Microsoft Visual C++ is the following:

#include <iostream>
#include <iomanip>
#include <cstdlib>
#include <ctime>
#include <cmath>

using namespace std;

void theoretical(void);
void simulated(void);

int main()

{
cout << " THE TWO DICE PROBLEM"

<< endl;

cout << " e \n
<< endl;

cout << fixed << setprecision(4);

theoretical();
simulated();

cout << endl;

return 0;
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void theoretical(void)

{
long double P, p;
p = (long double) 35 / 36;
P =1 - (long double) pow(p, 14);
cout <<
"The theoretical probability of throwing a (6,6) in 14 throws = "
<< P << "\n" << endl;
}
void simulated(void)
{
long int i, j, diel, die2, sum;
long int counter, N;
long double P;
srand(time(9));
N = 100000000;
sum = @; counter = 0;
for (i = 1; i <= N; i++)
{
j=1; sum = 0;
while ((j <= 14) && (sum != 12))
{
diel = 1 + rand() % 6;
die2 = 1 + rand() % 6;
sum = diel + die2;
if (sum == 12)
++counter;
++J;
}
}
P = (long double) counter / N;
cout <<
"\nThe simulated probability of throwing a (6,6) in 14 throws = "
<< P << "\n" << endl;
}
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Moreover, the four figures (Figures 70-73) show the increasing convergence of Monte Carlo
method and simulation to the exact result R. =0.325910425... for N = 50, 100, 500, and

N =N, =100,000,000 iterations. Therefore, we have:

SO
RE E

probability of Monte Carlo method as N — +o0.

Re —Re =1-0=1 which is equal to the convergence

—>+%0

NILrpw P(N)= NI|m {1—

Additionally, Figure 74 illustrates clearly and visibly the relation of Monte Carlo method to the
complex probability paradigm with all its parameters (Chf,R,, P, MChf,R.,DOK,P, /i,Pc)
after applying it to this two dice problem.

CPP and Monte Carlo Methods: The Two Dice Problem

0.35

0.3259

0.25

0.2

RA and RE

0.1

0.05

0 5 10 15 20 25 30 35 40 45 50
Number of Iterations N : 0 <= N <= 50

Figure 70. The increasing convergence of the Monte Carlo method up to N = 50 iterations.
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CPP and Monte Carlo Methods

: The Two Dice Problem

0.3259

0.25

02
©
C
©
<
ot 015
0.1
0.05

30 40

50 60 70 80 90 100
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Figure 71. The increasing convergence of the Monte Carlo method up to N = 100 iterations.
0.35 CPP and Monte Carlo Methods: The Two Dice Problem
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Figure 72. The increasing convergence of the Monte Carlo method up to N = 500 iterations.
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CPP and Monte Carlo Methods: The Two Dice Problem
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Number of Iterations N : 0 <= N <= 100,000,000 «107

Figure 73. The increasing convergence of the Monte Carlo method up to N = 100,000,000

Chf,R, ,P ,MChf,R_,DOK,P_/i,andPc
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0.3259
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iterations.

CPP and Monte Carlo Methods: The Two Dice Problem
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L S i
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0 1 2 3 4 5 6 7 8 9 10
Number of Iterations N: 0 <= N <= NC «107

Figure 74. The CPP parameters and the Monte Carlo method for the two dice problem.
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IX-2-3-1 The Complex Probability Cubes

In the first cube (Figure 75), the simulation of DOK and Chf as functions of each other and
of the iterations N for the two dice problem can be seen. The line in cyan is the projection of Pc?(N)
= DOK(N) - Chf(N) = 1 = Pc(N) on the plane N = 0 iterations. This line starts at the point J (DOK
=1, Chf=0) when N = O iterations, reaches the point (DOK = 0.5, Chf =-0.5) when N = 70,000,000
iterations, and returns at the end to J (DOK =1, Chf = 0) when N = Nc = 100,000,000 iterations.
The other curves are the graphs of DOK(N) (red) and Chf(N) (green, blue, pink) in different planes.
Notice that they all have a minimum at the point K (DOK = 0.5, Chf = -0.5, N = 70,000,000
iterations). The point L corresponds to (DOK =1, Chf =0, N = Nc = 100,000,000 iterations). The
three points J, K, L are the same as in Figure 74.

The Two Dice Problem: DOK and Chf in terms of N and of each other
L

10

Number of iterations N

—— DOK : Degree of our knowledge
— Chf : Chaotic factor
Chf : Chaotic factor

Figure 75. DOK and Chf in terms of N and of each other for the two dice problem.
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In the second cube (Figure 76), we can notice the simulation of the convergence probability
Pr(N) and its complementary real divergence probability Pm(N)/i in terms of the iterations N for
the two dice problem. The line in cyan is the projection of Pc?(N) = P(N) + Pm(N)/i = 1 = Pc(N)
on the plane N = 0 iterations. This line starts at the point (Pr = 0, Pw/i = 1) and ends at the point
(Pr=1, Pw/i = 0). The red curve represents Pr(N) in the plane Pr(N) = Pm(N)/i. This curve starts at
the point J (Pr = 0, Pw/i = 1, N = O iterations), reaches the point K (Pr = 0.5, Pn/i = 0.5, N =
70,000,000 iterations), and gets at the end to L (Pr =1, Pm/i =0, N = N¢ = 100,000,000 iterations).
The blue curve represents Pm(N)/i in the plane P+(N) + Pm(N)/i = 1. Notice the importance of the
point K which is the intersection of the red and blue curves at N = 70,000,000 iterations and when
Pr(N) = Pm(N)/i = 0.5. The three points J, K, L are the same as in Figure 74.

The Two Dice Problem: The Probabilities PIr and Pm [iin terms of N

Number of iterations N

—— Pn/i : Real Complementary Divergence Probability
— P:: Real Convergence Probability

Figure 76. Pr and Pw/i in terms of N and of each other for the two dice problem.
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In the third cube (Figure 77), we can notice the simulation of the complex random vector
Z(N) in € as a function of the real convergence probability P-(N) = Re(Z) in R and of its
complementary imaginary divergence probability Pm(N) = ixIm(Z) in M , and this in terms of the
iterations N for the two dice problem. The red curve represents P¢(N) in the plane Pm(N) = 0 and
the blue curve represents Pm(N) in the plane P(N) = 0. The green curve represents the complex
probability vector Z(N) = P¢(N) + Pm(N) = Re(Z) + ixIm(2) in the plane Pr(N) = iPn(N) + 1. The
curve of Z(N) starts at the point J (Pr = 0, Pm=1, N = 0 iterations) and ends at the point L (Pr =1,
Pm = 0, N = Nc = 100,000,000 iterations). The line in cyan is Pr(0) = iPn(0) + 1 and it is the
projection of the Z(N) curve on the complex probability plane whose equation is N = 0 iterations.
This projected line starts at the point J (Pr =0, Pm=1, N = 0 iterations) and ends at the point (P =
1, Pm =0, N =0 iterations). Notice the importance of the point K corresponding to N = 70,000,000
iterations and when Py = 0.5 and Pm = 0.5i. The three points J, K, L are the same as in Figure 74.

%10
10

Number of iterations N

0.6
0.4 95

. _ 0.2
i*Im(Z) =P _ 0 o0 Re(Z)=P,

—— P : Real Convergence Probability in the set £ = Re(2)
—— Pn : Complementary Imaginary Divergence Probability in the set M = ixIm(2Z)

Figure 77. The Complex Probability Vector Z in terms of N for the two dice problem.
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X- Conclusion and Perspectives

In the present research work the novel extended Kolmogorov paradigm of eight axioms (EKA) was
applied and bonded to the classical and stochastic Monte Carlo numerical methods. Hence, a tight
link between Monte Carlo methods and the original paradigm was made. Therefore, the model of
"Complex Probability”” was more elaborated beyond the scope of my previous research works on
this subject.

Additionally, as it was verified and shown in the novel model, when N = 0 (before the beginning
of the random simulation) and when N = Nc¢ (when Monte Carlo method converges to the exact
result) therefore the degree of our knowledge (DOK) is one and the chaotic factor (Chf and MChf)
is zero since the random effects and fluctuations have either not started or they have finished their
task on the experiment. During the course of the stochastic experiment (N > 0) we have:
0.5<DOK<1,-0.5<Chf<0,and 0 < MChf <0.5. Notice that during this whole process we have
always Pc? = DOK - Chf = DOK + MChf = 1 = Pc, that means that the simulation which looked to
be stochastic and random in the set R is now certain and deterministic in the set ¢ = R + M, and
this after the addition of the contributions of J to the phenomenon occurring in R and thus after
subtracting and eliminating the chaotic factor from the degree of our knowledge. Moreover, the
convergence and divergence probabilities of the stochastic Monte Carlo method corresponding to

each iteration cycle N have been evaluated in the probability sets R, M, and Cby P, P, , and Pc

respectively. Consequently, at each instance of N, the new Monte Carlo method and CPP
parameters R.,R,, Py, P,, P, /i, DOK, Chf, MChf, Pc, and Z are certainly and perfectly predicted

in the complex probability set € with Pc maintained as equal to one constantly and permanently.

In addition, using all these illustrated simulations and drawn graphs all over the whole research
work, we can quantify and visualize both the certain knowledge (expressed by DOK and Pc) and
the system chaos and random effects (expressed by Chf and MChf) of Monte Carlo methods. This
is definitely very fascinating, fruitful, and wonderful and proves once again the advantages of
extending the five probability axioms of Kolmogorov and thus the novelty and benefits of this
original field in prognostic and applied mathematics that can be called verily:

"The Complex Probability Paradigm®™.

Furthermore, it is important to indicate here that one very well-known and essential probability
distribution was considered in the present paper which is the discrete uniform probability
distribution as well as a specific uniform random numbers generator, knowing that the novel CPP
model can be applied to any uniform random numbers’ generator existent in literature. This will
lead certainly to analogous conclusions and results and will show undoubtedly the success of my
original theory.

Moreover, it is also significant to mention that it is possible to compare the current conclusions
and results with the existing ones from both theoretical investigations and analysis and simulation
researches and studies. This will be the task of subsequent research papers.

As a prospective and future work and challenges, it is planned to more elaborate the original
created prognostic paradigm and to implement it to a varied set of nondeterministic systems like
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for other random experiments in classical probability theory and in stochastic processes.
Furthermore, we will apply also CPP to the field of prognostic in engineering as well as to other
random problems which have enormous applications in physics, in economics, in chemistry, in
applied and pure mathematics.
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CHAPTER TWO

THE MONTE CARLO TECHNIQUES AND THE
COMPLEX PROBABILITY PARADIGM

“Chance is the pseudonym of God when He did not want to sign.”
Anatole France.

“There is a certain Eternal Law, to wit, Reason, existing in the mind of God and governing the
whole universe.”
Saint Thomas Aquinas.

“An equation has no meaning for me unless it expresses a thought of God.”
Srinivasa Ramanujan.

Abstract: The five fundamental axioms of classical probability theory were put forward in 1933
by Andrey Nikolaevich Kolmogorov. Encompassing new imaginary dimensions with the
experiment real dimensions will make the work in the complex probability set €C totally predictable
and with a probability permanently equal to one. This is the original idea in my complex
probability paradigm. Therefore, this will make the event in € = R + M absolutely deterministic
by adding to the real set of probabilities & the contributions of the imaginary set of probabilities
M. 1t is of great importance that stochastic systems become totally predictable since we will be
perfectly knowledgeable to foretell the outcome of all random events that occur in nature.
Consequently, by calculating the parameters of the new prognostic model, we will be able to
determine the chaotic factor, the magnitude of the chaotic factor, the degree of our knowledge, the
real and imaginary and complex probabilities in the probability sets # and M and € and which are
all subject to chaos and random effects. We will apply this innovative paradigm to the well-known
Monte Carlo techniques and to their random algorithms and procedures in a novel way.

Keywords: Degree of our knowledge, chaotic factor, complex probability set, probability norm,
complex random vector, convergence probability, divergence probability, simulation.

NOMENCLATURE

R = the events real set

M = the events imaginary set
(¢ = the events complex set

i = the imaginary number with i? =-1 or i =+/-1
EKA = Extended Kolmogorov's Axioms

CPP = Complex Probability Paradigm

Prob = any event probability
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Pr = the probability in the real set # = convergence probability in R

Pm = the probability in the complementary imaginary set J( that corresponds to the real
probability set in R = divergence probability in M

Pc = the event probability in R with its associated event in M = probability in the complex
probability set €= R + M

R. = the random experiment exact result

R, = the random experiment approximate result

VA = complex probability number = complex random vector = sum of Py and Pn

DOK = |Z|2 = the degree of our knowledge of the stochastic experiment or system, it is the

square of the norm of Z

Chf = the chaotic factor of Z

MChf = the magnitude of the chaotic factor of Z

N = the number of iterations cycles = number of random vectors

N = the number of iterations cycles till the convergence of Monte Carlo method to R; =

the number of random vectors till convergence.
- Introduction [1-90]

Computing probabilities is the main work of classical probability theory. Adding new
dimensions to the stochastic experiments will lead to a deterministic expression of probability
theory. This is the original idea at the foundations of this work. Actually, the theory of probability
is a nondeterministic system in its essence; that means that the events outcomes are due to chance
and randomness. The addition of novel imaginary dimensions to the chaotic experiment occurring
in the set R will yield a deterministic experiment and hence a stochastic event will have a certain
result in the complex probability set €. If the random event becomes completely predictable then
we will be fully knowledgeable to predict the outcome of stochastic experiments that arise in the
real world in all stochastic processes. Consequently, the work that has been accomplished here
was to extend the real probabilities set ® to the deterministic complex probabilities set
€ = R + M by including the contributions of the set M which is the imaginary set of probabilities.
Therefore, since this extension was found to be successful, then a novel paradigm of stochastic
sciences and prognostic and physics was laid down in which all stochastic phenomena in R was
expressed deterministically. 1 coined this novel model by the term "The Complex Probability
Paradigm™ that was initiated and established in my earlier research works.

- The Purpose and the Advantages of the Current Chapter [37-90]
The advantages and the purpose of the present chapter are to:
1- Extend the theory of classical probability to cover the complex numbers set, hence to
connect the probability theory to the field of complex variables and analysis. This task was

started and elaborated in my earlier works.
2- Apply the novel probability axioms and paradigm to Monte Carlo techniques.

98



UNDER PEER REVI EW

7-

Show that all nondeterministic phenomena can be expressed deterministically in the
complex probabilities set which is €.

Compute and quantify both the degree of our knowledge and the chaotic factor of Monte
Carlo procedures.

Represent and show the graphs of the functions and parameters of the innovative paradigm
related to Monte Carlo algorithms.

Demonstrate that the classical concept of probability is permanently equal to one in the set

of complex probabilities; hence, no chaos, no randomness, no ignorance, no uncertainty,
no unpredictability, no nondeterminism, and no disorder exist in:

€ (complex set) = R (real set) + M (imaginary set).

Pave the way to implement this inventive model to other topics in prognostics and to the
field of stochastic processes. These will be the goals of my future research works.

Concerning some applications of the novel established paradigm and as a future work, it can
be applied to any nondeterministic phenomena using Monte Carlo algorithms whether in the
continuous or in the discrete cases. Moreover, compared with existing literature, the major
contribution of the current research chapter is to apply the innovative paradigm of complex
probability to the concepts and techniques of the probabilistic Monte Carlo simulations and
algorithms. The next figure displays the major aims of the Complex Probability Paradigm (CPP)
(Figure 1).

Applied to
Probability Complex

\Theorv \Analysis

Monte

Applied to Applied to

Stochastic

Carlo -
hods Phenomena
[Met Applied to

Figure 1. The diagram of the major aims of the Complex Probability Paradigm
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I11-  The Complex Probability Paradigm [37-141]
I11-1- The Original Andrey Nikolaevich Kolmogorov System of Axioms

The simplicity of Kolmogorov’s system of axioms may be surprising. Let E be a collection
of elements {E1, E», ...} called elementary events and let F be a set of subsets of E called random
events. The five axioms for a finite set E are:

Axiom 1: Fisa field of sets.

Axiom 2: F contains the set E.

Axiom 3: A non-negative real number Pron(A), called the probability of A, is assigned to each
set A in F. We have always 0 < Pron(A) < 1.

Axiom 4: Pren(E) equals 1.

Axiom 5: If A and B have no elements in common, the number assigned to their union is:

Po (AUB) =R, (A) + Ry, (B)
hence, we say that A and B are disjoint; otherwise, we have:
Prob (AU B) = I:)rob (A) + I:?'ob(B) - Prob(Am B)
And we say also that: P, (AnB) =P (A)xP,(B/A) =P, (B)xP,(A/B) which is the
conditional probability. If both A and B are independent then: P, (ANB) =P, (A)xP(B).

Moreover, we can generalize and say that for N disjoint (mutually exclusive) events
A A, A, A (for 1< j<N), we have the following additivity rule:

N

=t

And we say also that for N independent events A, A,,..., A;,..., A, (for 1< j<N), we have the
following product rule:

j=1
I11-2- Adding the Imaginary Part M
Now, we can add to this system of axioms an imaginary part such that:

Axiom 6: Let P.=ix(1—P) be the probability of an associated complementary event in 4 (the
imaginary part) to the event A in R (the real part). It follows that P.+P. /i=1 where i is the
imaginary number with i =+/—1 or i?=—1.

Axiom 7: We construct the complex number or vector Z=P. +P, =P, +i(1-P.) having a
norm |Z| such that:

100



UNDER PEER REVI EW

1z =P?+ (P, 1i)*.

Axiom 8: Let Pc denote the probability of an event in the complex probability universe € where
C =R+ M. We say that Pc is the probability of an event A in R with its associated event in M
such that:

Pc? = (P, + P, /i)? =|Z|° - 2iP,P, and is always equal to 1.

We can see that by taking into consideration the set of imaginary probabilities we added three new
and original axioms and consequently the system of axioms defined by Kolmogorov was hence
expanded to encompass the set of imaginary numbers.

111-3- A Brief Interpretation of the Novel Paradigm

To conclude and to summarize my original invented model, as the degree of our certain
knowledge DOK in the real probability universe and set R is unfortunately imperfect and
incomplete and hence unsatisfactory, then the extension to the complex probability set € includes
the contributions of both the real set of probabilities & and the imaginary set of probabilities JL.
Consequently, this will result to a complete and perfect degree of knowledge in € = R + M since
Pc = 1 constantly and permanently. In fact, in order to have a certain prediction of any random
event, it is necessary to work in the complex set € in which the chaotic factor Chf is quantified and
subtracted from the computed degree of knowledge to lead to a probability in € always equal to
one as it is proved and shown in the following equation:

Pc? = DOK —Chf = DOK +MChf =1=Pc
and which was derived from the Complex Probability Paradigm. This hypothesis and innovative
and original model are verified by the mean of many examples encompassing both various,
important, and well-known discrete and continuous probability distributions illustrated and

discussed in my previous research works.

The figure that follows shows and summarizes the Extended Kolmogorov Axioms (EKA) or the
Complex Probability Paradigm (CPP) (Figure 2):
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Input: Output:
Real set R :“ i E : Complex set €
Adding 3 axioms

1T

Add: Complex number Z = Py + P,
Complex Probability Pc = 1
Pc?=DOK-Chf=1
Pc?=DOK + MChf =1

Imaginary set M

1T

Imaginary Probability P
= Chf =2iPPn
= MChf = |Chf| = =2iP/Pn

= DOK=|Z[" = B? +(B, /i)

[ Real Probability P, ]

Chance Total
and Determinism
Luck

Figure 2- The EKA or the CPP diagram

IVV- The Monte Carlo Techniques and the Complex Probability Paradigm Parameters
[37-141]

IV-1- The Convergence and Divergence Probabilities

Let R. be the exact result of the random experiment or of a simple or a multidimensional integral

that are not always possible to evaluate by ordinary methods of probability theory or calculus or
deterministic numerical methods. And let R, be the approximate result of these experiments and

integrals found by Monte Carlo techniques.

The relative error in the Monte Carlo methods is: Rel. Error = u

—p-Ra
R

E

E

. . . R. —-R .
In addition, the percent relative error is = 100% x|—=——=| and is always between 0% and 100%.

E
Therefore, the relative error is always between 0 and 1. Hence:
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os(ﬁjsl ifR, <R

E
<l &

Os—(%}sl ifR, >R

E

0<[Re—Ra

E

Moreover, we define the real probability in the set R by:
RA

= if 0<R, <R

1—[1—ﬁJ if 0<R, <R
b _1 |Re=Ri|_ Re

r

1, R, .

1+(1—&j if R. <R, <2R. Z—R—A if Re <R, <2R;
E E

= 1 —the relative error in the Monte Carlo method

= Probability of Monte Carlo method convergence in .

[Nl

i(l—%] if 0<R, <R i(l-%] if 0<R, <R

E E

And therefore:

szi(l—Pr)zi{l{l—

R. R,

E

—i(l—ﬁ] if R. <R, <2R. i(&—lj if R, <R, <2R.

E E
= Probability of Monte Carlo method divergence in the imaginary complementary probability set
A since it is the imaginary complement of P..

Consequently,

1-% i o<Rr <R,

E

Pm/i=1—|3r=‘1—ﬁ=

E

Ra 1 if R <R, <2R.

E
= The relative error in the Monte Carlo method

= Probability of Monte Carlo method divergence in R since it is the real complement of P..

In the case where 0<R, <R; :Os%sl = 0<P <1 and we deduce also that Os(l—%]ﬂ
E E

=0<P, /i<l and =0<P, <i
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R

And in the case where R <R, <2Rc :>1sR—A£2 :>0£[2—%j£1:>0£|2£1 and we
E

E

deduce also that Og[%—lj§1:>0§ P./i<land =0<P, <i

E

Therefore, if R, =0 or R, =2R_ that means before the beginning of the simulation, then:
P = Prob (convergence) in R =0
P. = Prob (divergence) in M = i
P, /i =Prop (divergence) in R =1

And if R, =R: that means at the end of Monte Carlo simulation then:
P = Prob (convergence) in R =1
P. = Prob (divergence) in M =0
P./i = Prob (divergence) in R =0

IV-2- The Complex Random Vector ZinC=R + M

%H{l—%) if 0<R,<R:
Wehave Z=P. +P_ = ; ; =Re(Z)+ilm(2)
2—& +1 &—1 if Rc <R, <2R;
RE RE
% if 0<R, <R
where Re(Z)=P, = ER = the real part of Z
—R—A if Re <R, <2R.
E
_Ry if 0<R, <R
R
and Im(Z)=PR,/i= B : = the imaginary part of Z.
£ -1 if Re <R, <2R.
I:QE

That means that the complex random vector Z is the sum in € of the real probability of convergence
in R and of the imaginary probability of divergence in M.

If R, =0 or R, =2R. (before the simulation begins) then:

Rz&zRizo or R:Z—&:Z—ZRE

RE E E E

=2-2=0
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and Pm=i(1—&J:i(l—£j=i(l—O)=i or szi(&—ljzi(ZRE —1J=i(2—1)=i
E RE RE RE

therefore Z =0+i=i.

If R, = % or R, _3Re (at the middle of the simulation) then:
Ry if 0<R, <R Re =05 if 0<R, <R
E 2RE
P = = <P =05
Ry . 3R; :
—=* if R.<R,<2R. |2-2E=05 if R_<R,<2R.
E E

i(l—ﬁ] if 0<R, <R i(l— Re j:O.Si if 0<R, <R
Re 2R

and P, =
(

<P, =05i

E

&—q if Re <R, <2R. i(ziE —1):0.5i if R <R, <2R;

E

E
therefore Z =0.5+0.5i.

If R, =R: (at the simulation end) then:

Ra _Re 4 if 0<R, <R
R R
E E
P = . . <P =1
2——A-2_TE_2_1-1 if R_<R, <2R.
RE RE
And
i[1-Ral 0<R,<R. il1-Re | i 0<R,<R. _
e Re 0 if 0<R,<R.
P = = =
0 if R.<R, <2R.

i Ra_q] if R <R, <2R. i Re 4] if Re <R, <2R.
E RE
<P, =0

therefore Z =1+0i =1.

IVV-3- The Degree of Our Knowledge DOK

We have:
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2
5] woenen |
DOK =(z[* =P? + (P, /i)? = ; + (

2
(2—ﬁj if R.<R, <2R.

E

2 2 2
Ral ff1-Ba if 0<R, <R |2[Ra| ol Rali1 ifo<r, <R
I:QE I:QE RE I:QE

2 2 - 2
2—& + &—1 if Rc <R, <2R. 2 & -6 & +5 iIf R <R, <2R;
RE RE RE I:QE
From CPP we have that 0.5<DOK <1 then if DOK =0.5

2
of Ba) ol Ralii_05 ifo<r, <R
RE RE

2
ZL&] —6(&j+5:0.5 if R. <R, <2R.
RE E

2
1——Aj if 0<R,<R;
E

2
——1J if R.<R, <2R.

then solving the second-degree equations for % gives:
E

%:1/2 if 0<R, <R Y m s ocm <

= if 0<R, <
E { ACCE ) AT F  and vice versa.
R, R,=3R. /2 if R.<R, <2R,

S=3/2 if R.<R, <R

E

That means that DOK is minimum when the approximate result R, is equal to half of the exact
result R if 0<R, <R. or when the approximate result is equal to three times the half of the
exact result if R. <R, <2R_, that means at the middle of the simulation.

In addition, if DOK =1 then:

2 2
2| Ba| Zo[Bali1o1 ifo<R, <R Ral [Ral-o if 0<R, <R,
RE RE RE RE
< 2 < 2
2| Ba| _6[Ba|i5-1 it R.<R,<2rR, |2[Ra| —6|Ralia=0 if R.<R, <2R.
RE RE RE RE

R, =0 OR R, =R if 0<R, <R
<:>{ A AE A7 F  and vice versa.

R,=2R. OR R, =R. if R. <R, <2R.
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That means that DOK is maximum when the approximate result R, is equal to 0 or 2R (before

the beginning of the simulation) and when it is equal to the exact result R; (at the end of the

simulation). We can deduce that we have perfect and total knowledge of the stochastic experiment
before the beginning of Monte Carlo simulation since no randomness was introduced yet, as well
as at the end of the simulation after the convergence of the method to the exact result.

IV-4- The Chaotic Factor Chf

We have:

1-%] if 0<R, <R,

E

Ra if 0<R, <R, [
R
Chf =2iPP, =2ix ER x
2-2% if R <R, <2R i[&—lj if Re <R, <2R
E

7N\

Since i =—1 then:

| Ralf1-Ba if 0<R, <R,
RE RE

_2(2_&j(&_1j R, <R, <2R,

E E

Chf =

From CPP we have that —0.5<Chf <0 then if Chf =-0.5
-2 Ry 1—ﬁ =-05 if 0<R, <R )
RE RE RA:RE/Z If OSRASRE
< < /2 if R_<R, <2R
R, =3R <R, <

—2[2—ﬁj(ﬁ—1j=—o.5 if R, <R, <2R. ATE AT E

RE

and vice versa.

E

That means that Chf is minimum when the approximate result R, is equal to half of the exact
result R if 0<R, <R. or when the approximate result is equal to three times the half of the

exact result if R: <R, <2R_, that means at the middle of the simulation.
In addition, if Chf =0 then:

—2(&](1—&J=0 if 0<R, <R _
R, Re {RA:O OR R,=R. if 0<R, <R,

R,=2R. OR R, =R_ if R_<R, <2R
—2[2—ﬁJ[ﬁ—1]=o if R, <R, <2R. AOTE AOOE AT E

E E

=

107



UNDER PEER REVI EW

R,=0 OR R,=R.  if 0<R, <R_
R,=2R. OR R, =R. if R.<R, <2R_

And, conversely, if { then Chf =0.

That means that Chf is equal to 0 when the approximate result R, is equal to 0 or 2R: (before the

beginning of the simulation) and when it is equal to the exact result R. (at the end of the
simulation).

IVV-5- The Magnitude of the Chaotic Factor MChf

We have:
% if 0<R, <R i(l—%] if 0<R, <R
MChf =|Chf|=-2iP.P, = -2ix ER x -
Z—R—A if Re <R, <2R; i(&—l] if R. <R, <2R.
E R:

Since i =—1 then:

of Raffg_Ra if 0<R, <R,
I:\)E RE

2(2_&j(&_1j R, <R, <R,

E E

MChf =

From CPP we have that 0 < MChf <0.5 then if MChf =0.5

2(ﬁj[1—ﬁ}o.5 if 0<R, <R. _
RE RE @{RA:RE/Z IfOSRASRE

R,=3R./2 if R_<R,<2R
2(2—%}(ﬁ—1]=0.5 if R, <R, <2R. ATE AT E
E E

and vice versa.

=

That means that MChf is maximum when the approximate result R, is equal to half of the exact
result R if 0<R, <R. or when the approximate result is equal to three times the half of the

exact result if R <R, <2R., that means at the middle of the simulation. This implies that the

magnitude of the chaos (MChf) introduced by the random variables used in Monte Carlo method
is maximum at the halfway of the simulation.

In addition, if MChf =0 then:
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Ra
RE

1-Ra
RE

J(
2

o_"a
E

RE

0

2( if 0<R, <R
=
2[

And, conversely, if <:>{

|

—1):0 if R, <R, <2R.

R,=0 OR R, =R,
R,=2R. OR R, =R.

That means that MChf is minimum and is equal to

“|

R,=0 OR R, =R_
R, =2R. OR R, =R.

if 0<R, <R
if R, <R, <2R.

if 0<R, <R

. then MChf =0.
if R. <R, <2R_

0 when the approximate result R, is equal to O

or 2R; (before the beginning of the simulation) and when it is equal to the exact result R; (at the

end of the simulation). We can deduce that the mag
is null before the beginning of Monte Carlo simul

nitude of the chaos in the stochastic experiment
ation since no randomness was introduced yet,

as well as at the end of the simulation after the convergence of the method to the exact result when
randomness has finished its task in the stochastic Monte Carlo method and experiment.

IVV-6- The Probability Pc in the Probability Set

We have:
Pc? = DOK —Chf = DOK + MChf

C=R+M

2
of Ra| _pl Raiq if 0<R, <R, | Raffq-Ra if 0<R, <R,
_ RE RE RE E
2
o Ra| _g[Ralis it R <R <2rR. |-2 2- B | Bayq) i Re <R, <2R;
Re Re . A : Re )\ Re
1 if 0<R,<R.

{

1 if R_<R, <2R.

< Pc?=1 for 0<VR, <2R.

< Pc =1= Probability of convergence in €, therefore:

if 0<R, <R

A E {RA:RE
R “1R.=R
2-"A_1 ifR.<R,<2R, AT E

E

if 0<R, <R
if R. <R, <2R.

<R, =R for 0<VR, <2R: continuously in the probability set € = R + M. This is due to the

fact that in € we have subtracted in the equation above the chaotic factor Chf from our knowledge
DOK and therefore we have eliminated chaos caused and introduced by all the random variables

and the stochastic fluctuations that lead to approx

R. Therefore, since in € we have always R, =Rc

imate results in the Monte Carlo simulation in
then the Monte Carlo simulation which is a

stochastic method by nature in R becomes after applying the CPP a deterministic method in €
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since the probability of convergence of any random experiment in € is constantly and permanently
equal to 1 for any iterations number N.

IVV-7- The Rates of Change of the Probabilities in R, M, and C

ﬁn(l—ﬁj if 0<R, <R.
R R
Since Z=P +P, = g =Re(Z)+iIlm(2)
2 RalyifBaq) i R. <R, <2R.
RE I:QE
Then:
d {ﬂn( —ﬁﬂ if 0<R, <R
dz dP.  dP, dR, [ Re Re

+
drR, dRr, dR
Ao S0 BB d S R R g R. <R, <2R.
drR, R. R

E

d \Ryl, 94 Ji[1-Ra if 0<R, <R
dR,| R, | dR, R,

d 1o Ral 9 H(Raq)| if r<R, <2R.
dR, |~ R.| dR,| | R

I P Yuy ifosR.<R
_ RE RE RE
LV Yiiy iR <R,<2R
RE RE E

Therefore,
+Ri if 0<R,<R:
) Re{ﬁé}:;j:r: )
A A R if Re <R, <2R;

E

constant>0 if 0<SR,<R. and R; >0
constant< 0 if R. <R, <2R; and R; >0

that means that the slope of the probability of convergence in & or its rate of change is
constant and positive if 0<R, <R_, and constant and negative if R <R, <2R_, and it

depends only on R ; hence, we have a constant increase in P. (the convergence
probability) as a function of the iterations number N as R, increases from 0 to R. and as
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R, decreases from 2R. to R; till P. reaches the value 1 that means till the random
experiment converges to R;.

=Y ifosr.<R
. Im{dz}_%de_d(Pmll)_ Re

drR, | idrR, dR, +Ri if Re <R, <2R.

E

_|constant<0 if 0<R,<Rg and R >0
~ |constant>0 if R. <R, <2R. and R. >0

that means that the slopes of the probabilities of divergence in R and M or their rates of
change are constant and negative if 0O<R,<R., and constant and positive

if R. <R, <2R;, and they depend only on R¢; hence, we have a constant decrease in
P /i and P, (the divergence probabilities) as functions of the iterations number N as R,
increases from 0 to R. and as R, decreases from 2R: to R: till P, /i and P, reach the
value 0 that means till the random experiment converges to R..

Additionally,
2 2 -2 2 L T2
dz| | dPR. 1dR, | _| dR . d(P, /i)
dR, dR, idR, | dR, dR,
1) (1Y
— | +| = if 0<R,<R:
RE RE
RN
—— | +| = if Rc <R, <2R.
RE RE
2
0z =i2+i2:£2 for 0<VR,<2R;
drR, R R R
dz | 2 .
= R =—=constant >0 if R. >0; that means that the module of the slope of the complex
A E

probability vector Z in € or of its rate of change is constant and positive and it depends only on R.
; hence, we have a constant increase in Re(Z) and a constant decrease in Im(2Z) as functions of
the iterations number N and as Z goes from (0, i) at N = 0 till (1,0) at the simulation end; hence,
till Re(Z) =P, reaches the value 1 that means till the random experiment converges to R; .
Furthermore, since Pc®=DOK —Chf =DOK +MChf =1 then Pc=1= Probability of
d(Pc) d(@)
drR, dR,
for every value of R,, of R, and of the iterations number N, that means for any stochastic

convergence in € and consequently :

=0, that means that Pc is constantly equal to 1
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experiment and for any simulation of Monte Carlo method. So, we conclude that in € = R + M
we have complete and perfect knowledge of the random experiment which has become now a
deterministic one since the extension in the complex probability plane € defined by the CPP
axioms has changed all stochastic variables to deterministic variables.

V- The Evaluation of the New Paradigm Parameters

We can deduce from what has been elaborated previously the following:

Re —R,(N)
RE

We have 0< N < N. where N = 0 corresponds to the instant before the beginning of the random

experiment when R,(N =0)=0 or =2R_, and where N =N, (iterations number needed for the

method convergence) corresponds to the instant at the end of the random experiments and Monte
Carlo methods when R,(N=N.) > R:.

The real convergence probability: P.(N)=1-

The imaginary complementary divergence probability: P, (N) =1

Re —R.(N)
RE

The real complementary divergence probability: P, (N)/i=

Re —R.(N)
RE

The complex probability and random vector:
R~ mmqﬂ

E

Re =R (N)|

RE
RE_RA(N)| 2+ RE_RA(N)| i
RE ‘ RE
=1+2iP,(N)P,(N) =1-2P,(N)[1- P.(N)] =1-2P.(N) + 2P*(N)
RE_RA(N)|+2 RE_RA(N) 2
E ‘ RE
DOK(N) is equal to 1 when P.(N)=P (0)=0 and when P.(N)=P.(N.)=1.

Z(N) = R(N)+Pm(N)={1—

The Degree of Our Knowledge:

DOK(N) =|Z(N)|" = P2(N)+[P,(N)/i]’ {1—

=1-2

The Chaotic Factor:
Chf (N) = 2iP,(N)P, (N) = -2P,(N)[1- P.(N)] = -2P.(N) + 2P*(N)

RE_RA(N)|+2 RE_RA(N) i
RE RE

=-2

112



UNDER PEER REVI EW

Chf (N) is null when P.(N)=P (0)=0 and when P.(N)=P.(N.)=1.

The Magnitude of the Chaotic Factor MChf:
MChf(N):|Chf(N)|=—2iR(N)Pm(N):2R(N)[1— Pr(N)]=2Pr(N)—2Pr2(N)

2
RE_RA(N)|_2 RE_RA(N)
RE I:QE

MChf (N) is null when P.(N)=P (0)=0 and when P.(N)=P.(N;)=1.

=2

At any iteration number N: 0<VN <N, the probability expressed in the complex probability
set € is the following:

Pc?(N) =[P, (N)+P,(N)/i* =|Z(N)[" - 2iP,(N)P, (N)
= DOK (N) —Chf (N)
= DOK (N) + MChf (N)

=1
then,

Pc?(N) =[P,(N)+P,(N) /il = {P.(N) +[L—P,(N)]}* =1* =1 Pc(N) =1 always

Hence, the prediction of the convergence probabilities of the stochastic Monte Carlo experiments
in the set € is permanently certain.

Let us consider thereafter a multidimensional integral and a stochastic experiment to simulate the
Monte Carlo methods and to draw, to visualize, as well as to quantify all the CPP and prognostic
parameters.
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VI- Flowchart of the Complex Probability and Monte Carlo Techniques Prognostic Model
The following flowchart summarizes all the procedures of the proposed complex
probability prognostic model:

Input the random experiment exact result: R,
Determine the random numbers generator

For each iteration
cycles: N=1, N¢ A

Random variables set sampling
(xu,xzj,...,x”) , J=1LLN

v

Monte Carlo simulation Calculate the approximate value R,(N)
evaluation at each simulation cycles N

Plot all the functions for
N=1, Nc
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VI1- Simulation of the New Paradigm

Note that all the numerical values found in the simulations of the new paradigm for any iteration
cycles N were computed using the 64-Bit MATLAB version 2024 software and compared to the
values found by Microsoft Visual C++ programs. In addition, the reader should take care of the
rounding and truncation errors since all numerical values are represented by at most five significant
digits and since we are using Monte Carlo methods of integration and simulation which give
approximate results subject to random effects and fluctuations. We have considered for this
purpose a high-capacity computer system: a workstation computer with parallel microprocessors,
a 64-Bit operating system, and a 64-GB RAM.

VI11-1- The Continuous Random Case: A Four-Dimensional Multiple Integral

The Monte Carlo technique of integration can be summarized by the following equation:
b, b

_” jf(xl Xy, X)X X, ... dX, ;[(bl_al)x(bz_aZ)X"'X(b"_a”)]if(xlj,xzj,... X )

) nJ
& & N

Let us conS|der here the multidimensional integral of the following function:
4/34/34/34/3 4/3 413 4/3[ X2 }4/3 4/34/34/3

I I I jxyzwdxdydzdw I j I yzw.dydzdw = I J' J‘gyzw,dydzdw
0 0 0

4/34/3 4/34/3 43 _2 743 4/3
:§ I I zw.dde:§J‘ j gzw.dzdw:% z w.dw = 64 16 w.dw
99 % o 9, 718 8ly| 2 81 18

0

=0.62429507696997411...

_s12[w ] 512 16 512 8 4,09
T729| 2|, T729718 72979 6,561

< R: =0.62429507696997411. .. by the deterministic methods of calculus.

< f(X,Y,z,w) =xyzw, where X, y, z, and w follow a discrete uniform distribution U such that:
x—U(0,4/3), y—U(0,4/3), z—U(0,4/3), w—U(0,4/3)

4/34/34/34/3

_ _ _ _ N
Hnyzwdxdydzdw~[(4/3 0x(4/3-0x@4/3-0x@3-01%,
0 0 N =1

256/81 ¢
= TN Zl:xjyjzjwjzRA
j=

with 1< N < N, after applying Monte Carlo method.

Moreover, the four figures (Figures 3-6) show the increasing convergence of Monte Carlo method
and simulation to the exact result R. =0.62429507696997411... for N = 50, 100, 500, and

N =N, =100,000 iterations. Therefore, we have:
Re _RA(N) }:1_ Re —Re

probability of Monte Carlo method as N — +co.
Additionally, Figure 7 illustrates clearly and visibly the relation of Monte Carlo method to the
complex probability paradigm with all its parameters (Chf,R,,P.,MChf,R., DOK,P, /i,Pc)
after applying it to this four-dimensional integral.

=1-0=1 which is equal to the convergence

E E

tim 209 - fm 3
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0.9 Monte Carlo Techniques and CPP: A Multiple Integral

0.8 [

0.7 |

062429 ——————————————————/— — — — — — — — — — — — ——

04

RA and RE

03[

01

0 | I 1 | 1 | | | | |
0 5 10 15 20 25 30 35 40 45 50

Number of Iterations N : 0 <= N <=50

Figure 3. The increasing convergence of the Monte Carlo method up to N = 50 iterations.

07 Monte Carlo Techniques and CPP: A Multiple Integral

062429 - ———————————————————————— — — — — — ——

0.5

RA and RE

01

0 I ! I I ! ! ! ! ! !
0 10 20 30 40 50 60 70 80 90 100

Number of Iterations N : 0 <= N <= 100

Figure 4. The increasing convergence of the Monte Carlo method up to N = 100 iterations.
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0 Monte Carlo Techniques and CPP: A Multiple Integral
gr
062429 - —————— ——— —— — — — — — — — — — — — — — — — — — — — =
0.5
L
o 04
©
C
©
< L
o 0.3
0.2 -
01
0 | | | | | | | | | |
0 50 100 150 200 250

300 350 400
Number of Iterations N : 0 <= N <= 500

450 500
Figure 5. The increasing convergence of the Monte Carlo method up to N = 500 iterations.

0.7 Monte Carlo Techniques and CPP: A Multiple Integral
062429 - ——— ——— —— —— — —— —— — —— — — —— — —— —— — — — —
05
18]
o 04
©
C
©
< L
. 03
0.2
0.1
0 | | 1 | I | | 1 | |
0 1 2 3 4 5 6 7 8 9 10
Number of Iterations N : 0 <= N <= 100000

x10%
Figure 6. The increasing convergence of the Monte Carlo method up to N = 100,000 iterations.
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Monte Carlo Techniques and CPP: A Multiple Integral
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Figure 7. The CPP parameters and the Monte Carlo method for a multiple integral.
VI11-2- The Discrete Random Case: The Matching Birthday Problem

An interesting problem that can be solved using simulation is the famous birthday
problem. Suppose that in a room of n persons, each of the 365 days of the year (not a leap year) is
equally likely to be someone’s birthday. From probability theory, it can be shown that, contrary to
intuition, only 23 persons need to be present for the chances to be better than fifty-fifty that at least
two of them will have the same birthday!

Many people are curious about the theoretical reasoning behind this result, so we discuss
it briefly before solving the simulation problem. After someone is asked his or her birthday, the
chances that the next person asked will not have the same birthday are 364/365. The chances that
the third person’s birthday will not match those of the first two people are 363/365. The chances
of two successive independent events occurring is the product of the probability of the separate
events. In general, the probability that the n person asked will have a birthday different from that
of anyone already asked is:

P(all n birthdays are different) = (365j X(364j X(363J XX (—365 —(n _1)J
365/ \365/) \ 365 365

The probability that the n'™ person asked will provide a match is 1 minus this value:
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P(matching birthdays) =

1_(365){3654}{363)x X(365—(n—1)j:1_(365)><(364)><(363)><...><[365—(n—1)]:R
365) (365) \365) 365 365" :

shows that with 23 persons the chances are 50.7%; with 55 persons, the chances are 98.6% or
almost theoretically certain that at least two out of 55 people will have the same birthday. The
table below gives the theoretical probabilities of matching birthdays for a selected number of
people n (Table 1).

Number of People n Theoretical Probability = R.
n=>5 P =0.027135573700
n=10 P =0.116948177/711
n=15 P =0.252901319764
n=20 P =0.411438383581
n=22 P = 0.475695307663
n=23 P = 0.507297234324
n=25 P = 0.568699703969
n =30 P =0.706316242719
n=35 P = 0.814383238875
n =40 P =0.891231809818
n=45 P = 0.940975899466
n =50 P =0.970373579578
n=>55 P = 0.986262288816

n =100 P = 0.999999692751
n=133 P =0.999999999999
n =365 P =1.000000000000

Table 1. Some theoretical probabilities of matching birthdays for n people where 1<n <365.

Without using probability theory, we can write a routine that uses the random-number
generator to compute the approximate chances for groups of n persons. Clearly, all that is needed
is to select n random integers from the set {1, 2, 3, ..., 365} and to examine them in some way to
determine whether there is a match. By repeating this experiment a large number of times, we can
compute the probability of at least one match in any gathering of n persons. Note that if n> 366
then P(matching birthdays) =1 by the famous pigeonhole principle. Moreover, the four figures
(Figures 8-11) show the increasing convergence of Monte Carlo method and simulation to the
exact result Rg =0.706316242719... for n=30 people and for N = 50, 100, 500, and

N =N, =750,000 iterations. Therefore, we have:
NIim P(N)= N|im {1_ w}=1_ Re—Re

probability of Monte Carlo method as N — +co.
Additionally, Figure 12 illustrates clearly and visibly the relation of Monte Carlo method to the
complex probability paradigm with all its parameters (Chf,R,,P,MChf,R.,DOK,P, /i,Pc)

after applying it to this matching birthday problem.
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The algorithm in Microsoft Visual C++ is the following:

// The birthday problem.
#include <iostream>
#include <iomanip>
#include <cstdlib»>
#include <ctime>
#include <cmath>

using namespace std;

void theoretical(long int);
void simulated(long int);

int main()

{

long int n;

cout << " THE BIRTHDAY PROBLEM" << endl;
cout << " e \n"

<< endl;
cout << "Input the number of persons : ";
cin >> n;
cout << endl;

cout << fixed << setprecision(5);

theoretical(n);
simulated(n);

return 0;

}

void theoretical(long int n)

{
long int 1i;
long double prod;
long double P;

prod = 1;
for (i =0; i <= (n - 1); i++)
prod = (long double) prod * (365 - i) / 365;

P =1 - prod;
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cout << "The theoretical probability of a match for n = " << n
<< " is = " << P << endl;
}
void simulated(long int n)
{
long int table[366] = { @ };
long int random, match;
long double P, sum, limit;
long int i, j;
srand(time(9));
limit = 100000000;
sum = @; random = @; P = 0; match = 9;
for (j = 1; j <= limit; j++)
{
for (i = 1; i <= n; i++)
{
random = 1 + rand() % 365;
table[random] += 1;
random = 0;
}
i=0;
while ((i <= 365) && (match == 0))
{
if (table[i] >= 2)
match = 1;
++1;
}
if (match == 1)
sum += 1;
for (i = @; 1 <= 365; i++)
table[i] = ©;
match = 0;
}
P = (long double) sum / limit;
cout << "The simulated probability of a match for n = " << n
<« "is =" << P
<< "\n" << endl;
}
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0.8 Monte Carlo Techniques and CPP: The Matching Birthday Problem
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Figure 8. The increasing convergence of the Monte Carlo method up to N = 50 iterations.
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Figure 9. The increasing convergence of the Monte Carlo method up to N = 100 iterations.
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Monte Carlo Techniques and CPP: The Matching Birthday Problem

08

0.70632

0.6

0.5

0.4

RA and RE

0.3

0 1 | 1 1 | | | | I |
0 50 100 150 200 250 300 350 400 450 500

Number of Iterations N : 0 <= N <=500

Figure 10. The increasing convergence of the Monte Carlo method up to N = 500 iterations.
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Figure 11. The increasing convergence of the Monte Carlo method up to N = 750,000 iterations.
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Monte Carlo Techniques and CPP: The Matching Birthday Problem
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Figure 12. The CPP parameters and the Monte Carlo techniques for the matching birthday
problem.

V11-2-1 The Complex Probability Cubes

In the first cube (Figure 13), the simulation of DOK and Chf as functions of each other and
of the iterations N for the matching birthday problem can be seen. The line in cyan is the projection
of Pc?(N) = DOK(N) — Chf(N) = 1 = Pc(N) on the plane N = 0 iterations. This line starts at the
point J (DOK = 1, Chf = 0) when N = 0 iterations, reaches the point (DOK = 0.5, Chf =-0.5) when
N = 375,000 iterations, and returns at the end to J (DOK = 1, Chf = 0) when N = N¢ = 750,000
iterations. The other curves are the graphs of DOK(N) (red) and Chf(N) (green, blue, pink) in
different planes. Notice that they all have a minimum at the point K (DOK = 0.5, Chf =-0.5,N =
375,000 iterations). The point L corresponds to (DOK =1, Chf =0, N = Nc = 750,000 iterations).
The three points J, K, L are the same as in Figure 12.
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The Matching Birthday Problem: DOK and Chf in terms of N and of each other
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—— DOK : Degree of our knowledge
— Chf : Chaotic factor
Chf : Chaotic factor

Figure 13. DOK and Chf in terms of N and of each other for the matching birthday problem.

In the second cube (Figure 14), we can notice the simulation of the convergence probability
Pr(N) and its complementary real divergence probability Pm(N)/i in terms of the iterations N for
the matching birthday problem. The line in cyan is the projection of Pc2(N) = P¢(N) + Pn(N)/i = 1
= Pc(N) on the plane N = 0 iterations. This line starts at the point (Pr = 0, Pm/i = 1) and ends at the
point (Pr = 1, Pm/i = 0). The red curve represents Pr(N) in the plane Pr(N) = Pm(N)/i. This curve
starts at the point J (Pr = 0, Pw/i =1, N = 0 iterations), reaches the point K (Pr = 0.5, Pw/i = 0.5, N
= 375,000 iterations), and gets at the end to L (Pr = 1, Pw/i = 0, N = Nc¢ = 750,000 iterations). The
blue curve represents Pn(N)/i in the plane Pr(N) + Pn(N)/i = 1. Notice the importance of the point
K which is the intersection of the red and blue curves at N = 375,000 iterations and when P¢(N) =
Pm(N)/i = 0.5. The three points J, K, L are the same as in Figure 12.
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The Matching Birthday Problem: The Probabilities Pr and Pm /iin terms of N

Number of iterations N

— Pul/i : Real Complementary Divergence Probability
— Py : Real Convergence Probability

Figure 14. Pr and Pn/i in terms of N and of each other for the matching birthday problem.

In the third cube (Figure 15), we can notice the simulation of the complex random vector
Z(N) in € as a function of the real convergence probability Pr(N) = Re(Z) in R and of its
complementary imaginary divergence probability Pm(N) = ixIm(Z) in M , and this in terms of the
iterations N for the matching birthday problem. The red curve represents Pr(N) in the plane Pm(N)
= 0 and the blue curve represents Pm(N) in the plane P(N) = 0. The green curve represents the
complex probability vector Z(N) = Pr(N) + Pm(N) = Re(Z) + ixIm(Z) in the plane Pr(N) = iPm(N)
+ 1. The curve of Z(N) starts at the point J (Pr = 0, Pm=1, N = 0 iterations) and ends at the point L
(Pr=1, Pmn=0, N =Nc = 750,000 iterations). The line in cyan is P;(0) = iPn(0) + 1 and it is the
projection of the Z(N) curve on the complex probability plane whose equation is N = 0 iterations.
This projected line starts at the point J (Pr = 0, Pn=1, N = 0 iterations) and ends at the point (Pr =
1, Pm =0, N = 0O iterations). Notice the importance of the point K corresponding to N = 375,000
iterations and when P, = 0.5 and P, = 0.5i. The three points J, K, L are the same as in Figure 12.

126



UNDER PEER REVI EW

The Matching Birthday Problem: The Complex Probability Vector Z = Pr + Pm
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Figure 15. The Complex Probability Vector Z in terms of N for the matching birthday problem.
VI111- Conclusion and Perspectives

In the current research chapter, the original extended Kolmogorov model of eight axioms
(EKA) was connected and applied to the classical and random Monte Carlo numerical techniques.
Thus, a tight link between Monte Carlo algorithms and the novel paradigm was executed.
Accordingly, the model of "Complex Probability” was more expanded beyond the scope of my
earlier research studies on this subject.

Also, as it was verified and demonstrated in the original model, when N = 0 (before the random
simulation beginning) and when N = Nc (when Monte Carlo algorithm converges to the exact
result) then the degree of our knowledge (DOK) is 1 and the chaotic factor (Chf and MChf) is 0
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since the stochastic effects and fluctuations have either not commenced yet or they have terminated
their task on the random experiment. During the course of the nondeterministic experiment
(N >0) we have: 0.5 <DOK <1, -0.5<Chf<0, and 0 < MChf < 0.5. We notice that during this
entire process we have continually and incessantly Pc? = DOK — Chf = DOK + MChf = 1 = Pc,
that means that the simulation which looked to be random and nondeterministic in the set R is now
deterministic and certain in the set € = R + M, and this after adding the contributions of M to the
experiment happening in & and thus after removing and subtracting the chaotic factor from the
degree of our knowledge. Additionally, the probabilities of convergence and divergence of the
random Monte Carlo procedure that correspond to each iteration cycle N have been determined in
the three sets of probabilities which are &, M, and Cby P., P, and Pc respectively. Subsequently,

at each instance of N, the novel Monte Carlo techniques and CPP parameters R.,R,, Pr, P,

P,/i, DOK, Chf, MChf, Pc, and Z are perfectly and surely predicted in the set of complex
probabilities € with Pc kept as equal to 1 continuously and forever.

Furthermore, using all these shown simulations and obtained graphs all over the entire research
chapter, we can visualize and quantify both the certain knowledge (expressed by DOK and Pc)
and the system chaos and stochastic influences and effects (expressed by Chf and MChf) of Monte
Carlo algorithms. This is definitely very wonderful, fruitful, and fascinating and demonstrates once
again the advantages of extending the five axioms of probability of Kolmogorov and thus the
benefits and novelty of this original theory in applied mathematics and prognostics that can be
called verily:
""The Complex Probability Paradigm®.

Moreover, it is important to state here that one essential and very well-known probability
distribution was taken into consideration in the current chapter which is the uniform and discrete
probability distribution as well as a specific generator of uniform random numbers, knowing that
the original CPP model can be applied to any generator of uniform random numbers that exists in
literature. This will yield certainly to analogous results and conclusions and will confirm without
any doubt the success of my innovative theory.

As a prospective and future challenges and research, we intend to more develop the novel
conceived prognostic paradigm and to apply it to a diverse set of nondeterministic events like for
other stochastic phenomena as in the classical theory of probability and in stochastic processes.
Additionally, we will implement CPP also to other stochastic problems which have huge
consequences when applied to economics, to chemistry, to physics, to pure and applied
mathematics.
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CHAPTER THREE

THE PARADIGM OF COMPLEX PROBABILITY
AND LE COMTE DE BUFFON’S NEEDLE

“Nature is an infinite sphere of which the center is everywhere and the circumference
nowhere.”
Blaise Pascal.

“I believe that mathematical reality lies outside us, that our function is to discover or observe
it, and that the theorems which we prove, and which we describe grandiloquently as our
"creations," are simply the notes of our observations.”

Godfrey Harold Hardy.

“Imagination decides everything.”
Blaise Pascal.

“The mathematician's patterns, like the painter's or the poet's must be beautiful; the ideas,
like the colors or the words must fit together in a harmonious way. Beauty is the first test:
there is no permanent place in the world for ugly mathematics.”
Godfrey Harold Hardy.

Abstract: In the current work, we extend and incorporate in the five-axioms probability system of
Andrey Nikolaevich Kolmogorov set up in 1933 the imaginary set of numbers and this by adding
three supplementary axioms. Consequently, any stochastic experiment can thus be achieved in the
extended complex probabilities set € which is the sum of the real probabilities set R and the
imaginary probabilities set M. The purpose here is to evaluate the complex probabilities by
considering additional novel imaginary dimensions to the experiment occurring in the “real”
laboratory. Therefore, the random phenomenon outcome and result in € = R + J can be predicted
absolutely and perfectly no matter what the random distribution of the input variable in R is since
the associated probability in the entire set € is constantly and permanently equal to one. Thus, the
following consequence indicates that chance and randomness in R is replaced now by absolute
and total determinism in € as a result of subtracting from the degree of our knowledge the chaotic
factor in the probabilistic experiment. Moreover, we will apply this innovative paradigm to the
well-known Buffon’s needle technique and to its random algorithms and procedures in a novel
way.

Keywords: Degree of our knowledge, Chaotic factor, Magnitude of chaotic factor, Complex

random vector, Probability norm, Real and Imaginary Probabilities, Complex probability set
C =R + M, Convergence probability, Divergence probability, Simulation.
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NOMENCLATURE

R = the events real set

M = the events imaginary set
(¢ = the events complex set

[ = the imaginary number with i? =-1 or i =J-1
EKA = Extended Kolmogorov's Axioms

CPP = Complex Probability Paradigm

Prob = any event probability

Pr = the probability in the real set % = convergence probability in R

Pm = the probability in the complementary imaginary set J( that corresponds to the real
probability set in R = divergence probability in M

Pc = the event probability in R with its associated event in W = probability in the complex
probability set €= R + M

EX = the random experiment exact result

AP = the random experiment approximate result

VA = complex probability number = complex random vector = sum of Py and Pn,

DOK = |Z|2 = the degree of our knowledge of the stochastic experiment or system, it is the

square of the norm of Z

Chf = the chaotic factor of Z

MChf = the magnitude of the chaotic factor of Z

N = the number of iterations cycles = number of random vectors

N = the number of iterations cycles till the convergence of Buffon’s needle method

to EX = the number of random vectors till convergence.
1- Introduction [1-90]

All our work in classical probability theory is to compute probabilities. The original idea in
this book is to add new dimensions to our random experiment which will make the work totally
deterministic. In fact, probability theory is a nondeterministic theory by nature that means that the
outcome of the stochastic events is due to chance and luck. By adding new dimensions to the event
occurring in the “real” laboratory which is &, we make the work deterministic and hence a random
experiment will have a certain outcome in the complex set of probabilities €. It is of great
importance that stochastic systems become totally predictable since we will be perfectly
knowledgeable to foretell the outcome of all chaotic and random events that occur in nature like
for example in statistical mechanics, in all stochastic processes, or in the well-established field of
prognostic. Therefore, the work that should be done is to add to the real set of probabilities R, the
contributions of M which is the imaginary set of probabilities which will make the event in
C =R + M absolutely deterministic. If this is found to be fruitful, then a new theory in stochastic
sciences and prognostic would be elaborated and this to understand deterministically those
phenomena that used to be random phenomena in R. This is what | called "The Complex
Probability Paradigm (CPP)" that was initiated and elaborated in my previous papers and works.
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2-

The Purpose and the Advantages of the Current Chapter [37-90]

The advantages and the purpose of the present chapter are to:

1-

7-

Extend the theory of classical probability to cover the complex numbers set, hence to
connect the probability theory to the field of complex variables and analysis. This task was
started and elaborated in my earlier papers and works.

Apply the novel probability axioms and paradigm to Buffon’s needle method for the
computation of = .

Show that all nondeterministic phenomena can be expressed deterministically in the
complex probabilities set which is €.

Compute and quantify both the degree of our knowledge and the chaotic factor of Buffon’s
needle procedure.

Represent and show the graphs of the functions and parameters of the innovative paradigm
related to Buffon’s needle algorithm.

Demonstrate that the classical concept of probability is permanently equal to one in the set
of complex probabilities; hence, no chaos, no randomness, no ignorance, no uncertainty,
no unpredictability, no nondeterminism, and no disorder exist in:

€ (complex set) = R (real set) + M (imaginary set).

Pave the way to implement this inventive model to other topics in prognostics and to the
field of stochastic processes. These will be the goals of my future research works.

Concerning some applications of the novel established paradigm and as a future work, it can
be applied to any nondeterministic phenomena using Buffon’s needle algorithm in any random

case.

Moreover, compared with existing literature, the major contribution of the current research
chapter is to apply the innovative paradigm of complex probability to the concept and technique
of the probabilistic Buffon’s needle simulation and algorithms. The next figure displays the major
aims and purposes of the Complex Probability Paradigm (CPP) (Figure 1).
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Figure 1- The diagram of the major aims of the Complex Probability Paradigm and Buffon’s

3- The Complex Probability Paradigm [37-142]

Needle Method.

3-1- The Original Andrey Nikolaevich Kolmogorov System of Axioms

The simplicity of Kolmogorov’s system of axioms may be surprising. Let E be a collection
of elements {E1, E», ...} called elementary events and let F be a set of subsets of E called random
events. The five axioms for a finite set E are:

Axiom 1: Fis a field of sets.
Axiom 2: F contains the set E.

Axiom 3: A non-negative real number Prob(A), called the probability of A, is assigned to each

set A in F. We have always 0 < Prop(A) < 1.

Axiom 4: Prop(E) equals 1.

Axiom 5: If A and B have no elements in common, the number assigned to their union is:
Prob (AU B) = I:z'ob(A) + Prob(B)
hence, we say that A and B are disjoint; otherwise, we have:
I:)rob (AU B) = I:)rc)b (A) + I:)rob(B) - I:)rob(Ar\ B)

And we say also that: P, (AnB) =P (A)xP,(B/A) =P, (B)xP,(A/B) which is the
conditional probability. If both A and B are independent then: P, (ANB) =P, (A)xP,(B).

Moreover, we can generalize and say that for N disjoint (mutually exclusive) events
A A, A, A (for 1< j<N), we have the following additivity rule:
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N

i=L

And we say also that for N independent events A, A,,..., Ao A (for 1< j<N), we have the

following product rule:
N

[

j=1
3-2- Adding the Imaginary Part M

Now, we can add to this system of axioms an imaginary part such that:
Axiom 6: Let P, =ix(1—P.) be the probability of an associated complementary event in 4 (the

imaginary part) to the event A in & (the real part). It follows that P.+P, /i=1 where i is the

imaginary number with i=—1 ori*=-1.
Axiom 7: We construct the complex number or vector Z=P. +P, =P, +i(1-P) having a
norm |Z| such that:
Z|" = P2+ (P, /i)*.
Axiom 8: Let Pc denote the probability of an event in the complex probability universe € where

C =R+ M. We say that Pc is the probability of an event A in R with its associated event in M
such that:

Pc? = (P, +P, /i)* =|z| —2iP.P, and is always equal to 1.
We can see that by taking into consideration the set of imaginary probabilities we added three new

and original axioms and consequently the system of axioms defined by Kolmogorov was hence
expanded to encompass the set of imaginary numbers.

3-3- A Brief Interpretation of the Novel Paradigm

To summarize and to conclude, as the degree of our certain knowledge in the real universe
R is unfortunately incomplete, the extension to the complex set € includes the contributions of
both the real set of probabilities # and the imaginary set of probabilities M. Consequently, this
will result in a complete and perfect degree of knowledge in € = R + M (since Pc = 1). In fact, in
order to have a certain prediction of any random event, it is necessary to work in the complex set
€ in which the chaotic factor is quantified and subtracted from the computed degree of knowledge
to lead to a probability in € equal to one as it is shown in the following equation derived from
CPP:

Pc?=DOK - Chf = DOK + MChf = 1 = Pc.

This hypothesis is also verified in my previous research papers and works by the mean of many
examples encompassing both discrete and continuous distributions. The Extended Kolmogorov
Axioms (EKA for short) or the Complex Probability Paradigm (CPP for short) can be illustrated
by the following figure (Figure 2):
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InpUt: o SRR EEEEEEEEEEEER OUtpUt:
Real set R e ... 0 S Complex set C
B SRR
. Adding 3 axioms
5 original ’ A total of 8 axioms
Kolmogorov

axioms
Add: Complex number Z = Py + Py,
. Complex Probability Pc = 1

[ Real Probability Py ] Imaginary set M Pc2 = DOK — Chf = 1

Pc?2=DOK + MChf =1

Imaginary Probability Pr,
= Chf = 2|Per
= MChf = |Chf|=-2iPPn

= DOK=|z[" =P? +(B, /i)

Total
Determinism

Figure 2- The EKA or the CPP diagram

4- The Buffon’s Needle Method for the computation of 7=

A classic example of what we call the Monté Carlo method is that of Georges-Louis Leclerc
or Comte de Buffon, who in 1733 pointed out that 7 could be determined experimentally by
repeatedly throwing a needle onto a ruled surface and counting the number of times the needle
crossed a line. The idea is more remarkable for its sophistication in geometric probability than for
its practicability — a more accurate evaluation of 7 could be done with a piece of string, a ruler,
and the plates and saucers in your kitchen. But the idea of Monté Carlo had been conceived,
although the difficulty of using physical devices for sampling and the lack of suitable statistical
theory made it little more than a curiosity until the advent of large-scale computers.

The Buffon’s needle solution: If a needle of length L (<1) is dropped on a ruled surface of parallel

lines spaced one unit apart (Figure 3), the probability that the needle will cross a line is 2—L If the
T

needle is dropped N times, the number of line crossings (say, X) should be about & and hence:
T

zxﬁ is a Monté Carlo estimate of «
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Figure 3- Needles on a ruled surface.
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Figure 4- Geometrical explanation of the Buffon’s needle problem.

We have y, arandom number and « is a random angle.
We take y, =y, +sina, and L = length of the needle = 1.
Let g, =|j—y.| and @, =|y, — V.|,
If (0, <q,) then there is a line crossing,
else, the needle doesn’t cross the line (Figure 4).

Inside the computer program, the variable counter counts the number of line crossings, and the
variable N = number of iterations such that: 0 <N < N_; therefore:

Exact Result = EX = 7 =3.1415926535897931...

Approximate Result = 2NL _ 2x

Nex(L=1) _ the variable AP in the whole work.
counter
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5- The Buffon’s Needle Method and the Complex Probability Paradigm Parameters
5-1- The Convergence and Divergence Probabilities

Let EX be the experiment exact result like of a multidimensional or a simple integral that is not
possible always to determine by ordinary methods or calculus or numerical deterministic methods.
And let AP be the experiment approximate result and therefore let it be the value of these random
experiments found by Monte Carlo Techniques like Buffon’s needle method.

The absolute error in the numerical analysis method is: Abs. Error :|EX —AP|

AP

The relative error in the numerical method is: Rel. Error a

_‘Abs. Error| _‘EX—AP|_
1 OEBEX | | EX |

and is always between 0% and 100%.

-

In addition, the percent relative error is = 100% x EX—

Therefore, the relative error is always between 0 and 1. Hence:

Os(Mjsl if AP < EX
EX

os—(M)ﬂ if AP > EX
EX

EX - AP
EX

0<

0< AP <EX
ls

EX < AP <2EX

Moreover, we define the real probability by:

l—(l—£] if 0<AP<EX

_1_‘M‘—1_‘ Rl EX
EX EX 1+(1—£j if EX < AP <2EX
EX
£ if 0< AP <EX
EX
2—E if EX < AP <2EX
EX

= 1 —the relative error in the numerical method
= Probability and degree of the numerical method convergence in R
= Probability and ratio of the approximate result to the exact result.

And therefore:
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e B )

i 1—£ if 0<AP<EX [ 1—£ if 0<AP<EX
EX EX

—i 1—£ if EX <AP<2EX [ AP _ if EX <AP<2EX
EX EX

= The relative error in the numerical method in M
= Probability and degree of the numerical method divergence in the imaginary probability set U

since it is the imaginary complement of P..

Consequently,
AP 1—% if 0<AP<EX
P, /i=1-P =‘1—— =
EX ﬁ—1 if EX <AP<2EX
EX
= The relative error in the numerical method in

= Probability and degree of the numerical method divergence in & since it is the real complement
of P.

In the case where 0<AP<EX we have 03%31 =0<P <1 and we deduce also that

03(1—§j£1:>0£ P,/i<land =0<P, <i

And in the case where EX < AP <2EX :13%32 303(2—§j313033 <1 and we

deduce also that 03(%—1}31:03 P,/i<land =0<P, <i

Therefore, if AP =0 or AP =2EX that means before the beginning of the numerical method and
the simulation, then:
P. = Prob (convergence) in R =0

P, = Prob (divergence) in M = i
P, /1 =Prop (divergence) in R =1

And if AP =EX that means at the end of the simulation and the numerical method then:
P. = Prob (convergence) in R =1

P, = Prob (divergence) in M= 0
P./i = Prob (divergence) in R =0

145



UNDER PEER REVI EW

5-2- The Complex Random and Random Vector ZinC=R + M

£+i[1—£] if 0<AP<EX
Wehave Z=P, +P, = =X =X
(Z—EJH(E— j if EX <AP<2EX
EX EX
AP if 0< AP<EX
where Re(Z)=P,. = EX = the real part of Z
2—ﬁ if EX <AP<2EX
EX
1—£ if 0<AP<EX
and Im(Z)=P, /i= APEX = the imaginary part of Z.

—-1 if EX <AP<2EX
EX

That means that the complex random vector Z is the sum in € of the convergence real probability
in R and of the divergence imaginary probability in (.

AP 0

If AP=0 or AP=2EX (before beginning of the simulation) then Przgzgzo or
p_2- AP 5 2BX 5 50 and P =if1-2P)oif1-2)cia—0)=i o
EX EX EX EX
P =i E—1 =i ﬁ—1 =i(2-1) =i therefore Z=0+i=1.
EX EX
If AP:% or AP::))ETX (at the middle of the simulation) then:
AP if 0<AP<EX i=0.5 if 0<AP<EX
p_) EX _ ) 2EX
2—ﬁ if EX <AP<2EX 2—ﬂ=o.5 if EX <AP<2EX
EX 2EX
<P =05
i(l—ﬁj if 0<AP<EX i[l—&J=O.5i if 0<AP<EX
EX 2EX
= RNE=
i|—-1 if EX <AP<2EX i| ———-1|=0.5i if EX <AP<2EX
EX 2EX
<P, =0.5i

therefore Z =0.5+0.5i.

If AP=EX (atthe simulation end) then:

146



UNDER PEER REVI EW

AP _EX _,

AR _ERA if 0< AP < EX
hr= APEX ?)i =h=1
08 o ER 5 421 if EX < AP<2EX
EX EX
And
i[1- AP if 0< AP <EX i[1-EX if 0< AP < EX
) EX ) EX
i(ﬁ—lj if EX < AP < 2EX i(g—lj if EX < AP <2EX
EX EX

0 if EX < AP <2EX
<P, =0
therefore Z =1+0i =1.

_{o if 0< AP <EX

5-3- The Degree of Our Knowledge of the Random Experiment DOK

We have:
DOK =|z[* =P?+ (P, /i)*
2 2
ﬁ if 0<AP<EX 1—£ if 0<AP<EX
EX EX
- 2 2
2—ﬁ if EX < AP <2EX ﬁ—1 if EX < AP <2EX
EX EX
2 2
Ej +(1—£ if 0<AP<EX
] UEX EX
- 2 2
2—E + ﬁ— if EX < AP <2EX
EX EX
2
2 E -2 £ +1 if 0<AP<EX
] TUEX EX
- 2
2 ﬁ —6£ +5 if EX <AP<2EX
EX EX

From CPP we have that 0.5< DOK <1 then if DOK =0.5

2
Z(AP) —2(£]+1:0.5 if 0<AP<EX

EX EX
2
o AP Y 5[ AP )i5-05  if EX < AP <2EX
EX EX

147



UNDER PEER REVI EW

then solving the two second-degree equations for g gives:

AP .
Ex M2 TO<AP<EX @{AP=EX/2 if 0< AP < EX
§:3/2 £ EX < AP < 2EX AP=3EX /2  if EX < AP <2EX

and vice versa.

That means that DOK is minimum when the approximate result is equal to half of the exact result
if 0< AP <EX or when the approximate result is equal to three times the half of the exact result
If EX < AP <2EX, that means at the middle of the simulation.

In addition, if DOK =1 then:

2
o[ AP} o[ AP )11 if 0< AP <EX
EX EX
A 2
z(ﬁj —6(£j+5=1 if EX < AP < 2EX
EX EX
2
(ﬁj _(Ej:o if 0< AP < EX
Ex ) | EX
And 2
o[ AP _6[AP)ia—0  if EX < AP <2EX
EX EX
AP =0 OR AP =EX if 0< AP <EX
=
AP=2EX OR AP=EX  if EX < AP < 2EX

and vice versa.

That means that DOK, which is the degree of our knowledge of the random experiment, is
maximum and is equal to 1 when the approximate result is equal to EX that means when it is
equal to the exact result (at the end of the simulation) or 0 or 2EX (before the beginning of the
simulation). We can deduce that we have total and perfect knowledge of the random experiment
at the end of the simulation after the convergence of the numerical method to the exact result and
hence when relative error is 0 = 0% and as well as before the beginning of the simulation since no
randomness was introduced yet and thus when relative error is 1 = 100%.

5-4- The Chaotic Factor Chf

We have:
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AP if 0<AP<EX i(l—ﬁj if 0<AP<EX
Chf =2iPP, =2ix{ X x EX
2- AP it EX < AP <2EX i(ﬁ- j if EX < AP <2EX
EX EX
since i =—1 then:
—z(ﬁj(l—ﬁj if 0< AP <EX
ohf — EX EX
—Z(Z—EJ(E—lj if EX < AP <2EX
EX )\ EX

From CPP we have that —0.5<Chf <0 then if Chf =-0.5

-2 AP 1—£ =-0.5 if 0<AP<EX
EX EX
—2 Z—E E—1 =-0.5 if EX <AP<2EX
EX JLEX
- AP =EX /2 if 0<AP<EX
AP =3EX /2 if EX <AP<2EX

and vice versa.

That means that Chf is minimum when the approximate result is equal to half of the exact result
if 0< AP <EX or when the approximate result is equal to three times the half of the exact result
if EX < AP <2EX|, that means at the middle of the simulation.

In addition, if Chf =0 then:

o AP AP g if 0< AP <EX
Ex | EX
o[ 2 APV AP )0 if EX < AP < 2EX
Ex | EX
AP=0 OR AP = EX if 0< AP <EX
Rt
AP=2EX OR AP=EX  if EX < AP < 2EX
s o[ AP=0OR AP-EX TOSAPSEX
nd, CONVETSELY. T Y AP 2EX OR AP=EX  if EX < AP <2EX en = =F

That means that Chf is equal to 0 when the approximate result is equal to EX that means when it
is equal to the exact result (at the end of the simulation) or 0 or 2EX (before the beginning of the
simulation).
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5-5- The Magnitude of the Chaotic Factor MChf

We have:
MChf = |Chf | =-2iPP,

AP if 0< AP <EX i(l—gj if 0< AP <EX

EX
X
AP

=-2ix
2—ﬁ if EX <AP<2EX i| —-1 if EX <AP<2EX
EX EX

since i =—1 then:

z(gj[l—gj if 0< AP < EX
MChf = AP \( AP
2(2——j(——1j if EX < AP < 2EX
Ex )\ EX

From CPP we have that 0 < MChf <0.5 then if MChf =0.5

2 AP l—E =05 if 0<AP<EX
EX EX
2 Z—E AP _ =05 if EX <AP<2EX
EX JLEX
AP =EX /2 if 0<AP<EX
=
AP =3EX /2 if EX <AP<2EX

and vice versa.

That means that MChf is maximum when the approximate result is equal to half of the exact result
if 0< AP <EX or when the approximate result is equal to three times the half of the exact result
If EX < AP <2EX, that means at the middle of the simulation. This implies that the magnitude
of the chaos (MChf) introduced by the variables used in the numerical method is maximum at the

halfway of the simulation.

In addition, if MChf =0 then:

2 AP 1—£ =0 if 0<AP<EX
EX EX
2 2—£ E—l =0 if EX<AP<2EX
EX JLEX
- AP =0 OR AP =EX if 0<AP<EX
AP =2EX OR AP =EX if EX <AP<2EX

150



UNDER PEER REVI EW

) AP =0 OR AP =EX if 0<AP<EX
And, conversely, if ) then MChf =0.
AP =2EX OR AP =EX if EX <AP<2EX

That means that MChf is minimum and is equal to O when the approximate result is equal to EX
that means when it is equal to the exact result (at the end of the simulation) or 0 or 2EX (before
the beginning of the simulation). We can deduce that the magnitude of the chaos in the random
experiment is null at the end of the simulation after the convergence of the numerical method to
the exact result and when randomness has finished its task in the numerical method and experiment
as well as before the beginning of the simulation since no randomness was introduced yet.

5-6- The Probability Pc in the Probability Set C= 2R + M
We have from CPP:
Pc? = DOK —Chf = DOK + MChf

2
Z(EJ —2(£j+1 if 0<AP<EX

EX EX
- 2
2 EJ -6 £j+5 if EX < AP <2EX
EX EX
-2 ﬁ 1—£ if 0<AP<EX
EX EX
-2 Z—E E—1 if EX <AP<2EX
EX J\ EX

1 if 0<AP<EX )
= ) < Pc®=1 for 0< AP <2EX
1 if EX <AP<2EX

< Pc =1=Probability and degree of convergence in €, therefore:

AP .
oo EX If 0< AP <EX @{AP=EX if 0< AP < EX
2—%:1 ¢ Ex < Ap<opx | LAP=EX if EX < AP<2EX

< AP=EX for 0< AP <2EX continuously in the probability set ¢ = R + M. This is due to
the fact that in € we have subtracted in the equation above from our knowledge DOK the chaotic
factor Chf and consequently we have removed chaos introduced and caused by all the variables
and the numerical fluctuations that lead to approximate results in the numerical simulation in K.
Therefore, since in € we have always AP =EX then the simulation which is a random method by
nature in R becomes after applying the CPP a non-random method in € since the convergence
probability of any experiment in € is permanently and constantly equal to 1 for any subintervals
or iterations number N.
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5-7- The Rates of Change of the Probabilities in R, M, and €

g.pi[l—gj if 0< AP <EX
Since Z=P +P, = AP AP =Re(Z)+iIm(Z)
(2——j+i(—— J if EX < AP < 2EX
EX ) \EX
Then:
L{ﬁn(l_ﬁﬂ if 0< AP <EX
@z &  dp, | d(AP) EX EX
d(AP) d(AP) d(AP)
(AP) d(AP) d(AP) | d (2_AP]+i(AP—1] if EX < AP <2EX
d(AP) |7 Ex )T LEX
d {AP} d i[l_ﬁ) if 0< AP < EX
| dAP)LEX ] d(aP) EX
d {2—AP}+ d i(AP—] if EX < AP < 2EX
d(AP)| “ Ex | d(aP)| | EX
L 1Yy ifosAP<EX
] EX TEX EX
ol ily if EX <AP<2EX
EX EX EX
Therefore,
1 .
T e e FosAPsEX
d(AP) | d(AP) | 1

if EX <AP<2EX

_ constant >0 if 0<AP<EX and EX >0
| constant < 0 if EX <AP<2EX and EX >0

that means that the rate of change or the slope of the probability of convergence in R is
positive and constant if 0< AP <EX , and negative and constant if EX < AP <2EX, and
it depends only on EX >0 ; hence, we have a constant increase in P. (the convergence

probability which is by definition an absolute value that means always nonnegative) as a
function of the iterations or subintervals number N as AP increases from 0 to EX and as
AP decreases from 2EX to EX till P. reaches the value 1 that means till the random

experiment convergesto EX .
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And =
n constant > 0 if 2EX <AP<EX and EX <0

that means that the slope of the probability of convergence in R or its rate of change is
constant and negative if EX < AP <0, and constant and positive 2EX < AP <EX , and it

depends only on EX <0 ; hence, we have a constant increase in P. as a function of the

iterations or subintervals number N as AP decreases from 0 to EX and as AP increases
from 2EX to EX till P. reaches the value 1 that means till the random experiment

convergesto EX .

{constant <0 if EX<AP<0 and EX <0

1 .
|: dz :|_1- de _d(Pm/I)_ —g if 0<AP<EX

m d(AP) | id(AP) d(AP) L

if EX <AP<2EX

constant > 0 if EX<AP<2EX and EX >0
that means that their rates of change or the slopes of the probabilities of divergence in
and M are negative and constant if 0O<XAP<EX, and positive and constant
If EX < AP <2EX, and they depend only on EX >0 ; hence, we have a constant decrease
in P, /i and P, (the divergence probabilities) as functions of the iterations or subintervals
number N as AP increases from 0 to EX and as AP decreases from 2EX to EX till
P /i and P, reach the value O that means till the random experiment converges to EX .

~ {constant <0 if 0SAP<EX and EX >0

And =
n constant < 0 if 2EX <AP<EX and EX <0

that means that the slopes of the probabilities of divergence in R and M or their rates of
change are constant and positive if EX <AP<0, and constant and negative
If 2EX < AP <EX, and they depend only on EX < 0; hence, we have a constant decrease

in P, /i and P, as functions of the iterations or subintervals number N as AP decreases
from0to EX andas AP increases from 2EX to EX till P, /i and P, reach the value 0
that means till the random experiment converges to EX .

{constant >0 if EX<AP<0 and EX <0

Additionally,
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iz ' o [ [1, ok, ' [ 0B [ [d®/D]
d(AP)| | d(AP) i d(AP)| | d(AP) d(AP)
(i)z{—if if 0< AP <EX
EX EX

1Y (1Y
(__j +(§j if EX < AP <2EX

EX
2
= dz |: 12+ 12= 22 for 0< AP <2EX
d(AP)| ~ (EX)* (EX)* (EX)
<:>d—2:£=constant>0, VEX;
d(AP)| |EX]

that means that its rate of change or the module of the slope of the complex probability vector Z in
€ is positive and constant and it depends only on |EX|; hence, we have a constant increase in

Re(Z) and a constant decrease in Im(Z) as functions of the iterations or subintervals number N
and as Z goes from (0, i) at N = 0 till (1,0) at the simulation end; hence, till Re(Z)=P. reaches
the value 1 that means till the random experiment converges to EX .

Furthermore, since Pc? = DOK —Chf = DOK + MChf =1 from CPP
then Pc =1= Probability and degree of convergence in €

d(Pc) _ d@®) _,
d(AP) d(AP)

and consequently:

that means that Pc is constantly equal to 1 for every value of AP, of EX , and of the iterations or
subintervals number N, that means for any random experiment and for any simulation of the
numerical methods. So, we conclude that in € we have complete and perfect knowledge of the
random experiment which has become now a non-random one since the extension in the complex
probability plane € defined by the CPP axioms has changed all random variables to non-random
variables and since we have subtracted and eliminated in the equation of Pc above chaos expressed
by Chf from DOK. Hence, randomness and chaos vanish completely and totally in the probability
setC=R+ M.

6- The Evaluation of the New Paradigm Parameters

We can deduce from what has been elaborated previously the following:

The real convergence probability: P.(N) :1_|_EX _E';P(N)|
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We have 0< N < N. where N = 0 corresponds to the instant before the beginning of the random
experiment when AP(N =0)=0 or =2EX , and where N =N_ (iterations number needed for

the method convergence) corresponds to the instant at the end of the random experiments and
Monte Carlo methods when AP(N =N.) — EX.

The imaginary complementary divergence probability: P, (N)=i |EX_E—§P(N)|

The real complementary divergence probability: P,(N)/i= |—EX _E';P(N)|
The complex probability and random vector:
EX —AP(N)| +i|EX —AP(N)|

EX EX |

Z(N>=R(N)+Pm(N>{1—‘

The Degree of Our Knowledge:
DOK (N) =[Z(N) = P?(N) +[P, (N /i =HEX ‘E’;P(N)H +H =X ‘E’;P(N)H
=1+2iP.(N)P,(N) =1-2P.(N)[1-P.(N)]=1-2P,(N) +2P*(N)
EX —AP(N)|+2{EX —AP(N)T
EX
DOK(N) is equal to 1 when P.(N)=P.(0)=0 and when P.(N)=P (N.)=1.

=1-2

The Chaotic Factor:
Chf (N) = 2iP, (N)P, (N) = 2P, (N)[1- P, (N)] = —2P,(N) + 2P(N)

_|EX —AP(N)‘JFZ[EX —AP(N)T
EX

EX
Chf (N) is null when P.(N)=P (0)=0 and when P.(N)=P(N.)=1.

The Magnitude of the Chaotic Factor MChf:
MChf (N) =|Chf (N)| =—2iP.(N)P, (N) =2P,(N)[1-P.(N)]=2P.(N) - 2P*(N)
EX —AP(N)|_2{EX —AP(N)T
EX EX
MChf (N) is null when P.(N)=P (0)=0 and when P.(N)=P (N.)=1.

=2

At any iteration number N: 0<VN < N_, the probability expressed in the complex probability
set € is the following:
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Pc®(N) =[P (N)+P,(N) /i]* =|Z(N)[" — 2iP,(N)P, (N)
=DOK(N)—-Chf (N)
=DOK(N) +MChf (N)
=1
then,
Pc?(N) =[P, (N)+P,(N)/i]* ={P.(N)+[1- Pr(N)]}2 =1’ =1< Pc(N) =1 always
Hence, the prediction of the convergence probabilities of the stochastic Buffon’s needle
experiment in the set € is permanently certain.

Let us consider thereafter a multidimensional integral and a stochastic experiment to simulate the
Buffon’s needle method and to draw, to visualize, as well as to quantify all the CPP and prognostic
parameters.

7- The C++ Algorithms of Buffon’s Needle Method
7-1- The First Algorithm with the C++ Built-in Uniform Random Number Generator

// Buffon's Needle Algorithm with the C++ Built-in Uniform Random
// Number Generator

#include <iostream>
#tinclude <cstdlib>
#include <ctime>
#tinclude <cmath>
#include <iomanip>

using namespace std;
long double total();

const long double PI = 3.1415926535897931;
int main()

{

long double summation;
long int c;

cout << fixed << setprecision(16);

for (c = 1; c <= 7; c++)

{
cout << "THE EXACT VALUE OF PI = " << PI << endl;
summation = (long double) total();
cout << "THE ESTIMATION OF PI = " << summation << endl;

156



UNDER PEER REVI EW

cout << "THE RELATIVE ERROR = "
<< 100 * (long double) fabs(1l - summation / PI)
<< "%\n" << endl;

}
return 0;
}
long double total(void)
{
long int N, Nc, counter = 0;
long double ya = 0, yb =0, q1 = 0, q2 = 0, AP = 0, alpha = 0,
k=0, j=20;
srand(time(9));
Nc = 100000000;
for (N = 1; N <= Nc; N++)
{
ya = rand() + (long double) rand() / 32767;
k = (long double) rand() / 32767;
alpha = 2 * PI * k;
yb = ya + (long double) sin(alpha);
j = (int) fabs(ya) + 1;
gl = (long double) fabs(j - ya);
g2 = (long double) fabs(yb - ya);
if (g1 < g2)
++counter;
ya =0; yb =0; j =0; k =0; alpha =90; ql = 0; g2 = 0;
}
AP = (long double) 2 * Nc / counter;
return AP;
}

7-2- The Second Algorithm with a Second Uniform Random Number Generator

// Buffon's Needle Algorithm with Another Second Uniform Random Number
// Generator

#tinclude <iostream>
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#include <cstdlib>
#include <ctime>
#include <cmath>
#include <iomanip>

using namespace std;

long double generate(long double, long double);
long double total();

const long double PI = 3.1415926535897931;
const long double BOUND = 2147483647,

int main()

{
long double summation;
long int c;
cout << fixed << setprecision(16);
for (c = 1; c <= 7; c++)
{
cout << "THE EXACT VALUE OF PI = " << PI << endl;
summation = (long double) total();
cout << "THE ESTIMATION OF PI = " << summation << endl;
cout << "THE RELATIVE ERROR = "
<< 100 * (long double) fabs(1l - summation / PI)
<< "%\n" << endl;
}
return 0;
}
long double gen(long double xnl, long double xn2)
{
long double xnj;
xn = (long double) fmod(((1999 * xnl) + (4444 * xn2)), BOUND);
return xn;
}
long double total(void)
{

long int N, Nc, counter = 0;
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long double ya = 0, yb = 0, ql
k =0, j =0, random
sxnl = @, sxn2 = 0;

0, g2 = 9, AP = 9, alpha = 0,
=0,

srand(time(9));
sxnl = rand();
sxn2 = rand();

Nc = 100000000;
for (N = 1; N <= Nc; N++)
{
random = gen(sxnl, sxn2);
ya = random;
sxn2 = sxnl;
sxnl = random;
random = gen(sxnl, sxn2);
ya = ya + (long double) random / BOUND;

sxn2 = sxnl;

sxnl random;

random = gen(sxnl, sxn2);

k = (long double) random / BOUND;
alpha = 2 * PI*k;

yb = ya + (long double) sin(alpha);
j = (int) fabs(ya) + 1;
gl = (long double) fabs(j - ya);
g2 = (long double) fabs(yb - ya);
if (gq1 < g2)

++counter;

ya =0; yb =0; j =0; k =0; alpha =90; ql = 9; g2 = 0;
}

AP = (long double) 2 * Nc / counter;

return AP;

}
7-3- The Third Algorithm with a Third Uniform Random Number Generator

// Buffon's Needle Algorithm with Another Third Uniform Random Number
// Generator

#include <iostream>
#include <cstdlib>
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#include <ctime>
#include <cmath>
#include <iomanip>

using namespace std;

long double generate(long double);
long double total();

const long double PI = 3.1415926535897931;
const long double BOUND = 2147483647,

int main()

{
long double summation;
long int c;
cout << fixed << setprecision(16);
for (c = 1; c <= 7; C++)
{
cout << "THE EXACT VALUE OF PI = " << PI << endl;
summation = (long double) total();
cout << "THE ESTIMATION OF PI = " << summation << endl;
cout << "THE RELATIVE ERROR = "
<< 100 * (long double) fabs(1l - summation / PI)
<< "%\n" << endl;
}
return 0;
}
long double gen(long double xn1l)
{
long double xnj;
xn = (long double) fmod(((69069 * xnl) + 1), BOUND);
return xn;
}
long double total(void)
{

long int N, Nc, counter = 0;
long double ya =0, yb =0, q1 =0, q2 = 0, AP = 9, alpha = 0,
k =0, j =0, random = 9, sxnl = 9;
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srand(time(0));
sxnl = rand();

Nc = 100000000;
for (N = 1; N <= Nc; N++)

{

random = gen(sxnl);

ya = random;

sxnl = random;

random = gen(sxnl);

ya = ya + (long double) random / BOUND;

sxnl = random;

random = gen(sxnl);

k = (long double) random / BOUND;

alpha = 2 * PI*k;

yb = ya + (long double) sin(alpha);

j = (int) fabs(ya) + 1;

gl = (long double) fabs(j - ya);

g2 = (long double) fabs(yb - ya);

if (g1 < g2)

++counter;

ya =0; yb =0; j =0; k =0; alpha = 0; g1l

}

AP = (long double) 2 * Nc / counter;

return AP;
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8- Flowchart of the Complex Probability and Buffon’s Needle Technique Prognostic Model
The following flowchart summarizes all the procedures of the proposed complex
probability prognostic model:

|
|
|
|
|
|
|
|
|
|
|
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=
|
|
|
|
|
|
|
|
|
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9- Simulation of the New Paradigm

Note that all the numerical values found in the simulations of the new paradigm for any iteration
cycles N were computed using the 64-Bit MATLAB version 2024 software. In addition, the reader
should take care of the rounding and truncation errors since all numerical values in the computation
of = are represented by at most five significant digits and since we are using Buffon’s needle
method of simulation which gives approximate results subject to random effects and fluctuations.
We have considered for this purpose a high-capacity computer system: a workstation computer
with parallel microprocessors, a 64-Bit operating system, and a 64-GB RAM. Additionally, we
have replaced in all the simulations AP(N) by AP(N)/2 and EX by EX /2=7/2 to better see

and read the simulations and to fit all the data and figures in a nicer and improved view.
9-1- The Uniform Random Numbers Generator Case

We will use in the first case in the computation of 7 using Buffon’s needle method the uniform
random numbers generator:  (y,,a, Y., j,4,,0,) — U (0,10)

L which is the needle length is taken to be equal to 1.

o AP(N) = L5 2NE
27X

with 1< N < N, after applying Buffon’s needle method.

Moreover, the three figures (Figures 5-7) show the increasing convergence of Buffon’s needle
method and simulation to the exact result EX =7 /2=23.141592654.../ 2=1.570796327... for
N = 1000, 30000, and N, =400000 iterations. Therefore, we have:

lim P.(N)= lim 1_‘EX—AP(N)I _1 |EX-EX
" o EX | 7| Ex

convergence probability of Buffon’s needle method as N — +oo.

=1-0=1 which is equal to the

Additionally, Figure 8 illustrates clearly and visibly the relation of Buffon’s needle method to the
complex probability paradigm with all its parameters (Chf, MChf, DOK, EX, AP,P., P, /i,Pc)

after applying it to this method.
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CPP and Buffon's Needle - The Uniform Random Generator

AP and EX

0.6 [ -

0.4 *

0.2 - I
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0 100 200 300 400 500 600 700 800 900 1000

Number of iterations N

Figure 5- The increasing convergence of Buffon’s needle method up to N = 1000 iterations with
the Uniform random number generator.

CPP and Buffon's Needle - The Uniform Random Generator
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Number of iterations N %10

Figure 6- The increasing convergence of Buffon’s needle method up to N = 30,000 iterations
with the Uniform random number generator.
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CPP and Buffon's Needle - The Uniform Random Generator
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Figure 7- The increasing convergence of Buffon’s needle method up to N = 400,000 iterations
with the Uniform random number generator.

VI11-2-1 The Complex Probability Cubes

In the first cube (Figure 9), the simulation of DOK and Chf as functions of each other and
of the iterations N for the Buffon’s needle problem can be seen. The thick line in cyan is the
projection of Pc2(N) = DOK(N) — Chf(N) = 1 = Pc(N) on the plane N = 0 iterations. This line starts
at the point J (DOK =1, Chf = 0) when N = 0 iterations, reaches the point (DOK = 0.5, Chf =-0.5)
when N = 200,000 iterations, and returns at the end to J (DOK =1, Chf = 0) when N = N¢ = 400,000
iterations. The other curves are the graphs of DOK(N) (red) and Chf(N) (green, blue, pink) in
different planes. Notice that they all have a minimum at the point K (DOK = 0.5, Chf = -0.5,
N = 200,000 iterations). The point L corresponds to (DOK = 1, Chf = 0, N = Nc¢ = 400,000
iterations). The three points J, K, L are the same as in Figure 8.

In the second cube (Figure 10), we can notice the simulation of the convergence probability
Pr(N) and its complementary real divergence probability Pm(N)/i in terms of the iterations N for
the Buffon’s needle problem. The thick line in cyan is the projection of Pc?(N) = Pr(N) + Pm(N)/i
=1 =Pc(N) on the plane N = 0 iterations. This line starts at the point (Pr = 0, Pm/i = 1) and ends at
the point (Pr = 1, Pw/i = 0). The red curve represents Pr(N) in the plane P+(N) = Pm(N)/i. This curve
starts at the point J (Pr = 0, Pn/i =1, N = 0 iterations), reaches the point K (Pr = 0.5, Pm/i = 0.5,
N = 200,000 iterations), and gets at the end to L (Pr = 1, Pm/i = 0, N = Nc = 400,000 iterations).
The blue curve represents Pm(N)/i in the plane P+(N) + Pm(N)/i = 1. Notice the importance of the
point K which is the intersection of the red and blue curves at N = 200,000 iterations and when
Pr(N) = Pm(N)/i = 0.5. The three points J, K, L are the same as in Figure 8.
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In the third cube (Figure 11), we can notice the simulation of the complex random vector
Z(N) in € = R + M as a function of the real convergence probability Pr(N) = Re(Z) in R and of its
complementary imaginary divergence probability Pm(N) = ixIm(Z) in M , and this in terms of the
iterations N for the Buffon’s needle problem. The red curve represents Pr(N) in the plane
Pm(N) = 0 and the blue curve represents Pm(N) in the plane P:(N) = 0. The green curve represents
the complex probability vector Z(N) = P«(N) + Pm(N) = Re(Z) + ixIm(Z) in the plane
Pr(N) = iPm(N) + 1. The curve of Z(N) starts at the point J (Pr =0, Pn=1, N = 0 iterations) and ends
at the point L (Pr = 1, Pm = 0, N = Nc = 400,000 iterations). The thick line in cyan is
Pr(0) = iPm(0) + 1 and it is the projection of the Z(N) curve on the complex probability plane whose
equation is N = O iterations. This projected line starts at the point J (Pr =0, Pm=1, N = 0 iterations)
and ends at the point (Pr = 1, Pm = 0, N = 0O iterations). Notice the importance of the point K
corresponding to N = 200,000 iterations and when Py = 0.5 and Py = 0.51. The three points J, K, L
are the same as in Figure 8.

. CPP and Buffon's Needle - The Uniform Random Generator

Pi/2————m =

Chf, Pr, MChf, AP, DOK, Pm /i, Pc, and EX

—— - EX
0.5 pe .
_06 | | 1 1 | | |
0 0.5 1 1.5 2 2.5 3 3.5 4
NumberofiterationsOgNgNC , U(0,10) «10°

Figure 8- The CPP parameters and the Buffon’s needle method with the Uniform random
number generator.
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Figure 9- DOK and Chf in terms of N and of each other for the Buffon’s needle method with the

Chf

%10°

Number of iterations N

DOK and Chf in Terms of N and of each Other
for the Uniform Random Generator
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Uniform random number generator.

The Probabilities Pr , Pr|1 I i for the Uniform Random Generator

\—P,

/i 0 o P
m
Figure 10- Pr and Pw/i in terms of N and of each other for the Buffon’s needle method with the
Uniform random number generator.
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The Probabilities Pr , Pm , and Z for the Uniform Random Generator

—_— P

r

— —P ~_

<10°

Number of iterations N

i x Im(Z) = Pm D. “o ‘ RE(Z) = Pr

Figure 11- The Complex Probability Vector Z in terms of N for the Buffon’s needle method with
the Uniform random number generator.

9-2- The Gaussian and Normal Random Numbers Generator Case

We will use in the second case in the computation of 7 using Buffon’s needle method the
Gaussian and normal random numbers generator:
(Yar @ Yo 1,4, ) = Y (1 =0,0=1)
L which is the needle length is taken to be equal to 1.

o AP(N) =L 2Nk
2" X

with 1< N < N, after applying Buffon’s needle method.

Moreover, the three figures (Figures 12-14) show the increasing convergence of Buffon’s needle
method and simulation to the exact result EX =7/2=3.141592654.../ 2=1.570796327 ... for
N = 1000, 30000, and N, =400000 iterations. Therefore, we have:

lim P.(N)= lim 1_‘EX_AP(N)| _q_[EX-EX
o N EX | | EX

convergence probability of Buffon’s needle method as N — +o0.

=1-0=1 which is equal to the

Additionally, Figure 15 illustrates clearly and visibly the relation of Buffon’s needle method to the
complex probability paradigm with all its parameters (Chf, MChf, DOK, EX, AP,P.,P, /i,Pc)

after applying it to this random method.
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CPP and Buffon's Needle - The Normal Random Generator

AP and EX

0 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

Number of iterations N, =0, o=1

Figure 12- The increasing convergence of Buffon’s needle method up to N = 1000 iterations with
the Gaussian and normal random number generator.

CPP and Buffon's Needle - The Normal Random Generator

AP and EX

0 I I I I I
0 0.5 1 1.5 2 2.5 3

Number of iterations N, =0, o=1 x10%

Figure 13- The increasing convergence of Buffon’s needle method up to N = 30,000 iterations
with the Gaussian and normal random number generator.
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CPP and Buffon's Needle - The Normal Random Generator
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Figure 14- The increasing convergence of Buffon’s needle method up to N = 400,000 iterations

with the Gaussian and normal random number generator.

18 CPP and Buffon's Needle - The Normal Random Generator
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Figure 15- The CPP parameters and the Buffon’s needle method with the Gaussian and normal
random number generator.
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9-3- The Poisson Random Numbers Generator Case

We will use in the third case in the computation of 7 using Buffon’s needle method the Poisson
random numbers generator:

(Y & Yo 1:G,0,) — P (1=5.68)

L which is the needle length is taken to be equal to 1.

o AP(N) =L 2NE
2" 7X

with 1< N < N, after applying Buffon’s needle method.

Moreover, the three figures (Figures 16-18) show the increasing convergence of Buffon’s needle
method and simulation to the exact result EX =7 /2=23.141592654.../ 2=1.570796327... for
N = 1000, 30000, and N, =400000 iterations. Therefore, we have:

1_‘EX—AP(N)| _,_|EX-EX
EX || 7| EX

convergence probability of Buffon’s needle method as N — +oo.

lim P(N)= lim

N —+o0

=1-0=1 which is equal to the

Additionally, Figure 19 illustrates clearly and visibly the relation of Buffon’s needle method to the
complex probability paradigm with all its parameters (Chf, MChf, DOK, EX, AP,P., P, /i,Pc)

after applying it to this random method.

CPP and Buffon's Needle - The Poisson Random Generator
18 T T T T T T T T T

AP and EX

O 1 1 | 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

Number of iterations N, )\ =5.68

Figure 16- The increasing convergence of Buffon’s needle method up to N = 1000 iterations with
the Poisson random number generator.
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CPP and Buffon's Needle - The Poisson Random Generator

AP and EX
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Number of iterations N, )\ = 5.68 x10*

Figure 17- The increasing convergence of Buffon’s needle method up to N = 30,000 iterations
with the Poisson random number generator.

CPP and Buffon's Needle - The Poisson Random Generator
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Figure 18- The increasing convergence of Buffon’s needle method up to N = 400,000 iterations
with the Poisson random number generator.
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CPP and Buffon's Needle - The Poisson Random Generator

Chf, Pr, MChf, AP, DOK, Pm /i, Pc, and EX
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Figure 19- The CPP parameters and the Buffon’s needle method with the Poisson random
number generator.

9-4- The Weibull Random Numbers Generator Case

We will use in the fourth case in the computation of 7 using Buffon’s needle method the Weibull
random numbers generator:

(ya’a’ yb’ j’q1’q2)|_> w (a:],b:2)

L which is the needle length is taken to be equal to 1.

o AP(N) =L 2NE
27X

with 1< N < N, after applying Buffon’s needle method.

Moreover, the three figures (Figures 20-22) show the increasing convergence of Buffon’s needle
method and simulation to the exact result EX =7/2=3.141592654.../ 2=1.570796327 ... for
N = 1000, 30000, and N, =400000 iterations. Therefore, we have:

lim P.(N)= lim 1_‘EX_AP(N)| _q_[EX-EX
o N EX | | EX

convergence probability of Buffon’s needle method as N — +o0.

=1-0=1 which is equal to the

Additionally, Figure 23 illustrates clearly and visibly the relation of Buffon’s needle method to the
complex probability paradigm with all its parameters (Chf, MChf, DOK, EX, AP,P.,P, /i,Pc)

after applying it to this random method.
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CPP and Buffon's Needle - The Weibull Random Generator
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Figure 20- The increasing convergence of Buffon’s needle method up to N = 1000 iterations with
the Weibull random number generator.

CPP and Buffon's Needle - The Weibull Random Generator
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Figure 21- The increasing convergence of Buffon’s needle method up to N = 30,000 iterations
with the Weibull random number generator.
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CPP and Buffon's Needle - The Weibull Random Generator
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Figure 22- The increasing convergence of Buffon’s needle method up to N = 400,000 iterations
with the Weibull random number generator.
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Figure 23- The CPP parameters and the Buffon’s needle method with the Weibull random
number generator.
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10- Conclusion and Perspectives

In the current research chapter, the original extended Kolmogorov model of eight axioms
(EKA) was connected and applied to the classical and random Buffon’s needle numerical
technique. Thus, a tight link between Buffon’s needle algorithms and the novel paradigm was
executed. Accordingly, the model of "Complex Probability” was more expanded beyond the scope
of my earlier research studies on this subject.

Moreover, as it was proved and illustrated in the new model and in the current chapter and
in all the book chapters, when the probability is 0 or 1 then the degree of our knowledge (DOK) is
one and the chaotic factor (Chf and MChf) is 0 since the state of the system is totally known. During
the random process we have: 0.5 < DOK < 1, 0.5 < Chf < 0, and 0 < MChf < 0.5. Notice that
during this whole procedure we have always Pc?> = DOK — Chf = DOK + MChf = 1, that means
that the phenomenon which seems to be random and stochastic in & is now deterministic and
certain in € = R + M, and this after adding to R the contributions of M and hence after subtracting
the chaotic factor from the degree of our knowledge. Additionally, the probabilities of convergence
and divergence of the random Buffon’s needle procedure that correspond to each iteration cycle N

have been determined in the three sets of probabilities which are R, M, and € by P,, P, , and Pc

respectively. Subsequently, at each instance of N, the novel Buffon’s needle technique and CPP
parameters EX , AP, Py, P, P, /i, DOK, Chf, MChf, Pc, and Z are perfectly and surely predicted

in the set of complex probabilities € with Pc kept as equal to 1 continuously and forever.

Furthermore, using all these shown simulations and obtained graphs all over the entire
research chapter, we can visualize and quantify both the certain knowledge (expressed by DOK
and Pc) and the system chaos and stochastic influences and effects (expressed by Chf and MChf)
of Buffon’s needle algorithms. This is definitely very wonderful, fruitful, and fascinating and
demonstrates once again the advantages of extending the five axioms of probability of
Kolmogorov and thus the benefits and novelty of this original theory in applied mathematics and
prognostics that can be called verily:

""The Complex Probability Paradigm™.

Moreover, it is important to state here that four essential and very well-known random
numbers generators were taken into consideration in the current chapter which are the uniform,
Gaussian, Poisson and Weibull random numbers generators, knowing that the original CPP model
can be applied to any generator of random numbers that exist in literature. This will lead certainly
to analogous results and conclusions and will confirm without any doubt the success of my
innovative theory.

As a prospective and future work and concerning some applications to pure and applied
mathematics, it is planned to more develop the novel proposed mathematical prognostic paradigm
and to apply it to a wide set of random and stochastic systems in various fields of science and
disciplines of knowledge.
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CHAPTER FOUR

THE PARADIGM OF COMPLEX PROBABILITY
AND THE NEUTRON SHIELDING PROBLEM

“It is not certain that everything is uncertain.”
Blaise Pascal, Pascal's Pensées.

“A mathematician, like a painter or poet, is a maker of patterns. If his patterns are more
permanent than theirs, it is because they are made with ideas.”

Godfrey Harold Hardy, A Mathematician's Apology.

“l would prefer an intelligent hell to a stupid paradise.”
Blaise Pascal.

“A mathematical proof should resemble a simple and clear-cut constellation, not a scattered
cluster in the Milky Way.”
Godfrey Harold Hardy, A Mathematician's Apology.

Abstract: The concept of mathematical probability was established in 1933 by
Andrey Nikolaevich Kolmogorov by defining a system of five axioms. This system can be
enhanced to encompass the imaginary numbers set after the addition of three novel axioms. As a
result, any random experiment can be executed in the complex probabilities set € which is the sum
of the real probabilities set & and the imaginary probabilities set . We aim here to incorporate
supplementary imaginary dimensions to the random experiment occurring in the “real” laboratory
in R and therefore to compute all the probabilities in the sets &, M, and €. Accordingly, the
probability in the whole set € = R + M is constantly equivalent to one independently of the
distribution of the input random variable in &, and subsequently the output of the stochastic
experiment in R can be determined absolutely in €. This is the consequence of the fact that the
probability in € is computed after the subtraction of the chaotic factor from the degree of our
knowledge of the nondeterministic experiment. We will apply this innovative paradigm to the
well-known neutron shielding problem and to its random algorithms and procedures in a novel
way.

Keywords: Degree of our knowledge, Chaotic factor, Complex probability set, Probability norm,
Complex random vector, Convergence probability, Divergence probability, Simulation.

NOMENCLATURE

R = the events real set

M = the events imaginary set
C = the events complex set
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i = the imaginary number with i? =-1 or i =+/—1
EKA = Extended Kolmogorov's Axioms

CPP = Complex Probability Paradigm

Prob = any event probability

Pr = the probability in the real set & = convergence probability in R

Pm = the probability in the complementary imaginary set J that corresponds to the real
probability set in R = divergence probability in

Pc = the event probability in & with its associated event in J = probability in the complex
probability set €= R + M

EX = the random experiment exact result

AP = the random experiment approximate result

VA = complex probability number = complex random vector = sum of Py and Pn,

DOK = |Z|2 = the degree of our knowledge of the stochastic experiment or system, it is the

square of the norm of Z

Chf = the chaotic factor of Z

MChf = the magnitude of the chaotic factor of Z

N = the number of iterations cycles = number of random vectors

N = the number of iterations cycles till the convergence of neutron shielding problem

to EX = the number of random vectors till convergence.
1- Introduction [1-90]

Calculating probabilities is the crucial task of classical probability theory. Adding
supplementary dimensions to nondeterministic experiments will yield a deterministic expression
of the theory of probability. This is the novel and original idea at the foundations of my complex
probability paradigm. Aa a matter of fact, probability theory is a stochastic system of axioms in its
essence; that means that the phenomena outputs are due to randomness and chance. By adding
novel imaginary dimensions to the nondeterministic phenomenon happening in the set 2 will lead
to a deterministic phenomenon and thus a stochastic experiment will have a certain output in the
complex probability set €. If the chaotic experiment becomes completely predictable then we will
be fully capable to predict the output of random events that arise in the real world in all stochastic
processes. Accordingly, the task that has been achieved here was to extend the random real
probabilities set R to the deterministic complex probabilities set ¢ = £ + M and this by
incorporating the contributions of the set J which is the complementary imaginary set of
probabilities to the set R. Consequently, since this extension reveals to be successful, then an
innovative paradigm of stochastic sciences and prognostic was put forward in which all
nondeterministic phenomena in R was expressed deterministically in €. | coined this novel model
by the term "The Complex Probability Paradigm™ that was initiated and established in my earlier
research works.

2- The Purpose and the Advantages of the Current Chapter [37-90]

The advantages and the purpose of the present chapter are to:
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7-

Extend the theory of classical probability to cover the complex numbers set, hence to
connect the probability theory to the field of complex variables and analysis. This task was
started and elaborated in my earlier papers.

Apply the novel probability axioms and paradigm to the neutron shielding problem.

Show that all nondeterministic phenomena can be expressed deterministically in the
complex probabilities set which is €.

Compute and quantify both the degree of our knowledge and the chaotic factor of the
neutron shielding problem.

Represent and show the graphs of the functions and parameters of the innovative paradigm
related to the neutron shielding algorithm.

Demonstrate that the classical concept of probability is permanently equal to one in the set
of complex probabilities; hence, no chaos, no randomness, no ignorance, no uncertainty,
no unpredictability, no nondeterminism, and no disorder exist in:

€ (complex set) = R (real set) + M (imaginary set).

Pave the way to implement this inventive model to other topics in prognostics and to the
field of stochastic processes. These will be the goals of my future research works.

Concerning some applications of the novel established paradigm and as a future work, it can
be applied to any nondeterministic phenomena using the neutron shielding algorithm in any
random case.

Moreover, compared with existing literature, the major contribution of the current research
chapter is to apply the innovative paradigm of complex probability to the concept and technique
of the probabilistic neutron shielding simulation and algorithms. The next figure displays the major
aims and purposes of the Complex Probability Paradigm (CPP) (Figure 1).
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Applied to
Probability Complex

\Themy \Analysis

Neutron

Applied to Applied to

Stochastic

Shielding Phenomena
\’roblem Applied to \

Figure 1- The diagram of the major aims of the Complex Probability Paradigm and the neutron
shielding problem.

3- The Complex Probability Paradigm [37-141]
3-1- The Original Andrey Nikolaevich Kolmogorov System of Axioms

The simplicity of Kolmogorov’s system of axioms may be surprising. Let E be a collection
of elements {E1, E», ...} called elementary events and let F be a set of subsets of E called random
events. The five axioms for a finite set E are:

Axiom 1: Fisa field of sets.
Axiom 2: F contains the set E.
Axiom 3: A non-negative real number Pron(A), called the probability of A, is assigned to each

set A in F. We have always 0 < Pron(A) < 1.
Axiom 4: Pron(E) equals 1.
Axiom 5: If A and B have no elements in common, the number assigned to their union is:

Prob (AU B) = Prob(A) + Prob(B)
hence, we say that A and B are disjoint; otherwise, we have:
I:)rob (AU B) = I:)rob (A) + Prob(B) - I:)rob(Ar\ B)

And we say also that: Prob (Aﬂ B) = I:)rob (A)X I:)rob(B/ A) = I:)rob(B)>< I:)rob (A/ B) which is the
conditional probability. If both A and B are independent then: P, (ANB) =P, (A)xP,(B).

Moreover, we can generalize and say that for N disjoint (mutually exclusive) events
A A, A, A (for 1< j<N), we have the following additivity rule:
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N

i=L

And we say also that for N independent events A, A,,..., Ao A (for 1< j<N), we have the

following product rule:
N

[

j=1
3-2- Adding the Imaginary Part M
Now, we can add to this system of axioms an imaginary part such that:

Axiom 6: Let P.=ix(1—P) be the probability of an associated complementary event in 4 (the
imaginary part) to the event A in & (the real part). It follows that P.+P. /i=1 where i is the

imaginary number with i =+/—1 or i?=—1.
Axiom 7: We construct the complex number or vector Z=P. +P, =P +i(1-P) having a
norm |Z| such that:
1z =P?+ (P, 1i)*.
Axiom 8: Let Pc denote the probability of an event in the complex probability universe € where

C =R+ M. We say that Pc is the probability of an event A in R with its associated event in M
such that:

Pc? = (P, +P, /i)* =|z| —2iP.P, and is always equal to 1.
We can see that by taking into consideration the set of imaginary probabilities we added three new

and original axioms and consequently the system of axioms defined by Kolmogorov was hence
expanded to encompass the set of imaginary numbers.

3-3- A Brief Interpretation of the Novel Paradigm

To summarize the novel paradigm, we state that in the real probability universe R our degree of
our certain knowledge is undesirably imperfect and hence unsatisfactory, thus we extend our
analysis to the set of complex numbers € which incorporates the contributions of both the set of
real probabilities which is ® and the complementary set of imaginary probabilities which is JL.
Afterward, this will yield an absolute and perfect degree of our knowledge in the probability
universe C = R + M because Pc = 1 constantly. As a matter of fact, the work in the complex
universe € gives way to a sure prediction of any stochastic experiment, because in € we remove
and subtract from the computed degree of our knowledge the measured chaotic factor. This will
generate a probability in the universe € equal to 1 (Pc? = DOK - Chf = DOK + MChf = 1 = Pc).
Many illustrations taking into consideration numerous continuous and discrete probability
distributions in my previous research papers confirm this hypothesis and innovative paradigm. The
Extended Kolmogorov Axioms (EKA for short) or the Complex Probability Paradigm (CPP for
short) can be shown and summarized in the next illustration (Figure 2):
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InpUt' ‘_IIIIIIIIIIIIIIII-_ OUtpUt:
Real set R e "f'E'E'E';",’"u - Complex set C
- Adding 3 axioms
5 original ° A total of 8 axioms
Kolmogorov

axioms
Add: Complex number Z = P + Pp,
. Complex Probability Pc =1

[ Real Probability P; ] Imaginary set M Pc? = DOK — Chf = 1

Pc?2=DOK + MChf =1

Imaginary Probability Pn
= Chf = 2|Per
= MChf = |Chf|= =2iPPn,

= DOK=|z[" = P? +(B, /i)

Chance Total
e Determinism
Luck

Figure 2- The EKA or the CPP diagram

4- The Neutron Shielding Method Problem and Solution

The Neutron Shielding Problem: The work done in this paper concerns the neutron shielding.
We take a simple model of neutrons penetrating a lead wall. It is assumed that each neutron enters
the lead wall at a right angle to the wall and travels a unit distance. Then it collides with a lead
atom and rebounds in a random direction. Again, it travels a unit distance before colliding with
another lead atom. It rebounds in a random direction and so on. Assume that after 11 collisions,
all the neutron’s energy is spent. Assume also that the lead wall is 5 units thick in the X direction
and for all practical purposes infinitely thick in the Y direction. The question is: what percentage
of neutrons can be expected to emerge from the other side of the lead wall?

The Neutron Shielding Solution: Let x be the distance measured from the initial surface where the
neutron enters. From trigonometry, we recall that in a right triangle with hypotenuse 1, one side is
cosé. Also note that cos@ <0 when z/2<6 <. The first collision occurs at a point where
x = 1. The second occurs at a point where x=1+cosé, . The third collision occurs at a point where
X=1+cosg, +cosé,, and so on. If x=>5, the neutron has exited. If x < 5 for all eight collisions,

the wall has shielded the area from that particular neutron. The figures below justify our
mathematical analysis (Figures 3 and 4):
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Lead wall
Y
1
1.8,
1
- 1
. lvnit = .
Entrance 6 1 Exit
Side 1 6, Side
--------- 1
Neutron 1
0 | | | | >
1 2 3 4 5] units X
Figure 3- The neutrons penetrating a lead wall
1 unit | | 1 unit
<0 i i -0
cosf cos®

Figure 4- The neutrons travelling a unit distance

After running the program, we can say that: Exact Result = EX =5.1875% . So, 5.187% of
the neutrons can be expected to emerge from the lead wall and which is the correct answer up to
four significant digits after truncation, and that was taken from the programs’ simulations. Inside
the computer program, the variable counter counts the number of times the neutrons emerge from
the other side of the lead wall, and the variable N = number of iterations such that: 0< N < N;

therefore:

Approximate Result =100x

counter

% = the variable AP in the whole work.

5- The Neutron Shielding Method and the Complex Probability Paradigm Parameters

5-1- The Convergence and Divergence Probabilities

Let EX be the experiment exact result like of a multidimensional or a simple integral that is not
possible always to determine by ordinary methods or calculus or numerical deterministic methods.
And let AP be the experiment approximate result and therefore let it be the value of these random
experiments found by Monte Carlo Techniques like the neutron shielding problem.
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The absolute error in the numerical analysis method is: Abs. Error :|EX —AP|

Abs. Error| _‘EX—AP|_
EX | | EX |

AP

The relative error in the numerical method is: Rel. Error = g

-

EX -

- . : P .
In addition, the percent relative error is = 100% x and is always between 0% and 100%.

Therefore, the relative error is always between 0 and 1. Hence:

os[Mjsl if AP < EX
EX

OS—(Mjgl if AP > EX
EX

<1

OS‘EX—AP‘

EX

0<AP<EX
EX < AP <2EX

Moreover, we define the real probability by:

1- 1—£j if 0< AP <EX
AP| EX

r

_|EX=AP_ |,
EX

==
1+£1—§j if EX <AP<2EX

AP if 0< AP <EX
_] Ex
2- 2 i EX < AP <2EX
EX

= 1 —the relative error in the numerical method

= Probability and degree of the numerical method convergence in ®
= Probability and ratio of the approximate result to the exact result.
And therefore:

e

i(l—ﬁj if 0<AP<EX i(l—ﬁj if 0<AP<EX
EX EX

—i 1—£ if EX < AP <2EX i ﬁ— if EX < AP <2EX
EX EX
= The relative error in the numerical method in M

= Probability and degree of the numerical method divergence in the imaginary probability set M
since it is the imaginary complement of P..

Consequently,
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AP

1-2"
Pm/i=1—Pr=‘1—§= APEX
A7 1 if EX < AP<2EX

EX
= The relative error in the numerical method in R
= Probability and degree of the numerical method divergence in & since it is the real complement

of P.

if 0<AP<EX

In the case where 0<AP<EX we have Ogggl =0<P <1 and we deduce also that

os[l_gjgljos P /i<l and =0<P, <i

And in the case where EX < AP <2EX :13%32 :>0£(2—§]£1:>0£Pr <1 and we

deduce also that 03(%—1}31:0£ P./i<land =0<P, <i

Therefore, if AP =0 or AP =2EX that means before the beginning of the numerical method and
the simulation, then:
P = Prob (convergence) in R =0

P. = Prob (divergence) in M = i
P._/i = Prob (divergence) in R = 1

And if AP =EX that means at the end of the simulation and the numerical method then:
P =Pron (convergence) in R =1

P_ = Prob (divergence) in M =0
P /i = Prob (divergence) in R =0

5-2- The Complex Random and Random Vector Zin€=R + M

gﬂ(l—g] if 0<AP<EX

We have Z=P, +P, = AP AP

2——— |+i| —— if EX <AP<2EX

EX EX
ﬁ if 0<AP<EX
where Re(Z) =P, = Ei 5 = the real part of Z
2——— if EX <AP<2EX
EX
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1—£ if 0<AP<EX
and Im(Z)=P, /i= APEX = the imaginary part of Z.
a—l if EX <AP<2EX

That means that the complex random vector Z is the sum in € of the convergence real probability
in & and of the divergence imaginary probability in JL.

If AP=0 or AP=2EX (before beginning of the simulation) then Przg:&:O or
poo AP 5 2BX 5 o0 and P =i[1-2P)i(1- 2 )cig—0)=i o
EX EX EX EX
p =il AP 1) i[ ZEX 1) si—1) =i therefore Z =0+i=i.
EX EX
If APz% or APngTX (at the middle of the simulation) then:
AP it 0<AP<EX EX 05 if 0< AP<EX
p_) EX _ ) 2EX
2—ﬁ if EX <AP<2EX 2—ﬂ=0.5 if EX <AP<2EX
2EX
<P =05
i(l—ﬁj if 0<AP<EX i[l—&j=0.5i if 0<AP<EX
EX 2EX
M= ap 1. (3EX
i|—-1 if EX <AP<2EX i| ———-1|=0.5i if EX <AP<2EX
EX 2EX
<P =05
therefore Z =0.5+0.5i.
If AP=EX (at the simulation end) then:
AP _EX if 0< AP <EX
R TR =h=
2——=2—-——=2-1=1 if EX <AP<2EX
EX EX

And

194



UNDER PEER REVI EW

i[1-27 if 0< AP <EX i[1-= if 0< AP <EX
B EX B EX
(20 1] ifEx<AP<2EX  |i[S-1|  if EX <AP<2EX
EX EX

0 if 0<AP<EX
{O if EX < AP <2EX
<P, =0

therefore Z =1+0i =1.

5-3- The Degree of Our Knowledge of the Random Experiment DOK

We have:
DOK =|Z[ =P+ (P, /i)*

2 2
(gj if 0<SAP<EX (1—%) if 0<AP<EX

2 2
2—ﬁ if EX <AP<2EX E—l if EX <AP<2EX
EX EX

2 2
(g} +(1—§j if 0<AP<EX
- 2 2
2—ﬁ + AP _ if EX <AP<2EX
EX EX
2
2(%) —2[§j+1 if 0<AP<EX
- 2
2(%) —6[§j+5 if EX <AP<2EX

From CPP we have that 0.5< DOK <1 then if DOK =0.5

2
2 AP -2 AP +1=0.5 if 0<AP<EX
EX EX

2
2 AP -6 AP +5=05 if EX < AP <2EX
EX EX

then solving the two second-degree equations for g gives:

AP

Ex 2 MM0=AP<EX {AP:EX/Z if 0< AP <EX
<~
= i <
gzyz £ Ex < AP<oEx  |AP=3EX/2  if EX<AP<2EX
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and vice versa.

That means that DOK is minimum when the approximate result is equal to half of the exact result
if 0< AP <EX or when the approximate result is equal to three times the half of the exact result
If EX < AP <2EX, that means at the middle of the simulation.

In addition, if DOK =1 then:

2
2(£j —2[£)+1=1 if 0< AP <EX
EX EX
= 2
o AP ) e[ AP )i521  if EX < AP <2EX
EX EX
2
APY (APY 4 if 0< AP <EX
EX EX
A 2
2(£) —6(£j+4:0 if EX < AP < 2EX
EX EX
AP=0 OR AP = EX if 0< AP <EX
<
AP=2EX OR AP=EX if EX < AP <2EX

and vice versa.

That means that DOK, which is the degree of our knowledge of the random experiment, is
maximum and is equal to 1 when the approximate result is equal to EX that means when it is
equal to the exact result (at the end of the simulation) or 0 or 2EX (before the beginning of the
simulation). We can deduce that we have total and perfect knowledge of the random experiment
at the end of the simulation after the convergence of the numerical method to the exact result and
hence when relative error is 0 = 0% and as well as before the beginning of the simulation since no
randomness was introduced yet and thus when relative error is 1 = 100%.

5-4- The Chaotic Factor Chf

We have:
AP it 0< AP < EX i(l—gj if 0< AP <EX
Chf = 2iPP, = 2ix Eip x
2_ AP it Ex<ap<2ex il AP if EX < AP < 2EX
EX EX

since i =—1 then:
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—2(%)(1—%) if 0<AP<EX
Chf = AP\( AP
—2(2——}(—— j if EX < AP <2EX
EX J\ EX
From CPP we have that —0.5<Chf <0 then if Chf =-0.5
-2 E 1—£ =-05 if 0<AP<EX
EX EX
-2 Z—E ﬁ—1 =-05 if EX < AP <2EX
EX J\ EX
- AP=EX/2 if 0< AP <EX
AP =3EX /2 if EX < AP <2EX

and vice versa.

That means that Chf is minimum when the approximate result is equal to half of the exact result
if 0< AP <EX or when the approximate result is equal to three times the half of the exact result
If EX < AP <2EX|, that means at the middle of the simulation.

In addition, if Chf =0 then:

o AP AP g if 0< AP <EX
Ex I EX
o2 APAP 100 if EX < AP < 2EX
EX | EX
AP=0 OR AP = EX if 0< AP <EX
AP=2EX OR AP=EX  if EX < AP < 2EX
s o [ AP=0OR AP-EX TOSAPSEX
nd, CONVETSELY. T Y Ap—2EX OR AP=EX  if EX <AP<2EX o~ =4

That means that Chf is equal to 0 when the approximate result is equal to EX that means when it
is equal to the exact result (at the end of the simulation) or 0 or 2EX (before the beginning of the
simulation).

5-5- The Magnitude of the Chaotic Factor MChf

We have:
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MChf =|Chf |=—2iP,P,

— if 0<AP<EX
EX
X
AP

2—E if EX<AP<2EX i| —-1 if EX <AP<2EX
EX EX

i(l—ﬁj if 0<AP<EX
EX

since i2 =—1 then:

2(%)[1-%} if 0< AP <EX
Mcht = AP \( AP
o[ 2 AP AP 4 if EX < AP < 2EX
Ex J\EX

From CPP we have that 0 < MChf <0.5 then if MChf =0.5

2 AP 1—£ =05 if 0<AP<EX
EX EX
2 2—E AP _ =05 if EX <AP<2EX
EX JLEX

AP =EX /2 if 0<AP<EX
AP =3EX /2 if EX <AP<2EX

and vice versa.

That means that MChf is maximum when the approximate result is equal to half of the exact result
if 0< AP <EX or when the approximate result is equal to three times the half of the exact result
If EX < AP <2EX, that means at the middle of the simulation. This implies that the magnitude
of the chaos (MChf) introduced by the variables used in the numerical method is maximum at the

halfway of the simulation.

In addition, if MChf =0 then:

2 AP 1—£ =0 if 0<AP<EX
EX EX
2 Z—E ﬁ—1 =0 if EX <AP<2EX
EX JLEX
AP =0 OR AP =EX if 0<AP<EX
AP =2EX OR AP =EX if EX <AP<2EX

s o | AP=0 OR AP=EX fOSAPSEX
nd, CONVEISEY. T Y AP 2EX OR AP=EX  if EX <AP<2EX " e
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That means that MChf is minimum and is equal to O when the approximate result is equal to EX

that means when it is equal to the exact result (at the end of the simulation) or 0 or 2EX (before
the beginning of the simulation). We can deduce that the magnitude of the chaos in the random
experiment is null at the end of the simulation after the convergence of the numerical method to
the exact result and when randomness has finished its task in the numerical method and experiment
as well as before the beginning of the simulation since no randomness was introduced yet.

5-6- The Probability Pc in the Probability Set C =R + M
We have from CPP:

Pc? = DOK —Chf = DOK + MChf

2
2£ —2£+1 if 0<AP<EX
EX EX
- 2
2 Ej —6(£j+5 if EX < AP <2EX
EX EX
-2 ﬁ 1—£ if 0<AP<EX
EX EX
-2 Z—E E—1 if EX <AP<2EX
EX J\ EX

< Pc?=1 for 0< AP <2EX

N if 0<AP<EX
1 if EX < AP <2EX

< Pc =1=Probability and degree of convergence in €, therefore:

AP .
oe_| EX =1 It 0< AP <EX {AP:EX if 0< AP <EX
= =
= i <
2_2;’ 1 i Ex<Ap<sEx  LAP=EX if EX <AP<2EX

< AP=EX for 0< AP <2EX continuously in the probability set ¢ = R + M. This is due to
the fact that in C we have subtracted in the equation above from our knowledge DOK the chaotic
factor Chf and consequently we have removed chaos introduced and caused by all the variables
and the numerical fluctuations that lead to approximate results in the numerical simulation in K.
Therefore, since in € we have always AP =EX then the simulation which is a random method by
nature in R becomes after applying the CPP a non-random method in € since the convergence
probability of any experiment in € is permanently and constantly equal to 1 for any subintervals
or iterations number N.
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5-7- The Rates of Change of the Probabilities in R, M, and €

g.pi[l—gj if 0< AP <EX
Since Z=P +P, = AP AP =Re(Z)+iIm(Z)
(2——j+i(—— J if EX < AP < 2EX
EX ) \EX
Then:
L{ﬁn(l_ﬁﬂ if 0< AP <EX
@z &  dp, | d(AP) EX EX
d(AP) d(AP) d(AP)
(AP) d(AP) d(AP) | d (2_AP]+i(AP—1] if EX < AP <2EX
d(AP) |7 Ex )T LEX
d {AP} d i[l_ﬁ) if 0< AP < EX
| dAP)LEX ] d(aP) EX
d {2—AP}+ d i(AP—] if EX < AP < 2EX
d(AP)| “ Ex | d(aP)| | EX
L 1Yy ifosAP<EX
] EX TEX EX
ol ily if EX <AP<2EX
EX EX EX
Therefore,
1 .
T e e FosAPsEX
d(AP) | d(AP) | 1

if EX <AP<2EX

_ constant >0 if 0<AP<EX and EX >0
| constant < 0 if EX <AP<2EX and EX >0

that means that the rate of change or the slope of the probability of convergence in R is
positive and constant if 0< AP <EX , and negative and constant if EX < AP <2EX, and
it depends only on EX >0 ; hence, we have a constant increase in P. (the convergence

probability which is by definition an absolute value that means always nonnegative) as a
function of the iterations or subintervals number N as AP increases from 0 to EX and as
AP decreases from 2EX to EX till P. reaches the value 1 that means till the random

experiment convergesto EX .
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And =
n constant > 0 if 2EX <AP<EX and EX <0

that means that the slope of the probability of convergence in R or its rate of change is
constant and negative if EX < AP <0, and constant and positive 2EX < AP <EX , and it

depends only on EX <0 ; hence, we have a constant increase in P. as a function of the

iterations or subintervals number N as AP decreases from 0 to EX and as AP increases
from 2EX to EX till P. reaches the value 1 that means till the random experiment

convergesto EX .

{constant <0 if EX<AP<0 and EX <0

1 .
|: dz :|_1- de _d(Pm/I)_ —g if 0<AP<EX

m d(AP) | id(AP) d(AP) L

if EX <AP<2EX

constant > 0 if EX<AP<2EX and EX >0
that means that their rates of change or the slopes of the probabilities of divergence in
and M are negative and constant if 0O<XAP<EX, and positive and constant
If EX < AP <2EX, and they depend only on EX >0 ; hence, we have a constant decrease
in P, /i and P, (the divergence probabilities) as functions of the iterations or subintervals
number N as AP increases from 0 to EX and as AP decreases from 2EX to EX till
P /i and P, reach the value O that means till the random experiment converges to EX .

~ {constant <0 if 0SAP<EX and EX >0

And =
n constant < 0 if 2EX <AP<EX and EX <0

that means that the slopes of the probabilities of divergence in R and M or their rates of
change are constant and positive if EX <AP<0, and constant and negative
If 2EX < AP <EX, and they depend only on EX < 0; hence, we have a constant decrease

in P, /i and P, as functions of the iterations or subintervals number N as AP decreases
from0to EX andas AP increases from 2EX to EX till P, /i and P, reach the value 0
that means till the random experiment converges to EX .

dz [ [ drp 2+ 1 dp, T [ ar 2+ dP, /i) T’
d(AP)| | d(AP) i d(AP)| | d(AP) d(AP)
(if{—if if 0< AP <EX
EX EX

1YV (1Y
(__j +(—j if EX < AP <2EX
EX EX

{constant >0 if EX<AP<0 and EX <0

Additionally,
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2
| % |= 12+ 12= 22 for 0< AP < 2EX
d(AP)| ~ (EX)* (EX)* (EX)
= d_Z :ﬁzconstanbo, VEX ;
d(AP)|  [EX]

that means that its rate of change or the module of the slope of the complex probability vector Z in
€ is positive and constant and it depends only on |EX|; hence, we have a constant increase in

Re(Z) and a constant decrease in Im(Z) as functions of the iterations or subintervals number N
and as Z goes from (0, i) at N = 0 till (1,0) at the simulation end; hence, till Re(Z) =P, reaches
the value 1 that means till the random experiment converges to EX .

Furthermore, since Pc? = DOK —Chf = DOK + MChf =1 from CPP
then Pc =1= Probability and degree of convergence in €

d(Pc) _ d@®) _,
d(AP) d(AP)

and consequently:

that means that Pc is constantly equal to 1 for every value of AP, of EX , and of the iterations or
subintervals number N, that means for any random experiment and for any simulation of the
numerical methods. So, we conclude that in € we have complete and perfect knowledge of the
random experiment which has become now a non-random one since the extension in the complex
probability plane € defined by the CPP axioms has changed all random variables to non-random
variables and since we have subtracted and eliminated in the equation of Pc above chaos expressed
by Chf from DOK. Hence, randomness and chaos vanish completely and totally in the probability
setC=R+ M.

6- The Evaluation of the New Paradigm Parameters

We can deduce from what has been elaborated previously the following:

EX —AP(N)
EX

We have 0< N <N, where N = 0 corresponds to the instant before the beginning of the random

experiment when AP(N =0)=0 or =2EX, and where N =N, (iterations number needed for

the method convergence) corresponds to the instant at the end of the random experiments and
Monte Carlo methods when AP(N =N.) — EX.

The real convergence probability: P.(N)=1—

The imaginary complementary divergence probability: P, (N) =i |—EX _E';P(N)|
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The real complementary divergence probability: P,(N)/i= |.EX _E?(P(N)|

The complex probability and random vector:

B [ |EX=AP(N)[] . .|EX - AP(N)|
Z(N)_R(N)+Pm(N){1‘ e~ :|+I x|

The Degree of Our Knowledge:
DOK(N) =|Z(N)|" = P2(N)+[P,(N)/i]’ :{1—‘ EX _EQP(N)H +H EX _E?(P(N)H
=1+2iP,(N)P,(N) =1-2P(N)[1- P.(N)]=1-2P,(N) +2P*(N)
EX —AP(N)|+2{EX —AP(N)T
EX
DOK(N) is equal to 1 when P.(N)=P.(0)=0 and when P.(N)=P (N.)=1.

=1-2

The Chaotic Factor:
Chf (N) = 2iP, (N)P, (N) = 2P, (N)[L- P, (N)] = —2P.(N) + 2P*(N)

EX —AP(N)‘JFZ[EX —AP(N)T
EX EX
Chf (N) is null when P.(N)=P (0)=0 and when P.(N)=P.(N.)=1.

=-2

The Magpnitude of the Chaotic Factor MChf:
MChf (N) = [Chf (N)] = ~2iP, (N)P,(N) = 2P.(N) [1— P,(N)] = 2P.(N) —2P(N)
EX —AP(N)|_2{EX —AP(N)T
EX EX
MChf (N) is null when P.(N)=P (0)=0 and when P.(N)=P (N.)=1.

=2

At any iteration number N: 0< VN < N, the probability expressed in the complex probability
set Cis the following:
Pc?(N) =[R.(N)+P,(N) /i =[Z(N)[ = 2iR,(N)P,(N)

= DOK(N)—Chf (N)

=DOK(N)+MChf (N)

=1
then,

Pc2(N) =[P.(N)+ P, (N) /il = {P,(N)+[1— P.(N)]}* =12 =1 <> Pc(N) =1 always

Hence, the prediction of the convergence probabilities of the stochastic the neutron shielding
experiment in the set € is permanently certain.
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Let us consider thereafter a multidimensional integral and a stochastic experiment to simulate the
neutron shielding method and to draw, to visualize, as well as to quantify all the CPP and
prognostic parameters.

7- The C++ Algorithms of the Neutron Shielding Method
7-1- The First Algorithm with the C++ Built-in Uniform Random Number Generator

// The Neutron Shielding Algorithm with the C++ Built-in Uniform
// Random Number Generator

#include <iostream>
#include <cstdlib>
#include <ctime>
#tinclude <cmath>
#include <iomanip>

using namespace std;
const long double PI = 3.1415926535897931;

int main()
{
long int i, j, N, Nc;
long double d, alpha, counter, AP;

cout << " THE NEUTRON SHIELDING PROGRAM" << endl;
cout <«

<< "\n" << endl;

for (i = 1; i <= 10; i++)
{
srand(time(9));

Nc = 100000000; counter = 0;
for (N = 1; N <= Nc; N++)
{
d=1; j =1;
while ((j <= 10) && (d > @) && (d < 5))

{
alpha = 2 * PI * (long double) rand() / 32767;
d = d + (long double) cos(alpha);
alpha = 0;
J++;
}
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if (d »>= 5)
++counter;

}

AP = 100 * (long double) counter / Nc;
cout << fixed << setprecision(®) << "AFTER A SIMULATION OF "
<< Nc << " PARTICLES," << "\n" << "ONLY "
<< fixed << setprecision(5) << AP
<< "% OF THE NEUTRONS EMERGED FROM THE LEAD WALL"
<< "\n" << endl;

}

return 0;

}
7-2- The Second Algorithm with a Second Uniform Random Number Generator

// The Neutron Shielding Algorithm with Another Second Uniform Random
// Number Generator

#include <iostream>
#tinclude <cstdlib>
#include <ctime>
#tinclude <cmath>
#include <iomanip>

using namespace std;

long double generate(long double, long double);
long double total();

const long double PI = 3.1415926535897931;
const long double BOUND = 2147483647,

int main()

{
long double Nc, summation;
int c;
cout << " THE NEUTRON SHIELDING PROGRAM" << endl;
cout <<

<< "\n" << endl;

Nc = 100000000,
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for (c = 1; c <= 10; c++)

{
summation = (long double) total();
cout << fixed << setprecision(®) << "AFTER A SIMULATION OF "
<< Nc << " PARTICLES," << "\n" << "ONLY "
<< fixed << setprecision(5) << summation
<< "% OF THE NEUTRONS EMERGED FROM THE LEAD WALL"
<< "\n" << endl;
}
return 0;
}
long double gen(long double xnl, long double xn2)
{
long double xn;
xn = (long double) fmod(((1999 * xnl) + (4444 * xn2)), BOUND);
return xn;
}
long double total(void)
{

long int N, Nc, counter = 0;
long double sxnl = @, sxn2 =0, d = 0, j = 0, random = 0,
alpha = 9, AP = 0;

srand(time(9));
sxnl = rand();
sxn2 = rand();

Nc = 100000000;
for (N = 1; N <= Nc; N++)
{
d=1; j=1;
while ((j <= 10) && (d > @) && (d < 5))

{
random = gen(sxnl, sxn2);
alpha = 2 * PI * (long double) random / BOUND;
d = d + (long double) cos(alpha);
alpha = 0;
sXn2 = sxnl;
sxnl = random;
J++;
}
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if (d »>= 5)
++counter;

}

AP = 100 * (long double) counter / Nc;

return AP;

}

7-3- The Third Algorithm with a Third Uniform Random Number Generator

// The Neutron Shielding Algorithm with Another Third Uniform Random
// Number Generator

#include <iostream>
#include <cstdlib»>
#tinclude <ctime>
#include <cmath>
#include <iomanip>

using namespace std;

long double generate(long double, long double);
long double total();

const long double PI = 3.1415926535897931;
const long double BOUND = 2147483647,

int main()

{
long double Nc, summation;
int c;
cout << " THE NEUTRON SHIELDING PROGRAM" << endl;
cout <<

<< "\n" << endl;

Nc = 100000000;
for (c = 1; c <= 10; c++)

{
summation = (long double) total();

cout << fixed << setprecision(®) << "AFTER A SIMULATION OF "
<< Nc << " PARTICLES," << "\n" << "ONLY "
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<< fixed << setprecision(5) << summation
<< "% OF THE NEUTRONS EMERGED FROM THE LEAD WALL"
<< "\n" << endl;

}

return 9;

}

long double gen(long double xn1l)
{

long double xn;
xn = (long double) fmod(((69069 * xnl) + 1), BOUND);
return xn;

}

long double total(void)
{

long int N, Nc, counter
long double sxnl = 0, d
AP = 0;

0;
0, j = 0, random = 0, alpha = 9,

srand(time(9));
sxnl = rand();

Nc = 100000000;
for (N = 1; N <= Nc; N++)
{
d=1; j =1;
while ((j <= 10) && (d > 0) && (d < 5))
{
random = gen(sxnl);
alpha = 2 * PI * (long double) random / BOUND;
d = d + (long double) cos(alpha);
alpha = 0;
sxnl = random;
J++;

}

if (d >= 5)
++counter;

}

AP = 100 * (long double) counter / Nc;

return AP;
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8- Flowchart of the Complex Probability and the Neutron Shielding Prognostic Model
The following flowchart summarizes all the procedures of the proposed complex
probability prognostic model:

I
I
I
I
I
I
I
I
I
I
I
d
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9- Simulation of the New Paradigm

Note that all the numerical values found in the simulations of the new paradigm for any iteration
cycles N were computed using the 64-Bit MATLAB version 2024 software. In addition, the reader
should take care of the rounding and truncation errors since all numerical values in the solution of
the problem are represented by at most five significant digits and since we are using the neutron
shielding method of simulation which gives approximate results subject to random effects and
fluctuations. We have considered for this purpose a high-capacity computer system: a workstation
computer with parallel microprocessors, a 64-Bit operating system, and a 64-GB RAM.
Additionally, we have replaced in all the simulations AP(N) by AP(N)/4 and EX by EX/4to

better see and read the simulations and to fit all the data and figures in a nicer and improved view.
9-1- The Uniform Random Numbers Generator Case

We will use in the first case in the solution of the neutron shielding problem the uniform random
numbers generator:  (random, ¢, d) — U (0,10)

counter

< AP(N) =%x100>< % with 1< N < N, after applying the neutron shielding method.

Moreover, the three figures (Figures 5-7) show the increasing convergence of the neutron shielding
method and simulation to the exact result EX =5.1875/4=1.296875=1.2969% for N = 1000,
30000, and N, =400000 iterations. Therefore, we have:

lim P.(N) = lim {1_‘EX —AP(N)|}:1_|EXE—XEX

N —-+o0 N —-+o0 EX | |

convergence probability of the neutron shielding method as N — +oo.

=1-0=1 which is equal to the

Additionally, Figure 8 illustrates clearly and visibly the relation of the neutron shielding method
to the complex probability paradigm with all its parameters (
Chf,MChf, DOK, EX, AP,P,P./i,Pc).

LIS}
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1 5% CPP and Neutron Shielding - The Uniform Random Generator
.500 T T T T T T T T T

12069% F —————————————————————— — — — -y

1% - :

AP and EX

0.5% a

0% | | | 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

Number of iterations N
Figure 5- The increasing convergence of the neutron shielding algorithm up to N = 1000
iterations with the Uniform random number generator.

CPP and Neutron Shielding - The Uniform Random Generator

1.4% T T

1.2969%

1.2%
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AP and EX

0.4%

0.2%

0% I I I I !
0 0.5 1 1.5 2 2.5 3

Number of iterations N x10*

Figure 6- The increasing convergence of the neutron shielding algorithm up to N = 30,000
iterations with the Uniform random number generator.
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14 CPP and Neutron Shielding - The Uniform Random Generator

12069% - —————— ——— —————— e ——
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1% - 1

0.8% [ a

0.6% [ a

AP and EX

0.4% - 8

0.2% [ a

O% 1 1 1 1 1 |
0 0.5 1 1.5 2 2.5 3 3.5 4

Number of iterations N x10°
Figure 7- The increasing convergence of the neutron shielding algorithm up to N = 400,000
iterations with the Uniform random number generator.

VI11-2-1 The Complex Probability Cubes

In the first cube (Figure 9), the simulation of DOK and Chf as functions of each other and
of the iterations N for the neutron shielding problem can be seen. The thick line in cyan is the
projection of Pc2(N) = DOK(N) — Chf(N) = 1 = Pc(N) on the plane N = 0 iterations. This line starts
at the point J (DOK =1, Chf = 0) when N = 0 iterations, reaches the point (DOK = 0.5, Chf =-0.5)
when N = 200,000 iterations, and returns at the end to J (DOK =1, Chf = 0) when N = N¢ = 400,000
iterations. The other curves are the graphs of DOK(N) (red) and Chf(N) (green, blue, pink) in
different planes. Notice that they all have a minimum at the point K (DOK = 0.5, Chf = -0.5,
N = 200,000 iterations). The point L corresponds to (DOK = 1, Chf = 0, N = Nc¢ = 400,000
iterations). The three points J, K, L are the same as in Figure 8.

In the second cube (Figure 10), we can notice the simulation of the convergence probability
Pr(N) and its complementary real divergence probability Pm(N)/i in terms of the iterations N for
the neutron shielding problem. The thick line in cyan is the projection of Pc2(N) = Pr(N) + Pm(N)/i
=1 =Pc(N) on the plane N = 0 iterations. This line starts at the point (Pr = 0, Pm/i = 1) and ends at
the point (Pr = 1, Pw/i = 0). The red curve represents Pr(N) in the plane P+(N) = Pm(N)/i. This curve
starts at the point J (Pr = 0, Pn/i =1, N = 0 iterations), reaches the point K (Pr = 0.5, Pm/i = 0.5,
N = 200,000 iterations), and gets at the end to L (Pr = 1, Pm/i = 0, N = Nc = 400,000 iterations).
The blue curve represents Pm(N)/i in the plane P+(N) + Pm(N)/i = 1. Notice the importance of the
point K which is the intersection of the red and blue curves at N = 200,000 iterations and when
Pr(N) = Pm(N)/i = 0.5. The three points J, K, L are the same as in Figure 8.
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In the third cube (Figure 11), we can notice the simulation of the complex random vector
Z(N) in € = R + M as a function of the real convergence probability Pr(N) = Re(Z) in R and of its
complementary imaginary divergence probability Pm(N) = ixIm(Z) in M , and this in terms of the
iterations N for the neutron shielding problem. The red curve represents Pr(N) in the plane
Pm(N) = 0 and the blue curve represents Pm(N) in the plane P:(N) = 0. The green curve represents
the complex probability vector Z(N) = P«(N) + Pm(N) = Re(Z) + ixIm(Z) in the plane
Pr(N) = iPm(N) + 1. The curve of Z(N) starts at the point J (Pr =0, Pn=1, N = 0 iterations) and ends
at the point L (Pr = 1, Pm = 0, N = Nc = 400,000 iterations). The thick line in cyan is
Pr(0) = iPm(0) + 1 and it is the projection of the Z(N) curve on the complex probability plane whose
equation is N = O iterations. This projected line starts at the point J (Pr =0, Pm=1, N = 0 iterations)
and ends at the point (Pr = 1, Pm = 0, N = 0O iterations). Notice the importance of the point K
corresponding to N = 200,000 iterations and when Py = 0.5 and Py = 0.51. The three points J, K, L
are the same as in Figure 8.

4 CPP and Neutron Shielding - The Uniform Random Generator

12069 ————————————————— e ——————————— — —
12+ .
L

Chf, Pr, AP, MChf, DOK, Pm /i, Pc, and EX

0 ——— MChf
— DOK
0.2 ———Pm/i .
04 F —— - EX i
05+ ECZ i
_06 | I | | | | I
0 0.5 1 1.5 2 2.5 3 3.5 4
Number of iterations 0 <N <N, , U(0,10) x10°

Figure 8- The CPP parameters and the neutron shielding algorithm with the Uniform random
number generator.
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Chf

DOK and Chf in Terms of N and of each Other
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DOK 05 0 Number of iterations N

Figure 9- DOK and Chf in terms of N and of each other for the neutron shielding algorithm with

%10°

Number of iterations N

P /i 0 o P

m
Figure 10- Pr and Pw/i in terms of N and of each other for the neutron shielding algorithm with
the Uniform random number generator.

the Uniform random number generator.

The Probabilities Pr , Pr|1 I i for the Uniform Random Generator
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The Probabilities Pr , Pm , and Z for the Uniform Random Generator

—_— P
r

T —FP., ~_
<10°

Number of iterations N

i x Im(Z) = Pm D. “o ‘ RE(Z) = Pr

Figure 11- The Complex Probability Vector Z in terms of N for the neutron shielding algorithm
with the Uniform random number generator.

9-2- The Gaussian and Normal Random Numbers Generator Case
We will use in the second case in the solution of the neutron shielding problem the Gaussian
and normal random numbers generator:

(random, o, d) — N (4=0,0=1)

counter

< AP(N) =%x100>< % with 1< N < N, after applying the neutron shielding method.

Moreover, the three figures (Figures 12-14) show the increasing convergence of the neutron
shielding method and simulation to the exact result EX =5.1875/4=1.296875=1.2969% for
N = 1000, 30000, and N, =400000 iterations. Therefore, we have:

lim P.(N)= lim 1_‘EX—AP(N)I _1 |EX-EX
" o EX | 7| Ex

convergence probability of the neutron shielding method as N — +o0.

=1-0=1 which is equal to the

Additionally, Figure 15 illustrates clearly and visibly the relation of the neutron shielding
method to the complex probability paradigm with all its  parameters
(Chf,MChf , DOK, EX, AP, P, P, /i, Pc) after applying it to this method.
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CPP and Neutron Shielding - The Normal Random Generator
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Number of iterations 0 < N < NC , =0, o=1

Figure 12- The increasing convergence of the neutron shielding algorithm up to N = 1000

iterations with the Gaussian and normal random number generator.
CPP and Neutron Shielding - The Normal Random Generator
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Figure 13- The increasing convergence of the neutron shielding algorithm up to N = 30,000
iterations with the Gaussian and normal random number generator.
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1+ 4 CPP and Neutron Shielding - The Normal Random Generator
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Figure 14- The increasing convergence of the neutron shielding algorithm up to N = 400,000
iterations with the Gaussian and normal random number generator.

4 CPP and Neutron Shielding - The Normal Random Generator
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Figure 15- The CPP parameters and the neutron shielding algorithm with the Gaussian and
normal random number generator.
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9-3- The Poisson Random Numbers Generator Case
We will use in the third case in the solution of the neutron shielding problem the Poisson random
numbers generator:

(random, &, d) > P (1 =5.68)

counter

< AP(N) =%><100>< % with 1< N < N, after applying the neutron shielding method.

Moreover, the three figures (Figures 16-18) show the increasing convergence of the neutron
shielding method and simulation to the exact result EX =5.1875/4 =1.296875=1.2969% for N
= 1000, 30000, and N. =400000 iterations. Therefore, we have:

lim P.(N) = lim J1—[EX=APMN)| _, |EX ~EX
N —>+o0 N —>+o0 EX | |

convergence probability of the neutron shielding method as N — +o0.

=1-0=1 which is equal to the

Additionally, Figure 19 illustrates clearly and visibly the relation of the neutron shielding method
to the complex probability paradigm with all its parameters (
Chf , MChf, DOK, EX, AP, P, P, /i, Pc) after applying it to this method.

sy

CPP and Neutron Shielding - The Poisson Random Generator
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Number of iterations N, )\ =5.68
Figure 16- The increasing convergence of the neutron shielding algorithm up to N = 1000
iterations with the Poisson random number generator.
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CPP and Neutron Shielding - The Poisson Random Generator
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Figure 17- The increasing convergence of the neutron shielding algorithm up to N = 30,000

iterations with the Poisson random number generator.

4 CPP and Neutron Shielding - The Poisson Random Generator
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Figure 18- The increasing convergence of the neutron shielding algorithm up to N = 400,000
iterations with the Poisson random number generator.

219



UNDER PEER REVI EW

14 CPP and Neutron Shielding - The Poisson Random Generator
. T T T T T T T

12969 - ————————
121 1
L

Chf, Pr, AP, MChf, DOK, Pm /i, Pc, and EX

—— DOK
02F ———Pm/i .
04| —— - EX i
05 P .
_06 1 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4
Number of iterations 0 < N < N, . A=568 %10°

Figure 19- The CPP parameters and the neutron shielding algorithm with the Poisson random
number generator.

9-4- The Weibull Random Numbers Generator Case
We will use in the fourth case in the solution of the neutron shielding problem the Weibull random
numbers generator:

(random,,d) > W (a=1Lb=2)

counter

< AP(N) =%x100>< % with 1< N < N, after applying the neutron shielding method.

Moreover, the three figures (Figures 20-22) show the increasing convergence of the neutron
shielding method and simulation to the exact result EX =5.1875/4=1.296875=1.2969% for N
= 1000, 30000, and N, =400000 iterations. Therefore, we have:

lim P.(N) = lim J1—[EX=APMN)| _, |EX ~EX
o N EX || | EX

convergence probability of the neutron shielding method as N — +o0.

=1-0=1 which is equal to the

Additionally, Figure 23 illustrates clearly and visibly the relation of the neutron shielding method
to the complex probability paradigm with all its parameters
(Chf,MChf , DOK, EX, AP, P, P, /i, Pc) after applying it to this method.
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+ 6 CPP and Neutron Shielding - The Weibull Random Generator
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Figure 20- The increasing convergence of the neutron shielding algorithm up to N = 1000
iterations with the Weibull random number generator.

CPP and Neutron Shielding - The Weibull Random Generator

1.4%

1.2969%

1.2%

1%

0.8%

0.6%

AP and EX

0.4%

0.2%

0% 1 1 1 | 1
0 0.5 1 1.5 2 2.5 3

Number of iterations N, a=1, b=2 x10%
Figure 21- The increasing convergence of the neutron shielding algorithm up to N = 30,000
iterations with the Weibull random number generator.
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4 CPP and Neutron Shielding - The Weibull Random Generator
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Figure 22- The increasing convergence of the neutron shielding algorithm up to N = 400,000

iterations with the Weibull random number generator.
CPP and Neutron Shielding - The Weibull Random Generator
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Figure 23- The CPP parameters and the neutron shielding algorithm with the Weibull random
number generator.
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10- Conclusion and Perspectives

In the current research chapter, the original extended Kolmogorov model of eight axioms
(EKA) was connected and applied to the classical and random neutron shielding numerical
technique. Thus, a tight link between the neutron shielding algorithms and the novel paradigm was
executed. Accordingly, the model of "Complex Probability” was more expanded beyond the scope
of my earlier research studies on this subject.

Also, as it was verified and demonstrated in the original model, when N = 0 (before the
random simulation beginning) and when N = N¢ (when the neutron shielding algorithm converges
to the exact result) then the degree of our knowledge (DOK) is 1 and the chaotic factor (Chf and
MChf) is 0 since the stochastic effects and fluctuations have either not commenced yet or they
have terminated their task on the random experiment. During the course of the nondeterministic
experiment (N > 0) we have: 0.5 <DOK <1, -0.5 < Chf <0, and 0 < MChf < 0.5. We notice that
during this entire process we have continually and incessantly Pc? = DOK — Chf = DOK + MChf
=1 = Pc, that means that the simulation which looked to be random and nondeterministic in the
set R is now deterministic and certain in the set € = R + M, and this after adding the contributions
of M to the experiment happening in R and thus after removing and subtracting the chaotic factor
from the degree of our knowledge. Additionally, the probabilities of convergence and divergence
of the random neutron shielding procedure that correspond to each iteration cycle N have been

determined in the three sets of probabilities which are R, M, and Cby P,, P, , and Pc respectively.

Subsequently, at each instance of N, the novel neutron shielding technique and CPP parameters
EX,AP,P:, P,, P, /i, DOK, Chf, MChf, Pc, and Z are perfectly and surely predicted in the set

of complex probabilities € with Pc kept as equal to 1 continuously and forever.

Furthermore, using all these shown simulations and obtained graphs all over the entire
research chapter, we can visualize and quantify both the certain knowledge (expressed by DOK
and Pc) and the system chaos and stochastic influences and effects (expressed by Chf and MChf)
of the neutron shielding algorithms. This is definitely very wonderful, fruitful, and fascinating and
demonstrates once again the advantages of extending the five axioms of probability of
Kolmogorov and thus the benefits and novelty of this original theory in applied mathematics and
prognostics that can be called verily:

"The Complex Probability Paradigm®.

Moreover, it is important to state here that four essential and very well-known random
numbers generators were taken into consideration in the current chapter which are the uniform,
Gaussian, Poisson and Weibull random numbers generators, knowing that the original CPP model
can be applied to any generator of random numbers that exist in literature. This will lead certainly
to analogous results and conclusions and will confirm without any doubt the success of my
innovative theory.

As a prospective and future challenges and research, we intend to more develop the novel
conceived prognostic paradigm and to apply it to a diverse set of nondeterministic events like for
other stochastic phenomena as in the classical theory of probability and in stochastic processes.
Additionally, we will implement CPP to the field of prognostic in engineering and also to other
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scientific problems which have huge consequences when applied to economics, to chemistry, to
physics, to pure and applied mathematics.

Data Availability

The data used to support the findings of this study are available from the author upon request.
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