UNDER PEER REVI EW

An ameliorated Round Robin algorithm in the cloud computing
for task scheduling

Article Info ABSTRACT

Cloud computing is an advanced technology that offers types of assistance
on requests. Because of the huge measure of requests got from cloud clients,
all requests should be managed efficiently. Therefore, the task scheduling is
critical in cloud computing. The provision of computational resources in
cloud is controlled by a cloud provider. It is necessary to design high-
efficiency scheduling algorithms that are compatible with the corresponding
computing paradigms. This paper introduces a new task scheduling method
Keywords: for cloud computing called an ameliorated Round Robin algorithm (ARRA).
The proposed algorithm develops an optimal time quantum based on the
average of task burst time using fixed and dynamic manners. The
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algorithm ) experimental results showed that the ARRA significantly outperformed other
Average turngrour]d time algorithms including improved RR, enhanced RR, dynamic time quantum
Average waiting time approach (ARR) and enhanced RR (RAST ERR) in terms of the average
Cloud computing waiting time, average turnaround time and response time.
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1. INTRODUCTION

Cloud computing is a new computing technology that represents a significant step forward in the
development and deployment of a growing variety of applications. Cloud computing is a model built on the
use of clouds. The cloud is a collection of software and hardware that work together to provide various
aspects of computing to the end-user as online services [1]. Cloud computing applications may be accessed
anytime and from anywhere [2]. Many popular services and websites are hosted in the cloud [3], [4]. Task
scheduling is one of the main issues with cloud computing [5]. It means using an efficient algorithm to map
the tasks of the clients to the available and appropriate resources [6], [7]. Scheduling n tasks on m resources
is characterized as an NP-hard problem with O (mn) run time complexity [8]. So it is important to use an
effective task scheduling algorithm to enhance the performance of the system [8]. In a cloud computing
system, three different task scheduling techniques are available: i) traditional algorithms [9], [10], like Round
Robin (RR) [11], ii) heuristic algorithms, like (MCT), (MET) [12] and max-min [13], and iii) meta-heuristic
algorithms, like ACO [14], PSO [15] and GA [16]. The RR algorithm is a popular scheduling algorithm in
the cloud computing [17], [18].

The RR algorithm [19]: it is a preemptive algorithm [10]. It works well in time sharing [20]. For
interactive users, these environments must ensure reasonable response times. In the RR scheduling algorithm,
every process in the ready queue receives a time slice (time quantum (TQ)) [21]. The current process is
placed at the end of this ready queue when the TQ expires. RR decreases the average turnaround time (ATT)
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and average waiting time (AWT) [6]. The most significant issue with the RR method is the TQ length [19],
[22]. Setting a TQ too short causes too many context switches, which lowers CPU efficiency. And on the
other hand, if the TQ is set too long, the algorithm trends toward the FCFS algorithm and may result in a
slow response time. So, it is important to enhance the RR algorithm to reduce AWT, ATT and response time.

The main contribution of this paper is to improve the RR algorithm by enhancing the TQ in cloud
computing for solving task scheduling problem. A novel algorithm for changing TQ in a progressive manner
at various states of the ready queue is proposed. A mathematical model has been created to prove that the
proposed algorithm outperforms the traditional RR algorithm in terms of several performance metrics such as
AWT, ATT and response time (ART). According to the experimental results, the proposed improved version
of the RR algorithm outperforms the traditional RR algorithm. This proposed algorithm solves the problem
by using a progressive TQ, which is based on the average task burst time using fixed and dynamic manners.
Furthermore, the processes are sorted in ascending order of their burst time, and then the proposed algorithm
is applied to each process to improve turnaround time, waiting time and response time. In comparison to the
other RR techniques discussed in this work, the drawbacks of the discussed algorithms like Improved RR
[23], enhanced RR [24], ARR [25] and enhanced RR (RAST ERR) [26] are that they give a large AWT, ATT
and ART. The contribution of this work is to: i) minimize AWT, ii) minimize ATT, iii) minimize response
time. This paper is divided into six sections. The related work is in section 2, the proposed algorithm in
section 3, the method in section 4 and the results in section 5. The conclusion in section 6.

2. RELATED WORK

According to Sangwan et al. [23], an improved RR algorithm is proposed. At the arrival of the
CPU's arbitrary requests, the method calculates the mean of the burst time. The TQ is the mean of the burst
times. The first process in the queue is selected, and the CPU is allocated for the chosen TQ. Then the
remaining burst times are moved to the tail of the ready queue [21]. Sometimes the first process is too large
and the rest processes are too small, so the response time decreases which causes an increase in waiting time
and turnaround time. Research by Mittal et al. [24], an enhanced RR algorithm is offered. It consists of two
other existing algorithms, namely (resource allocation scheduling algorithm) RASA and (shortest job first)
SJF. SJF coordinates all procedures in the prepared line to minimize burst time, and RASA aids in preventing
system starvation and reducing response time for larger tasks. The TQ is updated after each cycle using the
same hybrid algorithm.

According to Pradhan et al. [4], a modified RR algorithm is suggested. This algorithm starts with a
time equal to the burst time of the first request, which changes once it is completed. The algorithm calculates
the average of the requests waiting in the ready queue, including the newly arrived request. The disadvantage
of this algorithm is that if the first processes are too small, it will cause many context switches and therefore
will increase the AWT and ATT. According to Fataniya and Patel [25], a dynamic time quantum approach
(ARR) to improve the RR is presented here. It is based on the MRRA [4] and SRBRR [27] algorithms. It has
been offered to improve cloud computing resource allocation. It is a dynamic RR in which the TQ is always
changing. TQ is calculated as the sum of the mean and median divided by two for each round. The
disadvantage of this algorithm is that if the first processes are too small, it will cause many context switches
and therefore will increase the average waiting time and ATT. Mora et al. [28] offered another RR algorithm
called modified median RR algorithm (MMRRA). The TQ is dynamically allocated by determining a
modified median of tasks. Mayuree et al. [28] introduced a RR based on remaining time and a median
algorithm (RR_RT&M). Based on remaining time and task median, the TQ is modified. If the number of
tasks is less than or equal to 3, the TQ is the maximum remaining time of task. Otherwise, TQ is the median
of task time [29].

According to Tani and Amrani [30], a variant on RR (VORR), which is one of the improvements of
the RR algorithm. It effectively exploits the CPU by setting up an effective TQ based on the median of burst
times. Hicham et al. [30] introduced a smarter SRR algorithm which uses the concept of RR but the TQ is
changed dynamically depending on the number of tasks in a queue [31]. The SJF algorithm is used to
distribute the time if there are fewer than or equal to three tasks. However, it utilizes the average of the burst
time of tasks if the number of tasks is larger than 3 and even. Otherwise, it uses the median of task burst time
instead. According to Stephen et al. [26], an enhanced RR algorithm (RAST ERR technique) that has been
suggested uses mean for dynamic time quantum. Burst time (the amount of time it takes to complete a task) is
used to compute the mean for the provided tasks and is then set as the time quantum. For the first iteration,
initial burst time and mean are used. The finished tasks will be deleted from the queue after the initial
iteration; otherwise, the next iteration will begin. The remaining burst time of the second iteration is used to
calculate the mean value and the remaining burst time for each task will determine how long it takes to
complete. Then, in the following iteration, the mean is once more determined using the remaining burst time
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for task and set as the time quantum. Until there are no tasks waiting in the queue to be completed, the
procedure of obtaining the mean and establishing the time quantum is repeated. The waiting time and task
turnaround time of the suggested method are distinguishing features.

All of the previous RR CPU scheduling enhancements have some drawbacks. The system's incoming
processes might have different burst times, which mean that their CPU execution times might also change. The
turnaround time and waiting time can be reduced if all of the processes are sent to the CPU for execution in
ascending order. The RR algorithm uses a fixed time quantum to operate (TQ). There are two results for the RR
algorithm; either time quantum is high or low. The RR method will operate on a first-come, first-served (FCFS)
basis if the time quantum is large. If the time quantum is small, the algorithm will fail and result in a significant
number of context switches. So, this paper proposes an optimal time quantum that solves this problem, which
uses fixed and dynamic manners and enhances the performance of the system by: maximizing CPU utilization,
minimizing waiting time, turnaround time and response time. Many algorithms have been developed for
enhancing RR algorithm such as improved RR [23], enhanced RR [24], ARR [25] and enhanced RR (RAST
ERR) [26]. However, these algorithms still have higher AWT, ATT and response time. The main focus of this
work is the suggestion of a novel algorithm called an ameliorated RR algorithm (ARRA) in cloud computing
that minimizes the drawbacks of the RR algorithm by raising the performance metrics by decreasing the AWT,
ATT and response time for some algorithms. This is done by choosing an optimal TQ that achieves low waiting
time, turnaround time and response time. Thus, it ends starvation. If tasks arrive at the same time, it uses a fixed
TQ and a dynamic TQ if tasks arrive at different times.

3. THE PROPOSED ALGORITHM

This study aims to improve system efficiency by introducing an ameliorated RR scheduling
algorithm by minimizing metrics like waiting time, turnaround time and response time in the cloud. To
optimize the task scheduling process, the intended algorithm has put the main focus on computing the time
quantum effectively. The ARRA uses both fixed and dynamic manners according to the task arrivals. When
the tasks arrive at the same time, a fixed TQ is applied. On the other hand, when the tasks arrive at different
times, a dynamic TQ is applied. All the processes that are present in the ready queue are arranged in an
increasing order. When two or more processes occur in the ready queue with the same burst time, they are
rearranged in the ready queue according to when they occurred. The average is then computed for all of the
tasks in the ready queue. After that, the TQ is calculated according to (1) as determined by [32]:

3 n  BT;
TQi = i=1 i

4 n (l)
Where TQ; is the time quantum for tasks, BT; is the burst time for task i and n is the number of tasks. At the
beginning, the algorithm allocates system resources to the first task in the ready queue. When the task
process or TQ length is finished, the associated mechanism verifies the statutes of the task. If the remaining
burst time for the currently executed task is less than half of the current set time quantum, the algorithm
allocates the CPU to the same task; otherwise, the task is put to the back of the queue. With minimal average
waiting and turnaround times, the newly implemented algorithm effectively enhances task scheduling. The
pseudo code for the ARRA is given below. The flowchart of the ARRA algorithm is shown in Figure 1.
1- Tasks arrive in the cloud.
2- Load distribution: load the processes in the datacenter using circular load distribution

algorithm.

For all datacenters,

3- If (ready queue! =0), then arrange all the tasks in an increasing order by their burst time in

the ready queue.
4- Calculate the average of all the burst times.
5- Consider the (TQ) to be equal to % average of burst times.
6- Assign this TQ to all tasks inserted in the ready queue.
7- If the current task has a burst time less than half of the time quantum, then allocate it

again.

Else

8- The remaining part of the current task is moved to the back of the ready queue.
9- Repeat steps 3-7 for all the tasks until the TQ expires for each one.
10-1f a new (task) arrives, then update the counter and go to step 4.
11-Calculate the (AWT), (ATT) and average response time.
12- Stop and exit.
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queue’s tail task=12T Q
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Figure 1. Flowchart of the ARRA algorithm

4. METHOD

In cloud computing, users send multiple requests at the same time. The RR task scheduling
algorithm works on both different and same arriving times. To evaluate the effectiveness of the proposed
algorithm, various tasks are applied to RR [19], improved RR [23], enhanced RR [24], ARR [25], enhanced
RR (RAST ERR) [26] and the ARRA algorithms. A comparative study among these algorithms is presented
here. The comparison criteria is restricted to AWT, ATT and response time.
The AWT is calculated as (2):

AWT=X (TAT of Pi — BT of Pj) / N 2)
The ATT is calculated as (3):
ATT=X(Ti— AT of P}) /N (3)

Where ATT of P; is the turnaround time of task P;, BT of P; is the burst time of task Pj, T; is the exit time for
task, AT of Pjis the arrival time of task and N is the number of all tasks. To test the effectiveness of the
proposed algorithm, two scenarios are used.
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4.1. Case 1 (zero arrival time)

In case 1, seven tasks which are T1, T2, T3, T4, T5, T6 and T7 are integrated with CPU burst time
and zero arrival time. These values of burst time are shown in Table 1. Figures 2-7 shows of the RR,
improved RR, enhanced RR, ARR, enhanced RR (RAST ERR) and ARRA.

Table 1. The burst time for tasks
Tasks  Burst time(ms)

T1 105
™ 60
T3 120
T4 48
T5 75
T6 160
T7 145
[ Tt | 172 ] 1 | 14 [ 715 | 716 | 77 | 71 [ 71 [ 16 [ T7 |
0 103 163 266 314 389 492 595 597 614 671 713

Figure 2. Gantt chart for RR algorithm [19]

[ 70 | 12 | 13 | 14 | 715 | 716 | 77 | 71 [ 71 [ 16 | T7 |
0 101 161 262 310 385 486 587 591 610 669 713

Figure 3. Gantt chart for improved RR algorithm [23]

[Ta]T6 [T 7] 5 [Tl T2]T6 15|17 ] 3[T15]T16][T1]T7 ] T3]
0 48 96 144 192 240 288 336 348 360 372 384 396 408 423 438 453 468 483
TQ=48 TQ=12 TQ=15

[ T | 76 | 1 [ 77 [ 7 [ 7% | 17 | 17 | 16 | 716 |
513 543 543 573 603 618 633 648 673 698 713
TQ=30 TQ=15 TQ=25 TQ=15

Figure 4. Gantt chart for the enhanced RR algorithm [24]

[Ta] T2l s a3 [T17]716e] T2 [ 13|17 [T16]T7[T6] T6 |
0 48 108 183 286 389 492 595 597 614 643 672 685 705 713
TQ=103 TQ=29 TQ=20 TQ=8

Figure 5. Gantt chart for ARR algorithm [25]

[Ta[ T2 5[ ma 13717 ]716] T1 [ 13 [ T17 [ T6 ] T7 ] T6 ] T6 |
0 48 108 183 284 385 486 587 591 610 641 672 685 705 713
TQ=101 TQ=31 TQ=20 TQ=8

Figure 6. Gantt chart for enhanced RR (RAST ERR) algorithm [26]

T4 [ T2 ] s [ ma [T T3 ]T17] 16 [ 3] 717716 ] T6 ]
0 48 108 183 258 288 363 438 513 558 628 703 713

Figure 7. Gantt chart for ARRA algorithm

The turn-around time, waiting time and response time of the ARRA algorithm for the above
example are calculated as shown in Table 2. A comparative study among the RR, Improved RR, Enhanced RR,
ARR, Enhanced RR (RAST ERR) and ARRA algorithms with respect to TQ, AWT, ATT and average response
time (ART) as shown in Table 3. Figure 8 compares the performance of the preceding algorithms using AWT,
ATT and ART.
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Table 3. Comparat

Table 2. T.A.T and W.T for ARRA algorithm
Tasks WT TAT Response time

T1 183 288 183
T2 48 108 48
T3 438 558 288
T4 0 48 0
T5 108 183 108
T6 553 713 438
T7 483 628 363

ive study of RR, improved RR, enhanced RR, ARR, enhanced RR (RAST ERR) and
ARRA algorithms (case 1)

Algorithm TQ AWT ATT ART

RR 103 39257 494.42  246.7

Improved RR 101 389.42 491.28 2435
Enhanced RR 48,12,15,30, 15,25,15 37471 47657 144

ARR 103,29,20,8 319.28 421.14 2151

Enhanced RR (RAST ERR) 101,31,20,8 317.85 419.71 2134
ARRA 75 259 360.85 204

204 234 215,

S/
AL

average response time
=R

Tasks vs Time Time (ms)
476,57 491,28 494,42
500
360,85, 7 = 389,42 387,85
o = ? — 259 319,2817,85714374 " —_— 400
1 2435 2467 B / E i E 300
= % = = w
= 7 = 7/ = 0
= v/ = EV/ =
ATT AWT
< Improved RR Il Enhanced RR  *.Enhanced RR (RAST ERR) = ARR M®ARRA

Figure 8. Comparison graph for AWT, ATT and ART for (case 1)

4.2. Case 2(non-zero arrival time)

In case 2, the tasks have non-zero arrival times in the ready queue, so a dynamic TQ is applied for
the proposed algorithm in this case. TQ is updated each round. Five tasks, which are T1, T2, T3, T4 and T5
are integrated with CPU burst time with non-zero arrival times as shown in Table 4. Figures 9-14 shows of

the RR, improved RR

, enhanced RR, ARR, enhanced RR (RAST ERR) and ARRA algorithms.

Table 4. The arrival time and burst time for tasks
Tasks  Arrival time(ms)  Burst time(ms)

T1 0 40
T2 5 25
T3 10 60
T4 15 100
T5 20 75

[Ti [ T2 ]3] T4 15 [ 13][T14] 15 | 15 |
0 40 65 105 145 185 205 240 280 300

Figure 9. Gantt chart for RR algorithm [19]

[T [ T2 3] T4 715 ] T4 ] 75 |
0 40 65 125 190 255 290 300
TQ=40 TQ=65

Figure 10. Gantt chart for improved RR algorithm [23]
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| 1 [ T2 [ [ 15[ T4 T13][75] T4 [T4[T5] T5 |
0 40 65 90 115 140 175 210 245 260 275 300
TQ=40 TQ=25 TQ=35 TQ=15

Figure 11. Gantt chart for enhanced RR algorithm [24]

| T [ T2 13|15 T4 [T5] 74 | T4 |
0 40 65 125 191 257 266 287 300
TQ=40 TQ=66 TQ=21 TQ=13

Figure 12. Gantt chart for ARR algorithm [25]

[ T [ T2 73 [15] T4 [T5] T4 | T4 |
0 40 65 125 190 255 265 287 300
TQ=40 TQ=65 TQ=22 TQ=13

Figure 13. Gantt chart for enhanced RR (RAST ERR) algorithm [26]

[ 71 [ T2 [ [ T15 ] T4 ][T5] T4 | T4 |
0 40 65 113 125 173 221 248 296 300
TQ1=40 TQ2=48

Figure 14. Gantt chart for ARRA algorithm

Turnaround time, waiting time and response time for above example of the ARRA algorithm is
calculated as shown in Table 5. Table 6 presents a comparative study among the RR, improved RR, enhanced
RR, ARR, enhanced RR (RAST ERR) and ARRA algorithms with respect to TQ, AWT, ATT and ART.
Figure 15 shows the comparison of AWT, ATT and ART for the previous algorithms in (case 2).

Table 5. T.A.T, W.T and response time for ARRA algorithm
Tasks WT TAT Response time

T1 0 40 0

T2 35 60 40
T3 135 195 65
T4 125 225 105
T5 205 280 145

Table 6. Comparative study of RR, enhanced RR, ARR, enhanced RR (RAST ERR) and ARRA algorithms (case 2)

Algorithm TQ AWT ATT ART
RR 40 100 160 71
Improved RR 40,65 94 154 84
Enhanced RR 40,25,35,15 98 158 62
ARR 40,66,21,13 89.2 149.2 84.2
Enhanced RR (RAST ERR)  40,65,22,13 89 149 84
ARRA 40, 48 85.6 1456 80.6

Tasks vs Time
Time (ms)

145 6149,214° 158 154 160 200
oo

84842 _ 84 o 85,689,2 89 98 94 10
80,6 62 °7 71 o % 100

Bznss B 21 2 B ZIEE

average response time ATT AWT
=RR < Improved RR llEnhanced RR # Enhanced RR (RASTERR) = ARR M ARRA

o

A

Figure 15. Comparison graph for AWT, ATT and ART (case 2)
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4.3. Percentage of improvements
The percentage of each performance metric improvement [29] when compared to ARRA is in (4):

Xother )—-(X )
Improvement percentage= proposed

x 100 4)

Xother

Where x is a performance metric that is AWT or ATT or ART and other refers to other algorithms that are used to
compare with ARRA. The scheduling algorithm will be improved if the AWT, ATT and ART are lower. Table 7
and Table 8 show the improvement percentage for each metric for all algorithms compared with the ARRA
algorithm in case 1 and case 2. The percentage of improvement for AWT ranges between 3.8-34.02%. Similarly,
the improvement percentage of ATT varies between 7.84-27.01% and the ART varies between 0-17.3% as shown
in Table 9. Therefore, compared to other algorithms, the ARRA performs the best in case 1 and case 2.

Table 7. Percentage of improvement for AWT comparing with ARRA algorithm
RR (%) Improved RR (%) Enhanced RR (%) ARR (%) Enhanced RR (RAST ERR) (%)
Casel 34.02 33.49 30.87 18.87 22.72
Case2 144 4.04 12.6 4.03 3.82

Table 8. Percentage of improvement for ATT comparing with ARRA algorithm
RR (%) Improved RR (%) Enhanced RR (%) ARR (%) Enhanced RR (RAST ERR) (%)
Casel 27.01 26.54 24.28 14.31 14.02
Case 2 9 2.28 7.84 2.41 2.82

Table 9. Percentage of improvement for ART comparing with ARRA algorithm
RR (%) Improved RR (%) Enhanced RR (%) ARR (%) Enhanced RR (RAST ERR) (%)
Casel 17.3 16.2 0 5.1 4.4
Case 2 0 2.28 0 4.27 4.04

4.4. Simulation

To evaluate the effectiveness of the proposed model, the benchmark was simulated using the same
parameters while using various algorithms, considering the burst time and task arrival time. A simulation is
implemented in C++ and made for the proposed algorithm(ARRA), improved RR [23], enhanced RR [24], ARR
[25], enhanced RR (RAST ERR) [26] and all of these algorithms are compared with the RR algorithm in order to
evaluate their performance. The model is a single resource in the form of virtual machines with the same random
data set. The comparison of these algorithms is based on AWT, ATT and ART. Because the number of tasks in the
ready gqueue determines average waiting and turnaround time, an increase in time results in a rise in cost.

5. RESULTS AND DISCUSSION

The experimental data used varied data sets from (2000-8000) tasks. The values of burst time tasks
are generated randomly in the range of 1-100, and all tasks arrive at the same time. Several experiments were
carried out to validate the proposed model, which is repeated numerous times while the number of tasks is
increasing. The comparison of algorithms in terms of AWT is shown in Figure 16. For tasks (2000 to 8000),
the stacked line chart is plotted. The AWT of the tasks is provided in milliseconds and plotted by the y-axis,
while the number of tasks in the ready queue is plotted by the x-axis. The proposed algorithm (ARRA) gives
better results, followed by enhanced RR (RAST ERR) [26], ARR [25], enhanced RR [24] and improved RR
[23]. A substantial improvement is given by these algorithms when compared to the RR algorithm. As the
number of tasks increases in the ready queue, the performance of the algorithms is enhanced. When
compared to RR, the enhanced RR (RAST ERR) [26], ARR [25], and enhanced RR [24] produce significant
results, while the improved RR [23] produces reasonable improvement results. Whereas the proposed
algorithm shows more significant improvement results than other algorithms. While inceasing in number of
tasks, the performance of ARRA showed an upward trend in AWT compared to other algorithms. In
comparison to suggested algorithms, the AWT for RR is consistently increasing, as seen in the line chart.

The behaviour of algorithms in terms of ATT exhibits a similar pattern to that shown in Figure 17.
For tasks (2000 to 8000), the stacked line chart is plotted. The ATT of the tasks is provided in milliseconds
and plotted by the y-axis, while the number of tasks in the ready queue is plotted by the x-axis. The proposed
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algorithm (ARRA) gives better results, followed by enhanced RR (RAST ERR) [26], ARR [25], enhanced
RR [24] and improved RR [23]. A substantial improvement is given by these algorithms when compared to
the RR algorithm. As the number of tasks in the ready queue increases, the performance of the algorithms is
enhanced. When compared to RR, the enhanced RR (RAST ERR), ARR, and enhanced RR produce
significant results, while the improved RR produces reasonable improvement results. The proposed
algorithms act similarly, however while increasing in number of tasks, the performance of ARRA showed an
upward trend in ATT compared to other algorithms. In comparison to suggested algorithms, the ATT for RR
is consistently increasing, as seen in the line chart.

== I|mproved RR == Enhanced RR === Enhanced RR (RAST ERR)
=== ARR ==ie= ARRA =0=RR

300000
£
< 200000
£
[

100000

0
2000 4000 6000 8000
Number of tasks

Figure 16. Comparative graph of AWT

= &=— RR == |[mproved RR
=-A-- Enhanced RR ==<=Enhanced RR (RAST ERR)
300000ﬁl(—ARR —@®— ARRA
“» 200000
£
g
i= 100000
0
2000 4000 6000 8000
Number of tasks

Figure 17. Comparative graph for ATT

The comparison of algorithms in terms of ART is shown in Figure 18. For tasks (2000 to 8000), the
stacked line chart is plotted. The ART of the tasks is provided in milliseconds and plotted by the y-axis,
while the number of tasks in the ready queue is plotted by the x-axis. The proposed algorithm (ARRA) gives
better results than Enhanced RR (RAST ERR), ARR, and Improved RR. A substantial improvement is given
by these algorithms when compared to the RR algorithm. As the number of tasks increases in the ready
queue, the performance of the algorithms is enhanced. When compared to RR, the enhanced RR (RAST
ERR), ARR and improved RR produce significant results, while the enhanced RR gives better results than
the proposed algorithm. Whereas the proposed algorithm shows more significant improvement results than
other algorithms. While inceasing in number of tasks, the performance of ARRA showed an upward trend in
ART compared to other algorithms.Table 10 shows the high percentage of improvement for the ARRA
compared with the benchmarked algorithms, where the proposed algorithm enhanced the AWT by
13.61-38.20% and the ATT by 13.61-38.19%. The ART is enhanced by 0-28%.
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== o« «RR = = = |mproved RR

==« Enhanced RR ARR
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Figure 18. Comparative graph for ART

Table 10. Percentage of improvement for AWT, ATT and ART comparing with ARRA

Number of

tasks RR (%) Improved RR (%) Enhanced RR (%) ARR (%) Enhanced RR (RAST ERR)

(%)

AW AT AR AW AT AR AW AT AR AW AT AR AW AT AR
N=200 378 378 188 330 330 273 376 376 0 138 138 83 13.88 13.8 8.3
N=400 382 381 192 341 340 28 378 378 0 136 136 81 13.62 13.6 8.1
N=600 381 381 183 338 338 273 378 378 0 137 136 81 13.70 13.6 8.1
N=800 359 358 20 339 339 277 363 362 0 136 136 84 13.61 13.6 8.4

5.1. Why choosing TQ=(3/4)* average?

Different ratios of average have been studied for the TQ to determine which ratio is the best.
Different random datasets have been taken; dataset 1, dataset 2 and dataset 3 where the number of tasks
n=4000, 10 and 5 tasks, with random burst times in the range (1 to 100). When taking ratios from
TQ=(0.85*average) to TQ=(1.25*average) this gives non trusted values, which might either produce high or
low AWT and ATT, or they could produce stable results with the same value as shown in Figures 19-20.
Figures 19-20 show that the resulting AWT is stable and has the same value from TQ=(1.35*average) to
TQ=1.95*average. It is obvious above that the results.

=4—dataset 1
__ 200000
£
s 100000 0 ggss s s s s s e o0
< 0

0,15 0,35 0,55 0,75 0,95 1,15 1,35 1,55 1,75 1,95

Ratios of average

Figure 19. Comparison of several average ratios in dataset 1

= dataset 2 == == dataset3

__ 400

(%]

g 200 %
— it ———
|_ O I T T T T T T T T T T T T T T T T 1
= N1 D 1D 1N 1D 1D 1) 1N 1h D D 1D N N 0 D
< J N MmN NOWOOO A NMS N ON 0O

Ratios of average

Figure 20. Comparison of several average ratios in dataset 1 and dataset 2
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Given from TQ=(1.5*average) to TQ=(1.65*average) are decreased, and the results from
TQ=(1.85*average) to TQ=(1.95 *average) are non-trusted values or have the same value. So whether the
burst times are large or small, TQ=(0.75* average) is the ideal time quantum as shown in Figure 20.

6. CONCLUSION

Task scheduling is so important in cloud computing. In this work, an ameliorated scheduling
algorithm (ARRA) has been proposed to enhance the performance metrics; AWT, ATT and ART in cloud
computing. For tasks that come at the same time and at different times, the TQ is determined. The proposed
ARRA algorithm showed that (0.75*average) is the ideal time quantum that should be allocated to the tasks
in increasing order. It is simulated and compared with the RR, Improved RR, Enhanced RR, ARR and
Enhanced RR (RAST ERR) algorithms. From the experiments, the results showed that the ARRA algorithm
has considerably reduced the AWT by 3.8-38.20% and the ATT by 2.28-38.19% compared to other
algorithms. In future work, the proposed algorithm can be modified to conclude other criteria.
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