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Chapter 1

Introduction

The law of nature is described in the language of classical logic based on the
assumption that the truth value of propositions is either true (1) or false (0).
The true (1) and the false (0) are expressions of the degree of truth, and
called truth values. Truth values 1 and 0 form a complete Boolean lattice 2

with the order relation < and operations V, A, —:
2 =({1,0} : A(and), V : (or), =(not) )

In a sense, the algebra of the 2-valued logic 2 = {1,0} represents the logo-
centric human interest. A logical counterpart of complete Boolean lattice is

called a classical logic.

Intuitionistic logic drops the law of excluded middle of classical logic,
while quantum logic replaces the full distributive law of classical logic by
a weaker distributivity. These logics are two essential non-classical logical
systems.

The usual set theory is formulated on basis of classical logic with the
axioms of set theory like that of ZFC. The whole mathematics can be for-
mulated in the set theory.

Propositions of set theory are build up starting from formulas of the form
"a € b” (a is an element of b), and then applying recursively the logical

connectives (occasionally replacing constants with variables) :
A(and), V(or), —(not), V(for all), I(exists), D (implies)

7
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Classical set theory is developed in the frame of the classical logic with
axioms which claim basic properties(like Extendibility) and existence of each
specific sets. The whole sets form the universe of set theory. The universe
of classical set theory may be reinterpreted as the class model constructed
inductively starting from the empty set ) (= ViZ), and then extending recur-
sively the part of the universe obtained sofar by adding(”classical” charac-

teristic functions of) elements of its power set.
V2 = {u]|3BcalucC Vﬁz)},
V2 = UaEOn Va2 )

where
o def

uC Vi< u:Vi-2
V2 is simply written as V.

Mathematics, the language of science, is developed in the classical set
theory.

G.Gentzen formalized a system of the classical logic, which is called LK
(cf.[3]). Formulas which represent propositions of set theory are constructed

from atomic formulas of the forms :
Uu=v Or ucv
by using logical operations :
A(and), V(or), =(not), ¥(for all), I(exists), D (implies),
where the implication D denotes the lattice operation satisfying :
a<(bDc) < anb<ec

The lattice order < for classical logic is representable as combination of
—and V :

def . 1 ifa<b < —-aVb=1
DY <<= VY since a>dDb=
0 otherwise .

Hence, the implication D is dispensable for the classical logic.
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However, the quantum physics does not follow all the rules of the classical
logic. Quantum logic is not compatible with the distributive law of the
classical logic. In particular, the truth values set of quantum logic do not
form a Boolean lattice. The algebraic counterpart of quantum logic is an
orthomodular lattice. The axiom of orthomodular lattice is obtained from

that of Boolean lattice by replacing the distributive law by the weaker law :
a<b = b=aV (bAa).

Let ) be an orthomodular lattice which is the set of truth values of an
instance of the quantum logic. Then Q-valued universe V¥ constructed in V
is the universe of the quantum set theory, in which quantum theory may be
described.

For formalization of non-classical logics, we introduce a new logical oper-

ator — called basic implication, representing :

o 1 a<b
a—b=
0 otherwise,

which should replace the classical implication D. The basic implication is a

logical operation representing the lattice order :
aimplies b <= a <b < (aib)zl.

A logic with the basic implication is called a global logic. Global set
theory is based on the global logic.
Lattice valued logic, which is a logical counterpart of complete lattice,

is formalized as a global logic. Logical operations of lattice valued logic are

V, A, 3, V and the basic implication —» .

If we introduce a logical operator [J representing :

o |1 (=avat) ifa=1
Oa <% ( )
0(=1"% otherwise



UNDER PEER REVI EW

10
then the basic implication — is replaced by using 0 and D :

o o 1 (aDb)=1
a—>b<g>|:l(a3b): ( )
0 otherwise

In §6, we construct universes of various truth value sets in the universe V.
Then, the metatheory of global set theory is subsumed in the global set
theory itself.

Axioms GZFC of global set theory is obtained from ZFC by rephrasing
in the global logic. Axioms GNBG of global von-Neumann-Bernays-Godel
set theory is a conservative extension of GZFC with the notion of class.
Global von-Neumann-Bernays-Godel set theory is developed by the global
logic based on axoims GNBG.

In §7, we deal with quantum set theory developed on the axioms GNBG
by quantum logic, which is a counterpart of complete orthomodular lat-
tice. Birkhoff and von Neumann proposed quantum logic represented by the
complete orthomodular lattice in [2].

Projections on a Hilbert space ‘H form an atomic complete orthomodu-
lar lattice with symmetry transformations, which is denoted by Q(H). An
atomic complete orthomodular lattice is called a propositional system.

The logical operators of quantum logic are :
V, A 3 Y S

A Q(H)-valued universe V@™ which is a universe of a quantum set
theory, is constructed in V. Mathematics described in the quantum universe
V@) can be reconsidered from the view point of the 2-valued universe V:
The quantum universe V@™ is an inner universe constructed in V. The
automorphisms U on H induce the symmetry transformation on Q(#), and
hence on VM) Set theory on the Q(H)-valued universe V) is called a
Hilbert quantum set theory.

A maximal compatible subset of Q(H) is a complete Boolean lattice, say
B. Then
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Q(H) has a sheaf structure Shy, B of Boolean lattice over U, and the orthomodular-
lattice-valued universe V) has the sheaf structure Shy,V? of Boolean val-

ued universe over U.

Real numbers are defined as Dedekind cuts in a Boolean valued sub-
universe V?, and represented by self-adjoint operators on H. An ‘observ-
able’ in quantum theory is represented by a real number in the quantum
universe VY Therefore, in the sheaf representation of the universe V@),

‘observables’ are represented by self-adjoint operators moving on U.

In §6 (6.4.2), we define check set. Check set is a classical member in
V@) Each set z in V corresponds to a check set & € VL), Let W be the
class of check sets & corresponding x € V. Then W is a universe of classical
set theory in V@),

W=VcveH

Since W in VO™ ig isomorphic to V, W includes various universes as if V'
includes various universes. It means that various universes are nested, i.e.

each universe is an inner universe of the others.

Since universe V is constructed from empty set () and empty set is a
subset of every set, universe V' is constructed everywhere in V.
This mysterious construction is similar to the construction of the universe

of Kegon Sutra (Avatamska Sutra).

Logical science, which is founded on the base of global classical logic, com-
prehends extensive field including quantum physics. Thus, we can observe
and describe various inner universes from the point of view of the 2-valued
universe V of classical set theory.

However, it seems to cover still only a bounded aspect of nature. We
might be able to perceive more in assimilation with the nature. The whole

nature seems to be far beyond the scope of logic.
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Chapter 2
Naive set theory

We use some symbols as abbreviations of words of informal language.
A= B: “if Athen B ”

A<= B: “ Aifandonly if B ”

ALL B ¢ Ais defined as B 7

def «

a=>b: " aisdefinedas b ”
VeA(z) : ¢ for all x, A(x) ”

drA(z) + ¢ there exists x such that A(x) ”

Propositions in a set theory is represented as formulas constructed from

atomic formulas of the form:
u€ev (uis a member of v) or w=wv (uis equal to v)
by operations A, V, =, V, 3 ;
e AP (pand ¢), @V (pord), - (not @),

Vap(x) (for all z o(x)), Fzrp(z) (¢(x) for some z).

We suppose that atomic formulas u € v, u = v are either true or false.

Then every formula is either true(1) or false(0). 1 and 0 are called truth

12
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values. The set {1,0} form a complete Boolean algebra, denoted by 2.
Logical operators A, V, -, V, d are interpreted on the complete Boolean
algebra as the corresponding Boolean operators.

Truth value of a formula ¢ is denoted by [¢].
[e] =1 (true) or 0 (false)

The logical structure of a classical set theory is represented by the alge-

braic structure of Boolean algebra 2.

Sets and formulas

Objects of set theory are sets, and it is indicated by the elements which

belong to the set, or by a condition that the elements satisfy :
{ar,az,---a,} or {z | p(x)}

A set u is also expressed by the characteristic function y, : Du — 2, where

Du denotes the domain:

1, z€u
Xu(Z) = for x € Du
0, &u

Two sets u and v are equal if and only if they have the same members :
def
u=v=(rcu<=zxcuv forevery z.)

There is only one set which has no elements at all. This set is called the
empty set, and denoted by the symbol ().
We say that u is a subset of v, in symbols u C v, if every element of u

belongs to v.

Given sets u and v, one can perform some basic operations with them

yielding the new sets:

(1) the set u U v called the union of u and v, whose elements are the

elements of u or v.

vUv={zr|rzcuVerecuv}
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(2) the set u Nwv called the intersection of u and v, whose elements are

the elements common to v and v.

uNv={z|zc€unz v}

(3) the set u—w called the difference of u and v, whose elements are those

elements of u that are not elements of v.
u—v={z|z€un-(rev)}

Thus, logical operations V, A and — correspond to the set theoretical opera-
tions U, N and complement.

The set theoretical operations satisfy the following properties:
(1) Associativity:
uU@Uw)=(uUv)Uw, unN(@wnNw)=(unv)Nw
(2) Commutativity:
vUv=vUu, uNv=vNu
(3) Distributivity:

wU@wNw)=(uUv)N(uUw), unN@wUw)=(unv)U (unw)

(4) Idenpotency:

vJu=u, uNu=u

(5) Empty set:
wUl=u, un®=0 v—u=70

(6) If u C v, then

vUv=uU@w—u)=v, uNv=u.

If w = wv, then {u,v} is denoted by {u}.
We define ordered pair (u,v) as the set {{u}, {u,v}}. Then

(ug,v1) = (ug,ve) if and only if w; = uy and vy = vs.
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Relations

A binary relation R on a set X is a set of ordered pairs of elements of X.
RC XxX={(u,v) | u,ve X}

A binary relation R on a set X is called reflexive if (z,z) € R for every
r € X. It is called symmetric if (v,u) € R whenever (u,v) € R. And it
is called transitive if (u,w) € R whenever (u,v) € R and (v,w) € R. A
relation that is reflexive, symmetric and transitive is called an equivalence
relation. If R is an equivalence relation on a set X and (u,v) € R, then we
say that u and v are R-equivalent. For u € X, the set of all elements of X
that are R-equivalent to u is called R-equivalence class of u The set of all
R-equivalence classes is called the quotient set and denoted by X/R.

For a binary relation R, one usually write aRb instead of (a,b) € R.

Functions

A function on a set X is a binary relation £’ on X such that for every a € X
there exists exactly one pair (a,b) € F. Then the element b is called the
value of F at a, and denoted by F(a). The set {z € X | Jy((z,y) € F)}
is called the domain of F'. The notation F': X — Y indicates that F is a
function with domain X and values in the set Y.

A function F': X — Y is said to be one-to-one if a # b implies F'(a) #
F(b) for elements a,b of X. And F is said to be onto if for every b € YV
there is some a € X such that F'(a) = b. Finally, F' is said to be bijection
it it is one-to-one and onto.

Given functions F': X — Y and G : Z — W, the composition of F
and G, written G o F', is the function Go F' : X — W whose elements are all
pairs (x, G(F(x))), where z € X.

Ordinals

A binary relation R on a set X is called antisymmetric if « = b whenever
R(a,b) and R(b,a). A relation R on a set X that is reflexive, antisymmetric,
and transitive, is called a partial order. If we remove from R all pair (a,a)

for every a € X, then we get strict partial order. A partial order on a given
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set X is usually represented by the symbol < and the corresponding strict
partial order by < or <. A partial order < on a set X with the additional
property that either a < b or b < a, for all elements a and b of X, is called a
total order, or linear order.

If < is a linear order on a set X, then we say that a € X is the <-least
element of X if there is no b € X distinct from a such that b < a.

A linear order < on a set X is a well-order if every non-empty subset
of X has a <-least element.

A set « is called an ordinal if

(1) « is well-ordered with respect to the order < defined by
def

<y = BeyV =1,
(2) if B € a then B C a.
The first ordinal number is defined as the empty set (). Given an ordinal
a, the next bigger ordinal, called the successor of «, is the set a U {a}.
The finite ordinal numbers are those obtained by starting with () and
repeatedly taking the successor.
In the set theory, the natural numbers are defined as the finite ordinals.

Thus,
0=10
1=0uU{0} = {0}

2=10{1} = {0,{0}}

n=1{0,1,2--,n—1}

N®10,1,2,--,n,-}
A set u is finite if there is a one-to-one correspondence between some natural
number n and the elements of u. A set is infinite if it is not finite.
The set of all finite ordinals is an ordinal and denoted by w. Thus, w is
the set N of all natural numbers.
The cardinarity of a finite set u is the unique natural number n such
that there is a bijection F': n — wu.
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Universe of set theory

Objects of set theory are sets. The class of whole sets is called a universe
of set theory.

Underlying universe of set theory is defined inductively as follows.

Vo = {u|3B<aluC Vg},
vV = U V.

aEOn " &

The least a such that weV,, is called the rank of w.

Truth values of atomic formulas are expressed using [ |:

1 u=vw 1 wew
[u=v] = [uev] =
0 u#v 0 uédwv

Logical operators A, V, =, V, 3 are interpreted as algebraic operators on

the Boolean algebra 2:

oAyl = [l AlY]
[evyl = [elVIv]
[~¢] = —[]
Vre(@)] = Nle(@)]
[Frp(z)] = [o(2)]

Then every formula has truth value 1 or 0 on V.
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Chapter 3

Lattice theory

3.1 Lattices

In a logical system, a propositions are expressed by formulas. Lattice repre-
sents the structure of truth value of formulas.

Lattice is an ordered set such that any two elements has supremum and
infimum. The truth value of a formula ¢ is denoted by [¢]. The order

relation < of the lattice represents “implies”. That is,
[¢] < [¥] means that “p implies ¢ ”.

DEFINITION 3.1.1. A set L is said to be ordered if there is a relation <
on L satisfying

O1 z <z (reflexive law)
02 Ifr<yandy <z, thenxz =1y (antisymmetric law)
O3 Ifr<yandy <z, thenx <z (transitive law)

DEFINITION 3.1.2. Let (£, <) be an ordered set and A be a subset of L.

An element a of L is a supremum of A, when
(1) Ve Alx <a), and
(2) ifVo e Alx <vy) then a <y.

a € L is an infimum of A, when

18
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(1) VYxe A(x >a), and
(2) ifVo e A(x > y) then a > y.

The supremum of A is denoted by \/ A. The infimum of A is denoted by )\ A.
If A is a finite subset {ay,--- ,a,} C L, then \| A and \ A are denoted by

arV---Va, and a; A\ --- N\ ay, respectively.

DEFINITION 3.1.3. An ordered set L is called o lattice if L is closed

under operations V and A :
L is a lattice <% Va,beL ((aVb),(anb) € L).

A lattice L is called a complete lattice if L is closed under operations \/

and M\ :
L is a complete lattice << VA C L (VA),(ANA) € L).

The largest element \/ L of L is denoted by 1, and the smallest element
N\ L of L is denoted by 0.

VL=1, AL =0.
We assume that 1 # 0.

Example 3.1.1. The two element set {1,0} consisting of 1 and 0 is a com-
plete lattice, where 0 < 1. This lattice ({1,0}, <; A, V}) is denoted by 2.

THEOREM 3.1.1. The binary operations A\ (meet) and V (join) of lattice
(L, <) satisfies the following L1-L3:

L1 aAnb=bAa, aVb=bVa (commutative laws)
L2 an(bAc)=(anb)ANc, aAN(bAc)=(anb)ANc (associative laws)

L3 an(bVva)=a=aV(bNa), aV(bANa)=a=aA(bVa) (absorption

laws)

THEOREM 3.1.2. If a set L with binary operations A, V and relation =
satisfies the conditions L1, L2, L3, then (L, <,A\,V) is a lattice, where

a<b g a=aAlb.
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Proof. 1t (L, =, A, V) satisfies the conditions L1, 12, L3, then define < by

a<b % a=aAlb.

By absorption laws,

(1)

(3)

a=aANb = aVb=(aAb)Vb=b,
aVb=b = aAb=(aVbAb=0b.
a<b < a=aANb < b=aVb.

(L, <) is an ordered set, because

Ol: a=aAN((anha)Va)=aA(aV(aNa))=aAa by L3and L1

Hence, < is reflexive.

02: If (a <b)A(b<a),then a= (a Ab) = (bAa)=>. Therefore, <

is antisymmetric.

03: If (a <b) A (b<c), then a < c¢. That is, transitive.
") (a=aNb)A(b=bAc), . a=aAbAc=aAlc.
a Vb is the supremum of {a,b}, because

a<aVb sincea=aA(aVb) by L3. Similarly, b <aVb.

Assume a < ¢ and b < ¢. By using L3 again,
a=aANc = aVc=(aNc)Vec=c
c=aVe = alNc=aAl(aNc)=a.

Hence, a = (aAc¢) <= ¢ = (aVc). Similarly, b = (bAc) <= ¢ = (bVc).

Therefore,

c=cVe=(aVe)V(bVe)=(aVvb Ve raVb<ec

Similarly, a A b is the infimum of {a, b}.
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DEFINITION 3.1.4. A lattice L is said to be distributive if the following

distributive law s satisfied.

Distributive law: Ifac L, {b;},CL, \/,;bie L and \/,(a\b;) € L, then
a N \/ b, = \/ aAb;)

Especially, a N (bV c) = (aAb)V (aAc) for elements a,b, c of distributive

lattice.

THEOREM 3.1.3. The following two conditions (1) and (2) of a lattice L

are equivalent.
(1) an(bVe)=(aAb)V(aAc) for elements a,b,c of L.
(2) aVv(bAc)=(aVb)A(aVc) for elements a,b,c of L.

Proof. If a N (bV ¢) = (aAb)V (aAc) for a,b,c € L, then

(avb)A(ave) = ((avb)Aa)V ((aVb)Ac)
= aV(aAc)V(bAc)
= aV(bAc)

Ifav(bAc)=(aVDb)A(aVc)fora,b,ce L, then

(@nNb)V(aNc) = ((a/\b )Va) A ((aAb)Ve)
= aAN(aVe)A(bVe)
= a/\(b\/c)

]

DEFINITION 3.1.5. If a,b are elements of a lattice L and there exists the
greatest element ¢ of L such that a N ¢ < b, then ¢ is called a pseudo-

complement of a relative to b, and denoted by a D b :
c<(aDb) < cha<b foreverycel (3.1.1)

Classical logic and intuitionistic logic have the corresponding logical op-
eration D.
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DEFINITION 3.1.6. A lattice L is called a Heyting algebra if £ has the
largest element 1 and the least element 0, and also if there exists a pseudo-

complement a D b, for any elements a,be L, 1i.e.
A lattice (£,D,0,1) is a Heyting algebra N beLIceL(c=(aDb))

DEFINITION 3.1.7. A distributive lattice L is called Boolean algebra or

Boolean lattice if it is provided with negation — satisfying
(1) aN—-a=0,
(2) a=-—a, and

(3) a<b = —-b<-a

THEOREM 3.1.4. If a complete lattice L has a negation and satisfies
aN(bVe)=(aNnb)V(aNc) fora,bceL,

then L is a complete Boolean lattice, i.e. a A\/,;b; = \/,(a ANb;) foraec Ll
and {b;}; C L.

Proof. a AN\, b; > \/,(a \N'b;) is obvious.
If a Ab; < c for all 4, then b; < —aV (a Ab;) < —aV c for all i. It follows
that
V.bi<—-aVve, anV,;b<an(-aVe)<ec

THEOREM 3.1.5. Complete Heyting algebra is distributive.
Proof. 1t is obvious that

Vilanb) <an(V,;b)

for elements a, b; of the Heyting algebra.
Conversely, if a A b; < ¢ for all i, then by (2), b; < (a D ¢) for all i, hence
V. bi < (a D ¢). Therefore, by (2) again, a AV, b; < c.

aNV,;b;=V,(aNb).
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THEOREM 3.1.6. A complete distributive lattice L is a Heyting algebra with
D defined by

def

(@aDb) =\V{rel]|xzANa<b}.

Proof. IfeNa<b, thence {x e L]|zAa<b}. Hence, c < (aDb).
aN(aDdb)=arNV{xeLl]| anz <b} <b.
O
DEFINITION 3.1.8. If L is a Heyting algebra, then operation — is defined
by

—q ¥ (@ D0).

THEOREM 3.1.7. If L s a Heyting algebra, then for a,b € L,

(1) an—-a=0

(2) a<-ma

(3) a<b = -b< —a

THEOREM 3.1.8. An operation O on a Boolean lattice defined by
(@Db) ©avb

is a pseudo-complement of a relative to b, so Boolean lattice is an Heyting
algebra.

Proof. By distributive law,
c<(aDdb)<=cANa<b and aA(aDb)<bh.
UJ

Example 3.1.2. For a topological space X, the set O(X) of open sets of X

is a complete Heyting algebra with respect to the order of inclusion.

Example 3.1.3. The power set P(X) (={Y | Y C X}) of a set X is a
complete Boolean lattice with respect to the order of inclusion.
FEspecially, if X is a singleton {x}, then P(X) = {X,0}:

1=VPX)={X} and 0=APX)=0.

The complete Boolean lattice {1,0} is denoted by 2.
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DEFINITION 3.1.9. Let £ and L' be distributive lattices. A mapping f :
L — L is called a (lattice) homomorphism, if

fland) = fla)N f(b) and f(aVb)= f(a)V f(b) fora,be L.

A lattice homomorphism f : L — L' is said to be a (lattice) isomorphism

if f is one-to-one and onto mapping.

3.2 Stone spaces

The set of all subsets of a set X is called a power set of X, and denoted
by P(X). P(X) is a lattice with respect to order C of inclusion, where the

supremum is the union |J and the infimum is the intersection ():

UAY {z€X |JacA(zca)}, NAY {zeX |VacA(zea)}.

A subset A of P(X) is called a set lattice, if A is closed under |J and (),
le.

if BCA, then UBe€ A and (B € A.

Every lattice which is isomorphic to a set lattice is distributive. The converse

Theorem 3.2.3 will be proved later.

DEFINITION 3.2.1. Let (L, V, A) be a distributive lattice. A subset I of
L is called an ideal if

I1: a,bel=aVbel.

12: ae€elandbe L = aANbel.

An ideal I of the distributive lattice L is said to be a prime ideal if
I13: abelLandaNbel = cithera€el orbel.

DEFINITION 3.2.2. An ideal I of a lattice L is said to be maximal if
(1) I is an ideal of L such that I G L, and

(2) there is no ideal I' such that 1 S 1'S L.
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PROPOSITION 3.2.1. A maximal ideal of a distributive lattice L is a prime
ideal.

Proof. Suppose that [ is an ideal which is not prime, i.e. there exist elements
a,b € L such that
aNbel, agl, b&I.
Then I* ={x € L|3ce€ I(x <aVc)}is an ideal of £ such that I C I*.
acel*, ")a<aVcforcel,
bgI*, -r)iftbel*thenb=bA(aVc)=(aNb)V(bAc)elforcel,
but b & I.
Therefore,

Cy*C CT '
IS S L, .. 1 is not maximal.

O
PROPOSITION 3.2.2. For an arbitrary elements a,b of a distributive lattice
L, if b £ a, then there exists a prime ideal I such that
ac€l and b&I.

Proof. Let Z be the set of all ideals of £, and Z’ be the set of all ideals I
such that
acl and b¢ I (3.2.1)

7’ is not empty, because {x € L | < a} is an ideal to which a belongs and
b does not belong. If J is a nonempty ordered subset of Z’, then (|J J) € Z'.
Therefore, by Zorn’s lemma, there exists a maximal ideal in Z'. Let I be a
maximal ideal in Z’. It suffices to show that [ is a prime ideal.

Suppose that I is not prime, i.e. there exist elements ay, as € L such that
ayNas €I, but a1 &1 and as & 1.
Let I; be the ideal generated by {a;,} UI, i =1,2 i.e.
L={zeL|3cellx<aVe)}.
One of the ideals I; and I does not contain a. For,

acelh Na€el, = do,ce€l(a<a;Ve and a<agVe).
Setting ¢ = c1 V ¢y,
acli Nael, = decel(a<(arVe)A(laaVe))
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a<(a;Ve)A(agVe)= (a3 Nay)V(ag Ac)V(aaAe)V(cAc) e .
This implies a € I, which is impossible. Therefore, I is a prime ideal satis-
fying (3.2.1). O

Let X be the set of all prime ideals of a distributive lattice £, and let
hia)={x e X |agzx}, foraclL.
h is a mapping £ — P(X). Set
h(L)={h(a) C X |a € L}.

THEOREM 3.2.3. If L is a distributive lattice, then h(L) is a set lattice and
h is an isomorphism of L to h(L):

(1) Ifa,b € L and h(a) = h(b) then a = b, that is, h is one-to-one mapping.
(2) h(aAb) = h(a) N h(b),
(3) h(aVb)=h(a)Uh(b),

fora,b € L, where N and U are set theoretical intersection and union.
(4) a<b <= h(a) C h(b) fora,be L.
Proof. (1) By Proposition 3.2.2.

(2) If x € h(a AD), then a Ab & x. Then a ¢ x and b ¢ x. Hence,
x € h(a) N h(b). Conversely, if x € h(a) N h(b), then a € x and b & x.
Since z is a prime ideal of £, (a Ab) &€ x,i.e. © € h(a AD).

(3) Ifz € h(aVb),thenaVbegx. Thena & x or b ¢ x. Hence, x € h(a) or
x € h(b), which proves x € h(a) U h(b). Conversely, if z € h(a) U h(b),
thena € x orb ¢ x. Since z is an ideal of £, (aVb) & x, i.e. x € h(aVDb).

(4) follows from (1),(2).
[l

COROLLARY 3.2.4. For a subset {a;}icr of a distributive lattice L, if there

. L . L .
exist the supremum N; a;, and infimum \/; a; in L, then

WAL @) = N hla) = AP h(a)  and  h(VE @) = U, hlai) = VI h(a).
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DEFINITION 3.2.3. For a distributive lattice L, the set X of all prime ideals
of L is called the Stone space of L, the isomorphism h : L — h(L) C P(X),
where h(a) = {x € X | a € x}, is called the Stone isomorphism, and h(L)

1s called the Stone lattice.

3.3 Completion of Boolean algebras

3.3.1 Stone space of Boolean algebra

Stone space of a Boolean algebra B = ( B, V, A, =) is the set of all prime
ideals of B, and the Stone isomorphism A is an embedding of B into P(X)
by Theorem 3.2.3:

h:B — P(X), ha)={re X |aéguzx},
h(aV b) = h(a) Uh(b), h(aAb)=h(a)N h(b).

PROPOSITION 3.3.1. If B is a Boolean algebra, then the Stone lattice h(B)
is a field of subsets of the Stone space X of B (Definition 3.2.3) and the Stone

isomorphism h is a Boolean isomorphism of B onto h(B), where
h(—a) = X — h(a).
Proof. © € h(—a) & (—a) v < a € v < x & h(a). O

The Boolean algebra ( h(B), U, N, ¢ ) is called the Stone field of B,
def

where h(a)® = X — h(a).

The Stone space X is a topological space with open base {h(a) | a € B},
where each h(a) is closed and open, since h(a) = h(=—a) = X — h(—a).

PROPOSITION 3.3.2. The Stone space X of a Boolean algebra B is a com-
pact totally disconnected Housdorff space.

Proof. If x1, 29 € X and x; # x5, then there exists an element a € B which
belongs precisely one of the the sets x; and zo, say a € 1 and a € x5 by
Proposition 3.2.2. Consequently z; € h(—a) and x2 € h(a), and both of h(—a)
and h(a) are open and closed. Thus X is a totally disconnected Hausdorff

space.
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To prove the compactness, suppose that {a; }ter C B and X = (J,op h(ay).
It suffices to prove that

X = h(ay,)U---Uh(ay,)

for some ay,, -+ ,a;, € {as}ier

Suppose the contrary, that is, for all a;,, -+ ,a;, € {a;}er
h(agy, V- Vayg,) = h(ay)U---Uh(ay,) # X = h(1).
Since h is one-to-one, we infer that
agy, V---Va, #1 forty,---t, €T,

i.e. that the ideal A generated by all a; (t € T') does not contain the unit
element 1. Ay is contained in a maximal ideal A which is prime, i.e. A € X.
Since a; € Afort €T,

Ag \/teT h(a;) = X
which is imposible. Il

PROPOSITION 3.3.3. Fora, a; € B (i € I), if the equation

a=\,q (3.3.1)
holds, then
h(a) = U; h(a;)

1s closed, nowhere dense subset of the Stone space X.

Proof. The set A = h(a) — |J, h(a;) is closed since it is the difference of a
closed and a open set. Suppose that A is not nowhere dense, i.e. A contains

a non-empty open set. Then there is an element ay € B such that
h(a,()) C A, ao 7& 0.

Since h(ag) C h(a), we have ap < a on account of Theorem 3.2.3. Thus
a # a N —ag < a. On the other hand,

h(ag) C h(a) — h(a;), i.e. h(a;) C h(a) — h(ag) = h(a A —ayp).

Hence, a; < aA\—aqy for every ¢ € I. It follows that a = \/, a; < aA—ay. This
contradicts (3.3.1). O
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3.3.2 Minimal extensions of Boolean algebras

Every Boolean algebra B is isomorphic to a subalgebra of a complete Boolean
algebra, by Proposition 3.2.3. For instance, the Stone isomorphism maps B
into the complete field of all subsets of the Stone space. This isomorphism
does not, in general, preserve infinite joins and infinite meets. The minimal
extension defined in this section is an isomorphism h* : B — h*(B) of B into
a complete Boolean algebra, which preserves all the infinite joins and meets.

A proof is shown as follows ( cf. H.Rasiowa and R.Sikorski [7] ).

DEFINITION 3.3.1 (MacNeille [5] , Sikorski [8] ). Let X be the Stone space
of a Boolean algebra B. A set A C X is said to have the Baire property

provided there exists an open set G such that
A—G and G — A are of the first category. (3.3.2)
PROPOSITION 3.3.4. If A, A’ have the Baire property, then
AUA, AnA, X-A
have the Baire property.

Proof. Suppose that statement (3.3.2) is satisfied and G’ is an open set such
that
A'—G and G'— A" are of the first category.

Then G U G’ is open and
(AUA) - (GUGE)C(A-G)U (A -G,

(GUG) - (AUA) C(G-A)U (G - 4.
Since the set on the right-hand side are of the first category, so are the sets
on the left-hand side.
The complement A = X — A of a set A with Baire property also has
Baire property.
**)  Suppose that (3.3.2) holds, and let G be the closure of G. The set

Go = G° is open and the set G — G is nowhere dense.

AC—GQZGOC—AZG—AC(E—G)U(G—A),
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Go—A°=GoNA=ANG ' =A-GC A-G,
which proves that the sets on the left-hand side are of the first category. [

DEFINITION 3.3.2. Let X be the Stone space of Boolean algebra B and B
be the class of all sets having the Baire property, which is a field of subsets
of space X.

Let A be the ideal of all sets C X of the first category. The Boolean

algebra B* = B /A is called the minimal extension.

PROPOSITION 3.3.5. The mapping
h*(a) = |h(a)| € B*

is an embedding of Boolean algebra B into complete Boolean algebra B*,
where h is the Stone isomorphism of B onto the Stone field h(B) of all both
open and closed subset of X .

Proof. h* is a homomorphism of B into B*. If h*(a) is zero of B*, then
h(a) € A, i.e. the open set h(a) is of the first category. Hence h(a) is empty.
Since h is an isomorphism, a is the zero element of B. This proves that h*

is an isomorphism of B into B*. ]

THEOREM 3.3.6. The minimal extension B* of an arbitrary Boolean alge-
bra B is complete. The canonical isomorphism h* preserves all infinite joins

and meets, i.e.
. B . B* 4
if a= \/tET ag, then h (a,) = Vier h (at), (333)
. B . B* 4
if a= Njera, then h*(a) = Njop h*(ar). (3.3.4)

Proof. If (3.3.2) holds, then |A| = |G|. Therefore every element of of B* can
be represented in the form |G| where G is open.

First we shall prove that

|Uier Gl = Vier |G| (3.3.5)

for every indexed set {G}ier of open sets of X.
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Let Gy be the union of all set G;. Since G; C Gy, we have
|G| < |G for every t €T.

On the other hand, suppose that |G| € B* (G is open) is an element in B*
such that
|Gy < |G| for every t e T.

Since |G; — G| = |Gy| — |G| = 0p-, the set G; — G is open and of the first

category, thus it is empty. i.e.
G, cqG for every t € T.
Hence Gy C G = G U (G — G) and consequently
|Go| < |G =G| VIG -Gl.
Since G — G is nowhere dense, |G — G| = 0~ and consequently
|Go| < |G

which completes the proof of equation (3.3.5). Since every index set of ele-

ments of B* can be represented in the form {|G¢|}ier, where the sets Gy are

open, it follows from (3.3.5) that its join exists, i.e. B* is complete.
Suppose that the hypothesis of (3.3.3) holds. We have

h(a) = (h(a) — | Mar)) U | h(a).

teT teT
By Proposition 3.3.3, the element |h(a) — | J;cp h(ar)| is zero of B*. Hence

h(a) = |1(a)] = [User hla)| = Viir Ih(a)] = Vigr 1 (a,)
on account of (3.3.5).
(3.3.4) follows from (3.3.3) and De Morgan laws. O

3.4 Completion of Heyting algebra

3.4.1 Topological Boolean algebra

DEFINITION 3.4.1.  An unary operator ° on a Boolean algebra
B =(B,A,V,7,0,1)

is called an interior operator if the followings are satisfied for a,b € B.
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I1 (aNc)>=a°Ac°
12 ¢° <a

I3 a*° =a°

I4 1°=1

a® is called the interior of a. Boolean algebra with interior operation is called
a topological Boolean algebra. An element a of a topological Boolean
algebra such that a = a° is called an open element. The set of all open

elements of an topological Boolean algebra B is written as O(B).

OB) Y {aeB|a=a}

PROPOSITION 3.4.1. In a topological Boolean algebra B = (B, \,V,—,0, 1)
(1) 0,1 € O(B)

(2) Ifa,be O(B), thenanbe O(B) and aVbe O(B).

3.4.2 Embedding of Heyting algebra into a Boolean
algebra

In this section, let £ be a Heyting algebra. Let X be the Stone space of L

and h be the Stone isomorphism:

x4« {z C L |z is a prime ideal of L},

h: L — P(X), where h(a) ={z € X | a &€ x},
(h(L£),C,N,U, D) is a Heyting algebra which is a sublattice of P(X), where
h(a>b)=| J{h(c)[ce L, anc<b}.

As seen in Theorem 3.2.3, we have
PROPOSITION 3.4.2. For a,b,c € L,

(1) h(a) = h(b) <= a =",
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(2) h(a) Nh(b) =h(aAb), h(a)Uh(b) = hlaVb),
(3) h(0)=0, h(1)=X,
(4) h(c) C h(a D b) <= h(c) N h(a) C h(b),
(5) h(aDb) C (X —h(a)) U h(b)
Let
H ¥ )= {h(a)|ac L}

ha) A h(b) % h(a) N h(b)

ha) Vg h(B) ¥ hia) Uh(®)

h(a) o h(b) < h(a D b)

By Proposotion 3.4.2, (H, Ay, Vu, Dn, Oy, 1g) is a Heyting algebra which
is isomorphic to L.
Let B be the Boolean subalgebra of P(X) generated by H, i.e.

B:{<CL1 DBbl)m"'m(an Dan) | ag, - )anvbh'” abneH}v

where (a; Dp b;) = (X —a;) Ub;, and 0 = 0, 15 = X. We write (a; Dp
bi)N---N(a, Dpby) as i, (a; Dp b;).

HcC BCPX)

Now we define an interior a° of a € B.

LEMMA 3.4.3. Ifa;,b; € H fori=1,2,--- .n, then (\_,(a; Dn b;) € H,
where (;_(a; D b;) = (a1 Dy b1) N -+ N (an, Dy by), and

Nizi(ai D5 bi) = iz (ci Op di) = (NiZi(a Dm bi) = (@i D b;)
fora;, b, ci,d; € H (i=1,2,--+ ,n).

DEFINITION 3.4.2 (Funayama [9]). By Lemma 3.4.2, if element a = (), (a; Dp
bi) € B C P(X), then element (\;_,(a; D b;) of H is uniquely determined.

So we define a operation o on B by

(M (as D5 5)° = 1y (as D by).
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Nizi(a; Dy b;) is the infimum of {(a; Dg b)) | i = 1,---,n} in H, and
Ny (a; DB b;) is the infimum of {(a; Dp b;) |i=1,--- ,n} in B.

N (@i D b)) = Ny (@ D b)) and A (ai Dp bi) = iy (@i Dp bi).
Then we have

THEOREM 3.4.4. If L is a Heyting algebra, then there exists a topological
Boolean algebra (B, o) such that L is isomorphic to H = O(B), i.e. For
a,c € B,

I1 (anc)®=a"Nc°

12 a° <a

I3ac H=a"=a

14 1° =1

Proof. 11 if a = (2, (a; Dp b;) and ¢ = (;_,(¢; Dp d;), then

(@ane)® = (NiZi(ai 28 b) Ny (¢; D d;))°

= (MiZi(ai Dm b)) N (Nj=i(e D dy))
= a’Nc°

I2 a°=(1Dpa)’=(1Dga)<(lDpa)=a

I3 Since a° € H, a®° = (1 Dy a°) = a®

I4 102(1331)02(13111):1
[

Therefore, o is an interior operation, B is a topological Boolean algebra
and H = O(B) C B.

LEMMA 3.4.5. For {a,-},-el C H,
(1) f viBEI a; exists in B, then \/fél a; exists and \/fil a; = \/iil a;.

(2) if /\ZBE] a; exists in B, then /\fél a; exists and /\fél a; = (/\ii[ a;)°.
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Proof. (1) Assume \/il a; exists in B. Then a; < (\/il a;)° for Vi € I,

B

and for c € H, Vi(a; < c¢) = \;z;a: < c.

H B
ViEI a; = viEI Q5.

(2) Assume /\iil a; exists in B. Then /\iil a; < a; for Vi € I.

Ifce Hand c<a; forViel, thencg/\ilai. Since ¢ € H,

B H
(/\iel a;)° = vie] Q.

]

By the Theorem 3.3.6, The minimal extension B* of the Boolean algebra

B is complete, and the canonical isomorphism h* preserves all infinite joins

and meets. That is,

B* =B/A, where

X is the Stone space of Boolean algebra B;

B is the class of all subset of X having the Baire property, which is a field

of subset of the space X;
A is the ideal of all sets C X of the first category.

The mapping
h*(a) = |h(a)| € B*

is an embedding of Boolean algebra B into complete Boolean algebra B*,
where h is the Stone isomorphism of B onto the Stone field h(B) of all both

open and closed subset of X.

Then we have
if a,be B, then a<b <= h*(a) < h*(D),

if a= \/iT a;, then h*(a) = \/gT h*(ay),

if a= /\tiT a;, then h*(a) = /\fe*T h*(ay),

(3.4.1)

(3.4.2)

(3.4.3)
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DEFINITION 3.4.3. For {a;}ic; € B,

H = (V¥ (@) | a € H)

v o= VPAr*(a)<b|aeH} forbeB*
O(B*) = {b> | be B*}

Then we have
LEMMA 3.4.6. (1) h*(b°) = h*(b)*" forbe B
(2) (ane) =a N fora,be B
(3) a® <aforbeB

(4) a€ H=0a" =a forbe B

As a result, we have the following theorem.

THEOREM 3.4.7. Heyting algebra can be embedded into a complete Heyting
algebra, i.e. there exist a complete Heyting algebra H* and embedding h* :

H— H*.

3.5 Ortholattice

DEFINITION 3.5.1. A lattice with operation - is called an ortholattice if

Aziom C'is satisfied:

Axiom C



UNDER PEER REVI EW

37

3.5.1 McNeille’s completion of orthlattice

DEFINITION 3.5.2. If a CQ, then o is the set of all elements of Q which

s orthogonal to a.
at ¥ {¢€Q | Vaca(¢ < at)}.
LEMMA 3.5.1. Let o, CQ.
(1) 0€at;
(2) IfaCp, then frcCat;
(3) acatt and ot =attt;
(4) anat={o};
(5) (@Uat)+=Q.

DEFINITION 3.5.3. The set of all subsets of QQ such that o = o’ is
denoted by L(Q).

LHQ)={acQla=att)
LEMMA 3.5.2. Ifa € Q, then
(1) {a}**={¢€Q|¢<a}.
(2) {a}* = {a*}.
Proof. Using Lemma 3.5.1,

(1) ¢e{a}tt <= Vne{a}t(€<nt), where ate{a},

tefa}t = €€<att =
fga/\nE{a}L — ot <& Anp<at
— (<
§<a = gefa}

(2) ¢efa}t = ¢<a-. - Aa}r={a}
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COROLLARY 3.5.3.  is embedded into L+(Q) by a — {a}*+.

LEMMA 3.5.4. For o, 3 C Q,
g catt = veer (ac{c}Ll N ﬁc{c}ﬁ).
Proof.
<5u C au) N (a C Mu) s BC B Catt C {at

g catt = veeL (04C{c}lL = BC{C}J‘J‘>

Veel <ozC{c}LL — BC{C}LJ‘> A (JTGQL)

Vee L (ozC{c}LL = ﬁC{c}lL)
Vee L (ozC{c}LL = 6C{c}lL)

Y

LEMMA 3.5.5. If{a;}; CQ and (\/, a;) €Q, then {\/, a;}** = (U, {a:} ).

Proof. {a;}**C{V,;a;}** for all i. Hence, (J,{a;}*)** C {V, e}
If J{ai}*+ c{c}**, then V,a; < c. Hence, {\/, a;}*+ C {c}*++. It follows
by Theorem 3.5.4 that

(U; {ai} D) =4V, e}t

It follows that

THEOREM 3.5.6 (McNeille[5]. cf. Titani-Kodera-Aoyama[l4]; ). £+(Q)

s a complete ortholattice, in which @ is embedded, where

a<f <<= aC/p, Vo = (U; i)t N\ i =, cu.
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3.6 Orthomodular lattices

DEFINITION 3.6.1. Elements a,b of an ortholattice L are said to be com-
patible, in symbols a | b, if the sublattice generated by {a,a™, b, b} is dis-

tributive.

Let £ be an ortholattice. “be L is compatible with a subset ACL”,
in symbols b | A, means that “b is compatible with all elements of A”:

blA L VacA®b] a).
DEFINITION 3.6.2. An ortholattice L is said to be orthomodular if :
Axiom P a,bel, a<b = alb.

Boolean algebra is an orthomodular lattice where the orthocomplemen-

tation * is the negation —.

THEOREM 3.6.1 (cf. Piron [6]). For elements a,b of an orthomodular

lattice, the following conditions are equivalent.
(1) a,b are compatible

(2) (aAb)V(atAb)V(aAbY)V (et AbL) =1
(3) (@aAb)V(atAb)=1D

(4) (aVbr)Ab=aAb

THEOREM 3.6.2 (cf. Piron [6]). If £ is an orthomodular lattice, and if
acl,CCL,\/CeL, alC, then

Veeclena)e L and \/ o(anc)=an (V).

IfacLl, CCcL, NC e L and a|[C, then

Necc(cVa)e L and N o(aVe)=aV(AC).

THEOREM 3.6.3 (cf. Piron [6]). If L is an orthomodular lattice, and if
acl,CcCL,\VCeL, alC, thenal\/C;andif N\C € L, thena| \C.
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Clearly we have:

THEOREM 3.6.4. If a,b,a;,b; (1€1) are elements of an orthomodular lattice
L such that \/;c;ai, Nicy @i € £, then

(viel ai)l = /\ieI az‘LS (/\ie] ai)L = Vz’eI az‘L-

Example 3.6.1. Closed subspaces ( or equivalently projections ) of a Hilbert
space H form a complete orthomodular lattice with respect to inclusion as the

order relation:

Q(H) ¥ {a CH|ais a closed subspace of H},

a<b&L qco, at d:ef{:p|Vy€a(xJ_y)}, fora,beQ(H).

Q(H) is isomorphic to Q(H):
def

Q(H) = {p:H — H | a projection of H},

def ef
P<qESRP)CR), p" = RE) LR, forp g QH),
where R(p) denotes the range of projection p.

3.7 Implication and globalization

DEFINITION 3.7.1. Implication is an operation O on a lattice L such that
(1) adb=1 <= a<b

(2) ¢c<(aDb) <= cAha<b foreveryc.

DEFINITION 3.7.2 (Takeuti [12]). Takeuti defined operation —1 on an

orthomodular lattice :
(a—b) alzefaL V (aADb)

i order to develop a quantum set theory.



UNDER PEER REVI EW

41

THEOREM 3.7.1. Operation — is an implication on the complete ortho-

modular lattice.
Proof. Since ala* and al (a A b),
an(a"V(aAb)=(aNa")V(aAb)<b

al(a—5b) <0,

and then
a<b<= (a—b) =1

Therefore, — is an implication. O]
THEOREM 3.7.2. In an orthomodular lattice, if aijc, then
c<(a—rb) <= aNc<bAc.
In this sense, —1 is considered as a local implication.
Proof. Assume alc. Then ¢ = (a* Ac)V (a Ac). Since aat and al (a A b),

c<(a—pb) = aNc<aA(atV(aADb))
— aArc<(aAat)V(aAb)<b

ahNc<b = aNc<aAb

—

c=(atNc)V(aAnc)<atV(anbd)
O

However, Takeuti’s implication — is not enough to develop a set theory,

because it is not transitive:
(a—=xb) A (b—=rc) £ (a—r0).

The transitivity of the corresponding logical implication is indispensable
for the development of set theory, since equality axioms of set theory which
depend on the transitivity of implication are fundamental.
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3.7.1 Basic implication and globalization on a lattice

Let £ be a lattice including 2 = {1,0}, where 1 is the greatest element and
0 is the least element of L.

An operation — on a lattice is called the basic implication if

1 ifa<gd

0 otherwise.

(a—>b)z\/{0€2|c/\a§b}:{

— is an implication (cf. Definition 3.7.1), and the corresponding negation —
is defined by
—a & (a —0).

Then we have
THEOREM 3.7.3. For all elements a,b of a complete lattice L,
I1: (a—=b=1 iff a<b
I2: aA(a—b) <b.
Nl:-0=1, -1=0
N2:aAN—-a=0
N3:a<—a

N4 : —~(aVb)=-aA-b

DEFINITION 3.7.3. The formula (1 — a) for a € L is denoted by Oa, that

is,
Dad:ef(1—>a):{1 ?fa:l
0 ifa#1.

This operator O s called globalization.

THEOREM 3.7.4. For all elements a,b,ay, by, ¢, (k€K) of L,
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G3: A, Oar <OA, ak
G4 : IfOa < b, then Oa < 0Ob

G5 : OaAV, by =V, (OaAby); anV,Ob, =\, (aANDOby), if \/, by exists ;
OaV Ay be = Ap(Oa Vi) ; av A\, Ob, = A\,(aV DOby), if \, br exists

G6 : JaV-Oa=1
G7 : IfaNOc < b, then =b A Oc < —a.
G8: (a—b)=\{cel]|c=0Oc anc<b}
The following theorem follows from 11-12, N1-N4 and G1-GS8.
THEOREM 3.7.5. Let a,b € L and {ay}rer, {bktrex C L. Then
(1) Ifa<b then Oa < Ob
(2) B(Arar) = Ay, Ba
(3) Oa = 00a
(4) Ay Bax =B A, Ba
(5) V,Dax =0V, Oa,
(6) O(a—b)=(a—0D).
(7) (a—b) < (=b— —a)
(8) IfOaANb< cthen Oa< (b—c)
We denote =O— by . Then we have
THEOREM 3.7.6. Let a,b € L and {ay}rex CL.
(1) a<da
(2) If a < Ob then $a < Ob

(3) OVyar =V, Oa
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(4) O(Oa Ab) < OaAOb

THEOREM 3.7.7. If an implication D s defined on a lattice, then the basic
implication — is defined by

(@ — b) ¥ O(a>b).

Conversely, the globalization [ is defined in terms of the basic implication
—!
Oq & ((a—> a) — a).

Furthermore, ¢ is defined by ¢{a def (Oat)*.

Clearly we have:

THEOREM 3.7.8. If a,b,a;,b; are elements of an orthomodular lattice L,
then

M (Via) = NAjai;
(2) (Nia)™=V,a;;
3) Vi(0a) =0V, Dai;
(4) A;Oa; =0OA,; Da;
(5) (O)* =0((a)*);
(6) alOb.
For any complete lattice, basic implication — is defined by

1, ifa<b,
(a—>b)d:ef\/{x€2|a/\x§b}: -

0, otherwise,

and —, [, ¢ are defined by

1, ifa=0,
0, otherwise.
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def 1 ifa=1
Oa = ((a—=a)—a)=(1—=a)=
0 otherwise.

1 ifa#0
<>a d:ef —|D—|a et #

0 otherwise.

Obviously we have
THEOREM 3.7.9. U is a modal operator on a lattice, satisfying
(1) Oa <ay
(2) O0Oa = Oa;
(3) a<b=0Oa<0b.
(4) V,(0a) = OV, Da;:
(5) A;Ha; =0OA,;Da,;
THEOREM 3.7.10. If a lattice L is an ortholattice, then
(1) QaV (Da)t =1, OaA (Qa)*t=0;
(2) (Co)* =0((Oa));
(3) al0b, where alc Lo = (anc)V(aAch).
DEFINITION 3.7.4. An element a of a lattice is said to be global if

a = Oa.

Example 3.7.1. If L is a complete Heyting algebra, and operation —; is
defined by
a—b< \/{CE L]cANa<b},

then — is an implication and the basic implication — is defined using [J :

a— b O(a—b).
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Example 3.7.2. If £ is a complete orthomodular lattice, then the opera-
tion —5 defined by a —+b = a* V (a A b) is an implication. Thus, a basic

implication — and — on L are defined
(a—b) L O@—oeb), —a¥ (@—0).
As immediate consequents of the definitions, we have:
THEOREM 3.7.11. In a complete orthomodular lattice,
(1) -0=1; —-1=0
(2) aN-a=0;a<-"a
(3) (a—b) < (—b— —a)
(4) =(avb)=-aA=b; —aV-b<-=(aAb)
(5) O0Oa = Oa
(6) If Oa < b, then Oa < Ob
(7) a<Qa
(8) IfaADOc<b, then =b A Oc < —a.
(9) (a—b)=0(a—rb).
Especially, on an orthomodular lattice Q,
(1) (a—b)=\{ceQ|c=0c aNc<b}
(2) (avb)t=atAbt; (anb)t=atVvbt
(3) (@o)* = ~(0)
(4) IfOaAb< cthen Oa < (b—rc)
(5) (BaAb)—rc)=(0a—r(b—rc))
©) 0Vea =V, 0
(7) O(DaAb)=0aANOb
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3.7.2 Sheaf of complete Boolean algebra

DEFINITION 3.7.5. Let X be a topological space and O(X) be the set of
all open sets of X. Let each U € O(X) associate with a complete Boolean
algebra F(U), and for U,V € O(X) such that U C V,

roy : F(V) — F(U) be an homomorphism.

Then the pair (F,r) is called a pre-sheaf of complete Boolean algebra
over X, if

(1) F(0)=0, ryuv="1 (identity),
(2) If U V,WeO(X) and UCV CW , then ruw =ryyv orvw.

Pre-sheaf (F,r) is called a sheaf of complete Boolean algebra over
X, if the following condition is satisfied.

(3) If UeO(X), {U}ier CO(X) and U =J,U; and further if
Vi(f; e F(U;)) A Vi, j€l(rvou,u(fi) = rvou,u,(fi),

then there exists a unique f€F(U) such that Vi€ I(ry,uv(f) = fi).

DEFINITION 3.7.6. Let
e (F,r) be a sheaf of complete Boolean algebra over X

o {U;:1€ 1} C OX) be a directed system of neighbourhood of =, such
that

1<) = Uj cU; and TU;,U; (f(Uz)) = f(UJ)
e f(x) be the direct limit:
() timy £ (U
def

B, ¥ {f(x)|3U € O(X)(f € F(U) AzeU)}.

Then B, 1s a complete Boolean algebra called a stalk at x.
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Example 3.7.3 (Sheaf representation of Q(H)).  Q(#H) is the complete or-
thomodular lattice consisting of closed subspaces (or projections) of a Hilbert
space H ( cf. Ezxample 3.6.1), where the inner product is denoted by ( , ).
Let

{€;}jes where J ={1,2,---}

be a countable orthonormal basis and ¢; be the subspace of H spanned by €;:
¢; = {a€; | a € C}.

For each K C J, the supremum \/ ;- ¢; of {¢;}jex in Q(H) is the subspace
of H spanned by {€;}jex:

Vier ¢ = {2 ek 4 € | {a;}jex € C}.
A subset B of Q(H) defined by
B={Vyexts | K € J}

is a sublattice of Q(H), which is a complete Boolean sub-algebra isomorphic
to the power set P(J) of J.

(B,A. V. 1) =(P(U), N, U, )
A linear operator o : H — H is said to be unitary if
(0(2),0(9) = (Z,9),  forall Z,§j€H.

Unitary operator induces an isomorphism o:Q(H)— Q(H) preserving N\, \/

and . Let U be a topological space consisting of all unitary operators on H.:
U={oc:H—=H| unitary },

and let O(U) be the set of open sets.

For each o €U, {o(e;})jes, where o(e;) = {o(Z) | & € ¢;}, is a basis
of Q(H), and \/;ci o(e;) with K C J is an element of Q(H) spanned by
{o(€))}iexc. Let »

0(B) = {V,ex ole;) | KC T}
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o(B) is a complete Boolean algebra isomorphic to B.

o(B) is a (\/,+)-sublattice of Q(H) and

Q(H) = Uaeu U(B)'
For each U € O(U),

FU)={\/o(e;) | KCJ occU}

jEK

Then F(U) is a Boolean algebra.
For U,V € O(X) such that UCV, let ryyv(F(V)) be the set of restriction of
elements of F(V') on U.

ruv(F(V)=F(U)={\/ o(¢;) | K C J, 0 € U}.

jEK

Then (F,r) is a sheaf of complete Boolean algebra over U .
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Classical set theory

4.1 Formal system of set theory

Set theory ZFC is an axiomatic set theory known as Zelmelo-Freankel axioms

with axiom of choice, based on the first-ordered logic.

We first introduce Gentzen’s first-order logic, known as classical logic LK,

and intuitionistic logic LJ.

4.1.1 Gentzen’s formal system of logic
Alphabet of LK and LJ

(1) Individual constants : ¢, cg,c1,ca, -,

(2) Individual free variables : a,ag, as,as,- - -,

(3) Individual bound variables : z,xq, z1, T2, - -,

(4) Predicate constants with n arguments : p", pg, pt, p5, -, (n>0),

(5) Logical symbols: D (implies), A (and), V (or), = (not), V (for all), 3 (exists),

(6) Auxiliary symbols : (, ) and commas.

20
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Terms

Individual constants and free variables are called terms, and they are de-
noted by t1,ts,---.

Formulas
If p? is a predicate constant with n argument places and ¢4, - - - ,t,, are terms,
then pl(t;, -+ ,t;,) is called an atomic formula. Formulas are constructed

from the atomic formulas using logical symbols:

(1) The atomic formulas are formulas.
(2) If ¢ and ¢ are formulas, then (¢ A ), (¢ A1) are formulas.

(3) If p(a) is a formula with free variable a, and z is a bound variable
which does not occur in ¢(a), then Vrp(x) and Jrp(z) are formulas,

where @(z) is obtained from ¢(a) by substituting z for all a in ¢(a).

A formula without any occurrence of free variables is called a sentence. A
formula which appears in the construction of a formula is called a subfor-

mula:
(1) A formula ¢ is a subformula of ¢ itself.
(2) formulas ¢ and 1) are subformulas of (¢ A ) and (¢ A ).
(3) ¢(a) is a subformula of Vzyp(x) and Jzp(z).
(4) If o is a subformula of ¥, then a subformula of ¢ is a subformula of .

Formulas are denoted by ¢, ¢, ---; o(a), ¥ (a),- - .

Sequents
A formal expressions of the form

P10 Pm = d)l?"' 7¢n7

where @1, -+, @m0, Y, are formulas, is called a sequent. The se-
quence @1, -+ , @, is called the antecedent, and the sequence vy, --- 9,

the succedent of the sequent.
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Finite sequences of formulas are denoted by I', A, ---. So sequents are
written as the form I' = A.

An inference is an expression of the form

St
S

S1 Sy

S ’

or

where 57, So and S are sequents. S; and Sy are called the upper sequents

and S is called the lower sequent of the inference.

4.1.2 Inference rules of LK and LJ

The difference between the classical logic LK and intuitionistic logic LJ,
is secured by the intuitionistic restriction stated for two of the postulates:
introduction of thinning and negation —.

A proof is constructed according to the following rules, which regulate
the logical symboles D, A, V, V and d.
Begining sequents: Logical axiom is a sequent of the form ¢ = ¢.
Every proof in LK and LJ starts with logical axiom(s).

Structural rules :

.. = A = A
Thinning : _ i
I'= A, ¥ o, ' = A
where A is empty for
the intuitionistic logic
- p, o, = A I'= A0
Contraction : RS R — At
r = A = A A
Interchange : 09, 0,9,
F7¢7¢7H:A FiA/{ﬂ,(p’A

'=Ap olI=A

Cut :

[I= A A
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Logical rules:
5. = Ap ¢ lI=A o, I'= Ay
' e DY, T, IT= A A F'=ApDy
A o, I'=A F'=A¢e I'=> AW
' oA, T'= A L= A A
v, = A
e AN, I'= A
v o, '=A Y, I'=A I'= A9
' oV, I = A I'= AV
'= Ay
= ApVvey
I'= A o, '=A
-, I'= A = A —p
where A is empty for
the intuitionistic logic
v o(t), T = A I'= A p(a)
' Vep(z),I' = A I' = A Vap(x)
where ¢ is any term where a is a free variable which does
not occur in the lower sequent.
5. ola), ' = A ['= A p(t)
' drp(z), T = A ['= A, Jzp(x)
where a is a free variable which does where t is any term

not occur in the lower sequent.

DEFINITION 4.1.1. We denote “a sequent I' = A is provable in LK 7 by

LKFT = A,
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and denote “a sequent I' = A is provable in LJ 7 by
LIFT = A,
Note that if LJ =T = A then LK FT = A.

LJ F ¢ < 1 is an abbreviation of “( LJ - ¢ = %) and (LI F ¢ = ¢ )".

For example, we have following theorems.

THEOREM 4.1.1. For arbitrary formulas ¢, ¥, 0,
(1) LIFeA@VE & (pAY)V(pAE)

(2) LIFeV(®AL & (V) A(pVE)

B) LIF@AIxp(x) & Ix(p A(x))

(4) LIFeVVxy(x) & Vx(e Vi(x))

O = QNP ©.&=pNE
P Y= (P APV (AL @, l=(eAY) V(P A (V-left)
@, (W VE) = (¢ AY)V (pAE)

PAY=pARVE) e AE= oAV
(P AY)V(pNE) = oA (Y VE)

(2) Similar to (1).

(3)

@, p(a) = p A(a)

¢, ¥(a) = J(p A(z))
@, Jrp(z) = Jx(p A ()
@ A Jzyp(x) = 3x(p A p(z))

0= -
e AY(a) = ¢ @ AY(a) = Fap(z)
p ANb(a) = o A Tdz(z)
(e Ab(z)) = ¢ A Fry(x)
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¢ Vih(a) = p,¥(a)
Va(p Vib(z)) = »,9(a)
Va (o Vib(z)) = ¢, Vay(z)
V(o Vib(z)) = ¢ V Vay(z)

0= -
= eVila)  Vryp(z) = o Vi(a)
e VVap(z) = ¢ Vip(a)
@ VVry(z) = V(e V()

Also we have:
THEOREM 4.1.2. For arbitrary formulas ¢, ¥, 6,
(1) LIE(pA-p) =9,
(2) LKF6O= (pVyp),
3) LKF¢e -,
(4) LKE-(pVy) e (mp A1),
(5) LKFE (mo V1) & =(pAih).

(6) LKFE(pDv) e —pVy

G.Gentzen proved in [3], the following ‘Hauptsatz’ (Cut Elimination The-

orem) for LK, and it follows that LK is consistent.

THEOREM 4.1.3 (Hauptsatz). If a sequent I' = A is provable in LK, then
I' = A is provable without using Cut, in LK.
Hauptsatz also holds for LJ.

COROLLARY 4.1.4 (Consistency). Formulas of the form ¢ A —p, which

represents a contradiction, s not provable in LK.
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4.1.3 Axioms of set theory

Set theory ZFC means the logical system LK with predicate constants €

and =, and the following axioms A1-A9,AC by Zermelo and Freankel, where
© =1 is an abbreviation of (¢ D ) A (¥ D ¢).

Al.

A2.

A3.

A4.

A5.

A6.

AT.

AS.

A9.

AC

Equality VuVv((u=v A ¢(u)) D p(v)).
Extensionality Vu,v(Vz(z€u = z€v) D (u=v)).

Pairing Vu,v3z(Vz(z €z = (z=uV z=0))).

The set z satisfying Vrx(rx€z = (r=uV x=v)) is denoted by {u,v}.

Union Vu3z (Vz(z€z = Jycu(rey))).
The set z satisfying Vz(x€z =3Jycu(zey)) is denoted by [Ju.

Power set Vu3iz (Vx((xe,z) =(x C u))), where

xCu <L Vy((yex)D(yeu)).
The set z satisfying Vz((z€z) = (xCu)) is denoted by P(u).
Infinity Ju(Jz(zcu) AVzeudycu(zey)).

Separation Yu3uVz((z€v) = (z€u A ¢(z))).
The set v satisfying Vz((z€v) = (z€u A ¢(z))) is denoted by

{reulp(@)}.

Collection Vu3v ((Vx culdyp(z,y)) D Vreudy vy, y)) .
e-induction Vz(Vycxp(y)) D p(x)) DVrp(z).

(Axiom of choice) If u is a set of nonempty sets, there exists a func-

tion f such that for every z € u, f(x) € x.

Vu((u # D AVreu(x # @))DEIfC(uXUu)(V:c cu(f(z) € x)))

The Axiom of choice is known to be equivalent to the following Axiom of

Zorn, under the classical logic.
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Zorn (Zorn’s lemma) Vv (Chain(v,u) D (v € u)) D32Max(z, u), where

Chain(v, u) & (vCu) AVz,yev((zCy) V (yCa)),

Max(z, u) & (z € u) /\VI(((xEU) A(zCz))D(z = x))

The entire sets form a universe of set theory. Since axioms Ay, --- , Ag, AC
are true in the universe V(p.78), every formula induced from these axioms
by LK is also true. Note that Vz((z €u) Dp(z)) and Jz((z€u) A p(z)) are
shorten as Va € up(x) and Iz € up(z), respectively.

LK with the system of axioms {Al,--- A9, AC} is called the formal
system of classical set theory and denoted by ZFC; LJ with the axiom
system {Al,--- A9, Zorn} is called the formal system of intuitionistic set
theory and denoted by [ZFZ.

A sequent I' = A is said to be provable in ZFC, in symbles

ZFCHFT = A
if
LKF (Ay,--- ,Ag, AC,T) = A.
ZFCFE = pisshorten as ZFC - . If ZFC is trivial in the context, shorten

as F ¢.
A sequent I' = A is said to be provable in IZFZ, in symbles

IZFZFT = A
if
LI+ (Al, -+ Ag, Zorn, F) = A.
IZF7 = = ¢ is shorten as [ZFZ - ¢.

ZFC is said to be inconsistent if the empty sequent = is provable

in ZFC, otherwise consistent.

4.2 Construction of mathematics in ZFC

4.2.1 Definition of sets

If p(z) is a predicate with 1-argument and

ZFECF Alzp(x) A p(u), where
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def
Awp(r) <= Jwp(x) AV, y(e(@) Aply) D (z=1y)),
then the set of = satisfying ¢(x) is defined and denoted by {z | ¢(x)}. For
example, pair {u, v} is a set defined by Axiom A3 (Pairing).

{u,v} ={z |z =uVva=uv}

4.2.2 Ordered pairs
Let

(x,y) o {{z},{z,y}}, where {x} is an abbreviation of {z,x}

LEMMA 4.2.1. (z,y) satisfies

Proof. + ((z=u

is proved as follows.

F(zy) = (wv) = {r}e(u,v)

= ({} ={u}) v {2} = {u,v})
= (z=u) V(z=u=0)
= (r=u)

o {xyy) = (uv) = (mzu)/\({:z: y} e (u, v>>
= (z=u) A ((ye{u}> v (ye fu,v})
= ( y—u)>\/ ((xzu)/\(yé{u,v}))
= (z=u= >v(<x=u>A(<y: WV (y =)
= (r=u= \/< YA (
> (r=u=y= v>v(< w) Ay =)
= (r=u)A(y=0v)

(x,y) is called an ordered pair and also denoted by (z,y).
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4.2.3 Relations

The set of all ordered pairs of elements of X and Y is denoted by X x Y.
X xY € ((ey)|zeX, yeY)

A subset of X xY is called a relation. Especially a subset of X x X is said
to be a relation on X.
If FC X xY, then (x,y) € F is denoted by F(z,y) or zF'y.
Order relation
A relation < on an set X is said to be an order relation on X, if
(1) Ve e X(z<zx) (reflexive)
(2) Ve,ye X((z <yAy<z)D(r=y)) (antisymmetic)

(3) Vrx,y,z € X((x <yAy<z)D(z< z)) (transitive)

4.2.4 Functions

A relation f C X xY is called a function from X to Y, in symbols f : X —
Y, if for each z € X there exists a unique y such that (x,y) € f.

(F:X—=Y) <L (fc X xY)AVzeX Ay ((z,y)€f), where

Ay (@, y) e f) €5 y((ay)e Ny, zeY (@) ef A (e ) €f) Dy =z).

If f is a function, then (x,y) € f is also denoted by
flx)y=y or f:xm—y

4.2.5 Equivalence relation

DEFINITION 4.2.1. A relation = on a set X is called an equivalence

relation if the following conditions are satisfied for x,y,z € X.
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B) Fe=yAy=z=z==2.

The set of elements equivalent to a € X is called an equivalence class

and denoted by |a].

o] € {z € X |2 =a}

The set of all equivalence classes is called the quotient and denoted by X/ =.
X/=% {|z|c X |z e X}
If A relation R(xy,--- ,x,) on X satisfies

F R(xy, -+ xn) AVi(z; = 2)) = R(x), -+ ,2))

rn

then the relation R(zy, -+ ,z,) on X induces a relation on X/=:
FR(zy,  ,xn) < R(|xa], -+ |2n])-

Similarly, if

F f is a function and

"VZ(:L‘ZE.T;) = f(xla"' 7xn)Ef(xll7 iL‘/),

rrn

then a function f on X induces a function on X/ =.

4.2.6 Natural numbers

LEMMA 4.2.2. (1) There exists a unique empty set denoted by ().
FVa(z € 0) A Vy(Va(z € y) D (y=0)).

Proof. Existence : By Axiom 6 (Infinity), there exists at least one
set. Say u. By Axiom 7 (Separation), there exists set {x € u | z # x},
which has no element. Let

def

D={recu|z#x}

Uniqueness : Vo(Vz(z € v) D (v =10)) is obvious. O

(2) For a set u, the singleton {u} consisting of only u is defined by

{u} € {u,u}.



UNDER PEER REVI EW

61

(3) The set {uy,-- ,u,} consisting of uy,--- ,u, is defined by using Azom

4 (Union).
{uy,+  up} def {u YU -+ U {uy).
DEFINITION 4.2.2.
0= 0
1 = {0}

2 € 1u{1}={o, 1}

Sn) ¥ nu{n}
0,1,2,--- ,n,--- are called natural numbers.
THEOREM 4.2.3. The set of all natural numbers, N, is defined so that
- Vn((n eEN)=(n|n=0V3Imen(n= S(m))))
Proof. By using A6 (Infinity) , there exists u and xy such that
(zo€u) ANVa(zeu D Jycu(zey)).

By Axiom 10 (Axiom of choice), there exists a function f : u — (Ju such
that

Vo € u(f(x) € x).

Hence, there exist a sequence f(xo), f(f(xo0)), f(f(f(x0))), -+ in u. Let

fao) € flwo) € u
o) = f(f(w) €u

Fxo) € F(f"Mxo)) €

o= {930, fl(aro), f2(950)>"' ,f”(:vo),--- }7

where X is constructed in ZFC as follows.
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By A5 (Power set), there exists the power set P(u) of u, and
{zo, [1(@0), f*(z0),- -, [ (w0)} € Plw).
Using A7 (Separation), let
S(X) € {my U (1) |1 € X},

LY {z e Plu) | (y € olx = Sy)))}-

Now let
o(z,y) (x = {20} Ay = o) v (m EXAy= S((p(x))).
By A8 (Collection), there exists v such that
vteX drev(r = o(t)).
Hence, there exists {z € v | 3t € S(z = ¢(t))}, and
- ((t EX)A(z = gp(t))) & ((w cv)A(z=0V (Iy€a(x= S(y)))).

Let

def

N={zecv|IHteX(x=0p)}

Then
FneN & ((n=0)V(Im e n(n=S(m))).
Also,
Fveez((0€2) vayesw = SW)) = (=N).
O
DEFINITION 4.2.3. The following P1,--- | P5 are called Peano’s axioms.
P1 = 0eN.

P2 zeN = S(z)eN.
P3 S(x)=95(y) = z=y.

P4 2zeN = —(S(x)=0).
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(0 € M/\Va:EM(S(:v)GM)) ~ NC M.

Peano arithmetics, denoted by PA | is the theory based on LK with Peano’s
axrioms.

A theory & s called an extension of PA if every theorem of PA s

provable in &.

THEOREM 4.2.4. ZFC is an extension of PA | i.e.

ZFCEPIN---NP5

Proof. (1) ZFCF P1:

= ac€0=acl

= Vz(xe0=2x€0) ie. = 0=0
= 0=0V Ime0(0=S5(m))
= 0eN

Therefore, ZFC F 0 € N.

ZFCF P2:
If neN, then ne(nU{n}) = S(n).

ImeS(n)(S(m) = S(n)). . S(n)eN.
LEMMA 4.2.5. ZFCF (neN) A (meN) A (men) = (mCn).

Proof. Let ¢(n) be (n € N) D Vm € N(m € n D m C n) and use
A9(e-induction).

(neN) A (meN) Vmenp(m) A (men) A (tem)

EIxEn(go(x) A(n=S(@)) A(men) A (tem)>

EII((an) A(mexVm=zx)A (tEm))

A
=
= Ela;(go(a:) AN(xen)AN(mexVm=ux)A (tEm))
=
= ten

(neN)A (meN)AVtenp(t) Amen = mCn
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(neN) AVmenp(m) = p(n).
By A9, Vnp(n), i.e.
ZFCF (n,meN)A(men)=mCn (4.2.2)
0
(3) ZFCF P3:
Proof. 1f S(m) = S(n) and t€n, since n€ S(n) = S(m), then n€m or
If;€77'1, then n C m by (4.2.2). Therefore,
(S(n) =S(m)) A (ten) = (tem).
Similarly,
(S(n) =S(m)) A (tem) = (ten)
[
(4) ZFCH P4 :
Proof.
(n=0)V3Im(n=S(m)). dx(zeS(n))
(neN)A(S(n)=0) = L.
(neN) = —(S(n) =0).
[
(5) ZFCF P5

Proof. Let ¢(n) be (neN)D(neM).

(neN)AVmenp(m) = 3JzeM(n=5(z))
(neN) AVmenp(m) = neM
vmenp(m) = ¢(n)
ZFC + ((OEM AV ((ze M) (S(x )eM))) > (N ¢ M).
By A9, ZFC F Vnp(n). O
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O
COROLLARY 4.2.6. The following inference is valid.
P5) p(a),I' = A, o(S(a))
©(0),T = A,VzeNp(z)
4.2.7 Operations on the natural numbers
Sum + and product - are defined as functions on N x N to N, where
+((z,y)) is denoted by = + y, and -((z,y)) is denoted by x - y.
+ is defined by
O+b=0b
(4.2.3)
S(a)+b=S(a+b)
- is defined by
0-6=0
(4.2.4)

S(a)-b=a-b+b
The definability of + and - on N are provable in ZFC, using Peano’s axioms.

The following theorems are provable in ZFC.
THEOREM 4.2.7 (Properties of +).

(1) (a+b)+c=a+(b+c) [associative]
(2) S(a+0b)=a+ S(b)

(3) a+b=b+a [commutative]

(4) S(a)=a+1

(5) a+b=a+c=b=c

(6) a+b=a=0b=0

(7) a+b=0=a=0Ab=0

8) a+b=1=a=1Vvb=1
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9) a#b= Fzx(a=b+z)VIY(b=a+y)
Proof. (1) Let P(z) be the formula (x4 b)+c¢ =z + (b+¢), and prove, by
induction,

ZFCE =Vz((z+b)+c=z+(b+c)).

(a) ZFCF = P(0), because, (0+b)+c=b+c=0+ (b+c).
(b) ZFC F P(z) = P(S(z)).
) (S(@)+b)+c = S(x+b)+c [definition of +]
= S((x+b)+c) [definition of +]
= S(
= S(z)+ (b+c¢) [definition of + ]

+ (b+ ¢)) [hypothesis of induction]

- P(z) = P(S(x))
= P(0) A Vz(P(z) D P(S(x)))
By P5(Induction), VzP(x), i.e
FVz((z+b)+c=az+ (b+c))

(2) Let P(x) be the formula x + S(b) = S(z + b), and prove YaxP(z) by

induction.
(a) F P(0) is obvious.
(b) F P(z) = P(S(z)) is proved as follows.
S(z)+S0b) = S(z+S(b)) [definition of + ]
= S(S(z+1b)) [hypothesis of induction]
= S(S(z)+b) [definition of + |

(3) Let P(z) be z +b=0b+ z, and use induction.

(a) P(0)is0+b=>b+0. Since 0+ b = b is provable by the definition
of +, it suffices to show that b + 0 = b. Now we prove that
Vz € N(xz + 0 = x) by induction.
Let P; be the formula z + 0 = .
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i. P1(0) is provable by the definition of +.
ii. Assume Pj(x).

S(x)+0 = S(x+0) [definition of +]
= S(z) [hypothesis Pj(x) of induction)]

(b) Assume that P(z) and prove P(S(z)).

S(x)+b

S(z+0b) [definition of + |
= S+ [hypothesis of induction]
= b+5() by (2)]

(4) Vx(S(z) = x + 1) is provable, since

S(a)=S(a+0)=a+S50)=a+1 by (2).

(5) Let P(x) be (x+b=1x+c¢) D (b= c) and prove VzP(z) by induction.

(a) P(0) is obviously provable.
(b) Proof of P(z) = P(S(z)) is as follows.

Sx)+b=Sx)+c = Sl@+b)=5S+c) [definition of + |
= z+b=x+c [Peano’s axiom P3]

= b=c [hypothesis of induction]

(6) If z € N and x # 0, then z = S(y) for some y € N. Let P(z) be
—(x 4+ S(a) = x), and prove Yo € N=P(z) by induction.

(a) P(0):—=(0+4 S(a) =0) is provable by Peanp’s axiom P(4).
(b) P(x) = P(S(x)) is provable as follows.

S(z)+S(a) =S(x) = S(z+S(a)) =S(x)
= x4+ S(a) =x [by Peano’s axiom P3|
“(z+S(a)=2z) = =(S()+S(a) =S5())
P(z) = P(S(x))
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(7) We prove the contraposition of (a +b=10) = (a =0Ab=0), ie.

“(a=0Ab=0) = =(a+b=0).

=(a=0Ab=0) = —(a=0)V~-(b=0)
= e, d(a=S(c) Vb= 5(d))
a=2S5(c) = a+b=5(c)+b
= a+b=S(c+b)
= —(a+b=0) [Peano’s axiom P4]
b=S(d) = a+b=b+a  [commutative law of +]
= a+b=95(d)+a=S5(d+a)
= —(a+b=0)
“(a=0Ab=0) = —=(a+b=0)

(8) Ifa=0,thenb=0+b=a+0b=1. Hence
(a+b=1)A(a=0) = (b=1)

If =(a =0), then a = S(c) for some ¢ € N.

a+b=1Na=S(c) = S()+b=1
=  S(c+0b)=5(0)
= c¢+b=0 [Peano’s axiom P4]
= ¢c=0Ab=0 [(7)]
= a=S(c)=50)=1
S(a+b=1)A=(a=0) = (a=1)
By F(a=0)V—=(a=0) and distributive law,
+ 1

S
S
I

a+b=1A(a=0V-(a=0))

R

a=1vb=1

9) (a) Ifb=0,a=b+a. ..Jx(a=0b+x).

If b # 0, then b = S(c) = c+1 for some ¢ € N. Since a # b = c+1,

a=cora#c.

(a+b=1Aa=0)V(a+b=1A(a=

0))
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i. fa=c,thena+1=c+1=0, hence Iy(b=a+vy).
ii. If a # ¢, By the hypothesis of induction

Fa#c= Fx(a=c+x)VIylc=a+y).

Jz(a=c+z)VIylc=a+y)

Let dx(a = ¢ + x).
Ifxr=0,thena=c .. a+l=c+1=0b
If  #0, then x = S(z) = z+ 1, hence

a=ct+rx=c+(z+1)=(c+1)+2=0b+=%

r(a=b+x)VIyb=a+vy).

Similar for the case Jy(c = a +y).

The operation - is defined by

0-b=0
(4.2.5)
S(a)-b=a-b+b.
THEOREM 4.2.8 (Properties of - ).
(1) 0-a=a-0=0.

(2) 1-a=a-1=a.



UNDER PEER REVI EW

70

9) a#0A(a-b=a) = b=1.

Proof.

(1) Let P(x) be the formula -0 = 0, and we prove VzP(z) by induction .

(a) P(0),ie. 0-0 =0 by definition.
(b) F P(z) = P(S(z)), because

S(x)-0 = z-0+0=04+0=0.
. a-0=0.0-a=0 by the definition of -.

2) 1-a=950)-a=0-a+a=a .. l-a=a.
Va(z - 1 = z) is proved by induction.
Let P(z) be the formula z - 1 = z.

(a) P(0) is obvious from the definition.

(b) F P(z) = P(S(x)), because
Sx)-1 = z-1+1=2+1=5(2)
(3) Let P(X)bex-(b+c) = (z-b)+(z-c), and prove Yz P(x) by induction.

(a) P(0),ie. 0-(b+¢)=(0-b)+ (0-¢) =0 is obvious.
(b) F P(z) = P(S(x)), because

S(x)-(b+¢) = (x~(b+c))+(b+c)
=(x-b+x-¢)+ (b+c) [hypothesis of induction]
= (z-b+b)+ (x-c+c) [property of +]

= (5(z)-0) + (S(x) - )
(4) Let P(z) be z-b=10-x and prove Yz P(z) by induction.

(a) P(0),i.e. 0-b=0b-0is obvious by (1).
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S(x)-b = x-b+b

b-S(xz) = b-(x+1)=b-z+0b-1 law of distribution
= x-b+b |hypothesis P(z) |
= S(z)-b

(5) Let P(z) be (z-b)-c=x-(b-c), and prove VzP(z) by induction.

(a) P(0),i.e. (0-b)-c=0-(b-c) is obvious by (1).

(b) F P(x) = P(S(x)), because
(S(z)-b)-c = ((x-b)+b)-c
— ((x b) - c) +(b-c) [Distributive law]
= (z-(b-c))+(b-c) [Hypothesis]
= S(z)-(b-c) [Definition of -|

(6) Assume —(a =0V b=0),ie.
a#0AbF#0.
Since a = S(¢) =c+ 1 and b = S(d) = d + 1 for some ¢,d € N,

a-b = (c+1)-(d+1)
= c-(d+1)+(d+1)
= (c-(d+1)+d)+1
= S(c-(d+1)4+d)#0 [RHE P4
“(a=0Vb=0)D(a-b=0).
Therefore, - (a-b=0) D (a=0V b=0).
(7) Ifa-b=1, then a # 0. Assume a # 1.

a=S(c)=c+1 for some csuch that ¢ # 0.
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Then
a-b=(c+1)-b=c-b+1-b=c-b+b=1

c-b=1 or b=1 by(8).
(a) If c-b=1,then1+b=1

b=0 by (6)
a-b=a-0=0 This contradicts to the assumption.

(b) If b =1, then a-b = a-1 = a = 1, which contradicts to the

assumption.
Therefore a = 1. Similarly, b = 1.

(8) Assume b # c. By (9) there exist ¢, d such that
b=c+d or c=b+d.

fb=c+d,a-(c+d)=a-c
a-ct+a-d=a-c
a-d=0 by (6)
a=0 or d=0by(6)
Since a # 0 by assumption, d =0
) b = ¢, which contradicts to b # c. Similarly, if ¢ = b + d’ then
b=c.

a-b=a = a-b=a-1
= b=1 by (8).

4.2.8 Ordinals

DEFINITION 4.2.4. Ordered set (a, <) is totally ordered if

Ve,y € afz <y Vy < x).
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DEFINITION 4.2.5. A totally ordered set {a, <) is well-ordered if
VB C adzefVy € Bz < y).
DEFINITION 4.2.6. (o, <) is an ordinal if
(1) « is well-ordered with respect to <, where

x <y PN (xey) V(x=y) forxy€a.

(2) feEa= p Ca.

“acis an ordinal” is denoted by “a€On”. “On” is not a set, but the proper

class of ordinals.

THEOREM 4.2.9. The set N of natural numbers is an ordinal, which is
denoted by w.

LEMMA 4.2.10. (1) a,f€O0On= aUpB,anp € On.
(2) If X is a non-empty set of ordinals, then |J X, (1 X € On.
(3) If o € On, then S(a) € On, where S(a) = aU{a}.
(4) Ifa € On, then VA € On(X € S(a) = A< a).
Proved straightforward.

THEOREM 4.2.11 (Transfinite recursion on On). If Vx, s3lyp(z, s,y), de-
fine G(x,s) to be the unique y such that ¢(x,s,y). Then we can write a

formula 1 for which the following are provable:

(1) Vaz3y(x,y), so Y defines a function F, where F(x) is the y such that
U(z,y).

(2) Va € On(F(a) = G(a,F(a))).

The proof is omitted.
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4.2.9 Integer
A relation = on the set N x N(= {(a,b) | a,b € N}) defined by

<a,b>E<c,d><d:ef>a—|—c:b+d

is an equivalence relation on N x N.

Proof.

Fa+b=a+b oo F{a,b) = (a,b)

F{a,b) =(c,d) = a+d=b+c
= c+b=d+a
= (¢, d) = (a,b)

F{a, by = (c,d) N (c,d) = e, f)
= a+d=b+c N c+f=d+e
= Fa+f=0b+e
= F{a,b) = (e, f)

O
DEFINITION 4.2.7. The quotient of NxN/= is the set of integers denoted
by Z:

def

Z=(NxN)/= (={la] | a € Nx N}).
Operations + and - on Z are defined by
(a,0) + {c.d) = (a+c,b+d),
(a,0) (c,d) = (a-c+b-d a-d+b-c).

+ and - are definable on Z, i.e.

—~
8
=3
~~
Il
—~
@\
oy
-~
>
—~
o
8
~—
Il
—~

d,d)y = {(a,b)+ (c,d) = (d,b)+ (c,d)
d,dy = (a,b)-{c,d) = (V) (,d)

—~
8
=
~
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—~
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S
~
>
—~
o
S
~
Il
—~

The proof is omitted. In the following, we write ab instead of a - b omitting
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4.2.10 Rational number
A relation = on the set of pairs of integers, Z x Z,
def
(a,b) = (¢,d) <= ad = bc
is an equivalence relation.
Proof. + (a,b) = (a,b) is obvious.
If - (a,b) = (c¢,d), then - ad = be.
Fcd=ad . F (c,d) = (a,b).
IfF {(a,b) = (c,d) A (c,d) = (e, f), then
Fad=bcAcf =de, .. Faf=be.
" F{a,e) = (b, ).
O]

The quotient of Z x Z by = is the set of rational numbers, denoted by Q.
¥z 7=
DEFINITION 4.2.8. Operations + and - on Q are defined by
(a,b) + {c,d) %< (ad + be, bd),

(a,b) - {c,d) < (ac, bd).

+ and - are definable, i.e.

—~
8
=
~
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—~
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>
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~
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(d,d)y = (a,b)+ (c,d) = (d', V) + (c,d)
(d,dy = {a,b)-{c,d) = {a, V) (,d)

—~
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>
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o
~
Il

The proof is omitted.
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4.2.11 Real number

A real number is defined as a Dedekind cut of rational numbers, that is, a

real number u is the pair of subsets of QQ, lower part L, and upper part U,:
u = (L,,U,) is a real number & (D1)y A--- A (D4), where
(D1), (U, C Q)N (L, C Q), (U, is the upper part and L, is the lower part)

(D2), Jx(z e U,) AJz(x € QA =(z € U,)),
(D3), Vz(z €U, D Vy(ye QAz <y D yeU,)),
(D4)y Ly ={z € Q| ~(z € Uu)}.
The set of all real numbers is denoted by R:
RY {(L,U) €QxQI(D1)yA---A(D4),}.

If w=(L,,U,) and v = (L,, U,) are real numbers, then

u+v dlef (Luytv, Uysy), where

Uiio def {Q|VseQx <s DIs1,5€Q(s =851 +53As51€U, Nso€U,))}

def
Loty = {LL‘ €Q | —|(l‘ S Uquv)}-

def
uw<v<ES L, C L,

If u,v >0,
uw dlef (Lyy, Uyy), where

U, def {Q|VseQx <5 DIs1,5€Q(s =s150 A s1€U, Ase€lU,))},

Lw={z€Q|~(z €U}

Then (Lyiv, Uysy) and (Ly,, Uy,) satisfy the conditions of real number, i.e.
u + v,uv € R. The definition of uv can be extended to all real numbers
u,v € R.

Real number v = (L,,U,) is determined by the lower part L, or upper
part U,. So we sometimes use the lower part L, or upper part U, to denote

u.
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4.2.12 Complex number

Complex number is defined as a pair of real numbers. The set of all complex

numbers is denoted by C:

CY¥RxR

For (a,b), (c,d) € C,

(a,b) = (c,d) €<% (a=c) A (b= d).

(a,b) + (c,d) & (a+c,b+d),
(a,b) - (c,d) & (ac —bd,ad + be).

We identify (a,0) with real number a, and denote (0, 1) by 7.

4.2.13 Universe of ZFC

We have defined the class On of ordinals in ZFC. A universe V of ZFC will
be defined in ZFC using transfinite recursion on On.
First we define a function o — V,, that assigns the set V, to ordinal «,

as follows:
(1) Vo=0
(2) Var1=P(Va)
(3) Va =Upeq Vs, whenever a is a limit ordinal
V= UaEOn V-

The Power Set axiom is used to obtain V,,; from V,. Replacement and
Union allow one to form V,, for a limit ordinal . The axiom of Infinity is
necessary to prove the existence of w and transfinite sequence of ordinals.

Finally, ZFC proves that every set belongs to some V,. For u,v € V,

) U=
truth value of ©u = v is

0, u#wv

The proper class V', together with the relations € and =, satisfies all axioms
of ZFC. Thus, V is a universe of ZFC.
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This is rephrased as follows.
In ZFC, a subset u of v is represented as the characteristic function y,, :
v — 2. Thus, the universe V of ZFC is defined inductively, as follows.
Vo = {u|3B<adDucVi(u:Du— 2)},
Vo= Useon Ve

The least o such that uw eV, is called the rank of u.

Truth values of atomic formulas on the universe V' are given as

[u=0] = Agep(u(@) O [e€v]) A A,ep,(v(@) D [ ul),
[[UG'U]] = \/xGDv(U(‘T) A [[U:.’E]]),
where A, V, =, V, 4 and D are operators on the Boolean algebra 2.

Logical operators A, V, =, ¥V, 3 and D represent algebraic operators on

the Boolean algebra.

[end]l = [l ALYl
[evyl = [el VY]
[~e]l = [l
Vae@)] = /\le(@)]

[Bap(x)] =

Then every formula has truth value 1 or 0 on V.
If a formula ¢ is true in V, that is, [¢] = 1 in V, then we say ¢ is valid

in V', and write

V E .

THEOREM 4.2.12. The set-theoretical axioms of ZFC, A1-A9 and AC, are

all true in the universe V, i.e. each axiom is valid in V. Hence

if ZECF @, then V | .
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Chapter 5

Various global logics

5.1 Global logic

[43 2

Sentence - is true is a metalogical statement for classical logical.

Global logic is obtained by introducing formulas of the form:

© — Y(“p implies ¥”) or Op(“p is true ” ).

Logical operation —, which corresponds to lattice operation —, was in-
troduced in Titani [13], and called basic implication.

Corresponding lattice operation — is defined by

1 ifa<b,
(a—0b) =
0 otherwise.

Globalization [J corresponds to lattice operation defined by

1 ifa=1,
Ua =
0 otherwise.

The globalization [ is defined by using the basic implication:
def
Oo = (p—=¢) = e

If a logical system has an implication D, then the basic implication — is

defined by using globalization:

oo &5 D DY),

79
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DEFINITION 5.1.1. A logic with logical operation — or [ is called a global

logic.

Logical system obtained from LK by adding — or [ is global classical
logic denoted by GLK , and logical system obtained from LJ by adding —
or [ is global intuitionistic logic denote by GLJ.

Formulas of the form ¢ — ¢ or [y are interpreted as either true or false,

where truth value of ¢ is denoted by [¢].

[p — Y] = L if [o] < [¥] [Og] = 1, ¢ is true

0, otherwise 0, ¢ is not true

That is, the formulas of the form Uy or ¢ — v follow the rules of classical
logic LK.

5.2 Logical system of global logic

Logical systems consist of alphabet and inference rules.

Alphabet of logical systems
(1) Constants : ¢, co,c1,¢2,- -,
(2) Free variables : a,ag,aq,as,- -,
(3) Bound variables : z, xg, 1,2, -,
(4) Predicate constants with n arguments : p™, pg, pt, ps, -+, (n>0),

(5) Logical symbols : A, V, V, 3,— and some proper symbols for each

system.

(6) Auxiliary symbols : (), and commas.

Terms

Individual constants and free variables are called terms, and they are de-
noted by t1,ts,---.
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Formulas
If p? is a predicate constant with n arguments and ¢4, - - - , %, are terms, then
pi(tiy, -+ ,t;,) is called a primitive formula. Formulas are constructed

from the primitive formulas using logical symbols, as follows.
(1) The primitive formulas are formulas.
(2) If p and ¢ are formulas, then (¢ A ¥), (¢ A ¢) are formulas.

(3) If p(a) is a formula with free variable a, and z is a bound variable
which does not occur in ¢(a), then Vzp(x) and Jrp(z) are formulas,

where ¢(z) is obtained from ¢(a) by substituting z for all a in ¢(a).
(4) For a global logic, if ¢ and 1 are formulas then ¢ — % is a formula.

A formula without any occurrence of free variables is called a sentence. A
formula which appears in the construction of a formula is called a subfor-

mula of the formula.

Formulas are denoted by ¢, 1, ---; ¢(a),¥(a),- -

DEFINITION 5.2.1. A sequent is a formal expression of the form

P10 Pm = 1/)17"' 777Dn'

The part “p1,--- ,©n " is the antecedent, and “y,--- 1, ” the succedent

of the sequent.

Finite sequences of formulas are denoted by I';, A, ---. So sequents are

written as the form I' = A.

An inference is an expression of the form

ﬁorsls2
S S 7

where Sy, Sy and S are sequents. Sy and Sy are called the upper sequents

and S is called the lower sequent of the inference.
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5.3 Interpretation of logical systems

A model M of a logic is a triple M = (£, D, I), where

e L is a lattice of truth values of the logic, on which logical operations

are interpreted as algebraic operations on L.

e D is a domain of variables, and

e [ is an interpretation of predicate symbols

I(p"): D" — L.

A D-assignment v is a mapping
v: FV — D,

where FV is the set of all individual free variables.

For a D-assignment v and d € D, v(d/a) denotes the D-assignment :
FV — D such that for z € FV

V'(d/a)(x) =

Let M = (£, D, I) be a model and v be a D-assignment. The truth value of
formula ¢ with respect to M and v is denoted by ¢[M,v] € L. If M and v
are omissible, then we denote M, v] by [¢].
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The logic are interpreted on the model:

[end] = el AY]
[evy]l = [elVv ¥l
[Vzo(z)] = Aeple(@)]
Fre(z)] = V,eple(@)]
ST {1, (1< 1
0, otherwise
oo = ol = W=

0, otherwise

[®(p1,- -, 00)] = [9] ([[gol]], cee [[gpn]]) for other logical operator ®

and corresponding operator [®] on L.

If & and ¥ are not necessarily finite set of formulas, then & = U is called
a generalized sequent. & = U is said to be valid in model M = (L, D, I)

and D-assignment v, in symbols,
(M, v] E & = ¥,

if
NelM,v] | ¢ € @} < V{Y[M,v] | ¢ € ¥}

Nl | o € @} < V{[¢] | ¥ € ¥} on model M and v .

If [M,v] E ® = ¥ for every D-assignment v, then we write as
ME®=U.

If the generalized sequent ® = WV is valid in every model M = (£, D, I)

and every D-assignment v, then we say that & = U is valid, and write as
Fo= V.

“=" in sequents of LK is not a logical operation, but a relation.
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We will adopt the classical 2-valued logic as the meta-logic, which is
the underlying basic logic. The classical 2-valued logic is represented by
the Boolean algebra 2 consisting of 1 and 0, which is a sub-algebra of every

complete lattice. Thus, the lattice order < can be considered as an operation:
Lx---xL—2 ona lattice L.
We introduced in Titani [13] a basic implication — on the lattice order:

1 a<bd

(@=8)= 0 aﬁb.

5.4 Lattice valued logic LL

Lattice valued logic LL is a logical system which is a counterpar of com-
plete lattice. LL is a global logic with basic implication —, which was intro-
duced in Titani [13].

5.4.1 Formal system of lattice valued logic LL

The primitive symbols of oprations of LL are
A, V, =, =, ¥, 3

The following symbols are defined from the primitive symbols.

o
0}
h

-
L

!

(=)
T

(p— 1)

(e =)A= p)
(p—=>p) =

= (=)

ﬂo.
@
S

ﬂo.
@
=N

P
P
Oy
O

ﬂo.
[¢]
S,

ﬂa
@
S

]Io.
@
=N
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5.4.2 Inference rules of LL

First of all, we define [J-closed formulas inductively, as follows :
(1) Formulas of the form (¢ — 1) are O-closed ;

(2) If formulas ¢ and ¢ are O-closed, then ¢ A ¢ and ¢ V 9 are also
[(-closed ;

(3) If aformula p(a) is a O-closed formula with free variable a, then Vxp(z)

and Jzp(x) are also O-closed;
(4) O-closed formulas of LL are only those obtained by (1)—(3).
I',AII A, - - will be used to denote finite sequences of formulas ; @, 1, - - -

to denote O-closed formulas ; and T', A,II, A, - - - to denote finite sequences

of O-closed formulas.

Begining sequents: Every proof of LL starts with logical axioms which
are sequents of the form ¢ = .

Structural rules :

Thinni I'=A I'= A
inning : = -7 =
Contraction : M = Ap 0
' o = A T=A o
Interch Loy 1= A I'= A0, A
nterchange :
erenanee F7w7()07H:>A FiA,Zﬂ,gp,A
P=Ap pll=A T=Ap ol=A
Cut :

[LII= A A [LII= A A

=A% pll=A
[I=AA
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Logical rules:

I'=AA I'=AA AT = A AT = A
ﬂA,FéZ ﬁZ,F:>A F:>Z,—|A FZ}A,ﬁA’
A _el=4 F=Ap I=AY
' oA, T = A = ANy
P, = A I'=A7 I'=A4Y
oA, T = A I=AGAY
" o, '=A ¢, =A = A
' eV, T = A = AoV
2l =A T =A = Ay
vy, = A I'= AV
.. I'=A¢p I=A o, = A1) 5.0 =A%
(e ), NI=AAN T=Ap—y) T=AG—Y)
v o(t), ' = A = A, o(a) I'= A %(a)
’ Vaep(x), T = A F:>Z,nggp<x) ['= A, Vzp(x)

where ¢ is any term

p(a),T = A

P(a),l = A

where a is a free variable which does

not occur in the lower sequent.

I'= A o)

Jrp(z),l = A F2p(z), I = A

where a is a free variable which does

I'= A, Jzp(x)

where ¢ is any term

not occur in the lower sequent.

5.4.3 LL-provability

DEFINITION 5.4.1. Fach logical axiom ¢ = ¢ is provable in LL, and if up-

persequent(s) of inference rules are provable in LL, then the lower sequent is
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provable in LL. A tree of provable formulas is called a proof of the lowermost
sequent.

“A sequent I' = A is provable in LL 7 is expressed by

LLFET = A.

DEFINITION 5.4.2. Generalized sequent ® = WV is said to be LL-provable,
if there exist finite subsequences I' C ® and A C ¥ such that

LLET = A.

DEFINITION 5.4.3. Formulas ¢ A in the rule (A), ¢V in the rule (V),
Vap(z) in the rule (V) and Jzp(z) in the rule (3) are called the principal

formulas.

THEOREM 5.4.1.

(1) LLF@A®, D= A ifand only if LLF @, T = A
(2) LLFD = AoV ifand only if LLFT = A @, ¢
(3) LLE(@mA--Apy)=¢; (i=1,---,n)

) LLEdy= (@1V---Vin) (j=1,--- n)

) LLE (0 AY) V(e AY) = oA (VYY)

) LLEoV@AY)=(eVY)A(eVY)

(7)  LLF 3x(p Ap(x)) = (¢ A Ixt(x))

) LLE (¢ VVxi(x)) = Vx(p V ih(x))

) If A(p) is a formula with subformula ¢ and LL ‘- @ < ¢, then

LL - A(p) < A(2).

Proof. (1) LLF ¢, = ¢ A1 by A-right :

o=
v, o=
0, =

(Thinning ) N
(Interchange) v=9

(Thinning )
PV =Y (A-right)

0,0 =AY
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(6)

and
P =>poANp oA T = A
e, 0, I'= A
Hence, LL - o Ay, T" = A implies LLF @, ¢, T = A.

(Cut)

The converse follows from A-left :

o, P, I'= A

oA, I'= A
v, o AN, = A
eANY, o AN, T = A

oA, I'= A

(A-left )

(Interchange)

(A-left )

(Contraction)

LL - ¢ = ¢,¢ and LL - 9 = ¢,¥ by Thinning and Interchange.
Hence, by using V-left,

LLEF oV = p.
Then by using Cut,
LLFT = A, oV implies LLFT = A, p, ¢

The converse follows from V-right, in the similar way to (1).

PYi = Pi
L1, Pm = Pi
©1 A ANpm = @ by (1)

(Thinning)

Similarly, by Thinning and Rule (2),

LLE ¢j= (V- ---Vay) (G=1,---,n).

YAV = ANWVY) AP = oA QVY)
ALYV (pAY)= oA (V)

Similar to (5).
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0= -
eANpla) = ¢ @ AY(a) = Fep(z)
e A(a) = ¢ ATz (x)
(e Ap(z)) = ¢ A Jry(x)

0= ~
= pVi(a)  Vay(r) = ¢ Vi(a)
p VVap(z) = ¢ Vip(a)
@ VVry(z) = V(o V()

= eANY=v Y=
OANY = eANY =Y
PN = o AY

Hence, if LLEF ¢ < ¢/, then LLF oAy < o A,

Y=y eANY = =y
AP =3 PAY = ¢
AP = P AY
Hence, if LLF ¢ < ¢, and LLF ¢ < 4/ then LLE oAy < o Ay
and LLF @AY < pAY.

Simiraly,
LLFp < ¢ and LLF 1 <4 implies LLEF VY < ¢ Vi),

LLF p(a) & ¢'(a) implies

LL F Vxp(x) & Vx¢'(x) and LL F 3xp(x) & Ix¢'(x).
Since A(yp) is constructed from ¢ by A, V, V and 3,
Lt ¢ < ¢ implies LL F A(p) < A(¢)

by induction on the complexity of A(¢p).
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THEOREM 5.4.2.

(17)
(18)

(19)

(20)

LLE ¢ =4 if and only if LLF = (¢ — 1)
LLEp. (¢ =) = ¢

LLE (= ¢), (b= 0) = (¢ —0)

LLE = (g1 A Apwm) =) (i=1,-+-,m)
LLE = (¢ = (1 V---Vi) (G=1,---,n)
LLF (8 = ), (0 = ¢) = (0 = (p A1)

LLE (p—=0), (v = 0) = ((¢ V) —0)
LLFEoA—p=0.

LLF o, T = A, implies LL F =, T = A, -y
LLF ¢ = == ; LLFUOyp < ==y ;

LL F —(p V) & (mp A=)

LLF (mp V=) = =(p A )

LLEOp = ¢

LLEF ¢ = Op

LLFT = A, ¢ if and only if LLFT = A, Oy
If ¢ is O-closed, then LL - ¢ < Oy

LL - Op < O0p

LLF o,T = A if and only if LL+ Op, T = A

LL F Op A 3x¢(x) < Ix(0p A (x));
LL F o A 3IxOy(x) < Ix(e A OY(x))

LL - VxOp(x) < OVxe(x)
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(21) LLFE(Be =) & (B = Oy) < (-0p vV DY)
(22) LLFE = OpV-Op

(23) LLF ((p A D& = ¢) = ((-¢ A BE) = )
(24) LLF —p & O-p

(25) LLF (¢ = O¢) = (O — Ov)

(26) LLE Q@ Av) = DA Qv

(27)  LLF 3x0p(x) & O0Ixp(x)

Proof. (1) By the inference rule (—).

(2)
0= 1 =1 (axioms)

(p =), o= o lelt

It follows that
LL @, (¢ = 1) = 1.

(3) Since (¢ — 0) is O-closed, by — -right ,
LLE ¢, (¢ = ¢), (¥ = 0) =, (Y — 0)

and

LL F 4, () — 0) = 0.

Hence, by rule Cut,

LLF ¢, (¢ =), (Y — 0) = 0.

i = Yi
i d (Thinning)

9017... 7%0771 :> 907, b Rule 1
CLN N Pm = @i (by W)

= (1A Apm) = i)

—-right

Hence,

91
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(5) By Thinning and Rule (2),
LLF = (@ZJJ — (wl\/---\/z/Jn)) (Gj=1,---,n)
in the similar way as (6).
(6) By using (4) and Rules A-right, — -right,

0,00 =), 0—=v)= ¢  0,00—9),0—=¢)=1
0,00 =), (0 =) = oA
(0= 9), (0 =¢)= (0= (pAY))

Therefore, LL F (0 — ¢), (0 — ¢) = (9 = (pA w))

(7) By using (4) and Rules V-left, — -right,

P =0, —=0) =0 b (p—0),(—0 =0
V), (p=0), (% —0) =0
(0 —=0).( = 0) = ((¢Ve)—0)

(8) By —-left and (1), LL F ¢ A —p =

(9) By —-left and then —-right. We also use the O-closedness of =y and
T.

(10)  Since - is O-closed, by —-right,

Y=

P =
Y=

Therefore,
LLF ¢ = =p.

By the U-closedness of Uy, = ==y = Up. Therefore,

(11)  Since =(p V 9) is O-closed,

o=
=0V

(e V), 0=
(V)= —p
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Therefore, LL + —(¢ V ¥) = —¢. Similarly, LL - (¢ V ¢) = —.
Hence, LL F =(p V ¢) = (—¢ A =1)). The converse is proved, by using
the fact that = A =) is [-closed, i.e.

N\ Y, 0 = AN, =
ﬁSO/\ﬁ"éDNP\/T/Ji
= A —p = (o V1)

LLE =(e V) & (me A=),

(12)  Similarly to the first part of (13),

LLF =gV =9 = =(p Av).

(13)
o=@
= (¢ = ¢)
(=)= ¢)=0¢

Y=

LL - UOp = .

(14)

O-p=—p o=
O, 0 =
@ = U=

LLF ¢ = Op.
(15) If-part is obvious by (3). The converse follows from the fact:
I'=Ap

_ (90_—><P)7F=>Z790
F'=A ((¢—=9) = o)

(16) If ¢ is O-closed, then, by (17), LL F ¢ = Op. The converse is (15).
(17) Since Oy is O-closed, LL - O0¢ < O, by (18).

18) LLF ¢, I = Aif and only if LLF ¢, = A
@
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Proof. If-part is obvious by (16). The converse follows from:
o, = A
T'=> Z, "

L= A0
-O-p,T = A

]

(19) LLF OpA3xy(x) & Ix(Op Ap(x)) ; LLEF e AIxOY(x) < Ix(e A
Dy (x))

Proof.

Op,(a) = Op Ay(a)
O, ¢(a) = Fz(0p A ()
O, Jryp(z) = Fz(Op A ()
Op A Jzp(x) = Fx(Op A ¢(z))

Up = U :
Op Ay(a) = Bp OpA¢(a) = Jap(x)
Op A(a) = Op A Jzp(x)
Jz(Op A ¢(x)) = Op A Jzy(z)

Similarly, LL F (p A 3x0O(x)) < Ix(p A Op(x)). O
(20) LLF VxOp(x) < OVxe(x)

Proof. (=) is obvious. Proof of (<) is:

OVzp(x) = Op(a)
OVze(x) = VaeOp(z)

(21) LLF (Op — ) < (Op — O¢) & (~0p vV OY)
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Proof. Since the first (<) is obvious from (5), we prove only the second
(<)
(L = 09), Op = O
(Op — Oy) = Oy, 20
(Op — Ov) = -Op v Oy

Uy = Uy :
Up, Oy = Uy —Oe,Ue = Uy
U VvV Ly, Op = Ly
—Op Vv Oy = (Op — Oy)

]
(22) LLF = DQO V ﬁljgp
Proof. Obvious. n
(23) LLF ((p ADOE =) = (- A OE) — —p)
Proof.
o, =N ¥, =
(p A = o), p, p, 0 =
(pAOE— ), W ADE= —p
(e ADE =) = (—p ADE = —¢)
]
(24) Since -y is O-closed,
LL Y = Dﬁgp
(25) LLF (¢ = Ov) = (Op — OY)
Proof. By (7). O

(26) LLEO(@pAv)=0OpA 0y
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Proof. By (4) and (7). O

(27) LLF Ix0p(x) & Odxp(x)

Proof. Similar to (20). O

5.4.4 Interpretation of LL

Let £ be a complete lattice and M = (£, D, I) be a model of LL, where

D is a domain of variables, and [ is an interpretation of predicate symbols
I(p"): D" — L.
— and — are interpreted as

(o = V) [M,v] = (p[M,v] — [M,v]) = 1, if p[M,v] < P[M, 0]

0, otherwise

1, if p[M,v]=0

()M, v] = —p[M,v] = .
0, otherwise.
That is,
vl = @d-wn = A=
0, otherwise,
L, [[90}]:0

[~e] = —[el =

0, otherwise.

THEOREM 5.4.3 (Soundness). If a sequent I' = A is LL-provable, then it

1s valid in every lattice valued model.

i.€. If FT'=A then FI'= A
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Proof. Let an arbitrary lattice valued model M = (£, D, I') and D-assignment
v be fixed. Axiom ¢ = ¢ is valid, since [¢] < [¢]. So it suffices to show

that, for each inference rule

if ME P fori=1,--- ,n, then M F Q.
We prove the case of Cut, as an example. Since the truth value [@] of

[J-closed formula is either 1 or 0, it suffices to show for the cases

F'=¢ pll=A F'=A¢ o=A '=Ap pII=A

[LII= A ’ = AA ’ LII= AA
Let I' = ¢ and ¢, [l = A are valid. If I' = {¢1, -+ , o}, L= {1, - 90},
A={&, . &},

[pr A= Apm] < el
and
[PI AT A= A < [& V- v &L
Then

[t Ao Ao Ar A A] < [& V-V E&]

That is, the lower sequent is also valid.
Other cases are proved similarly.

[

COROLLARY 5.4.4. If a generalized sequent is LL-provable, then it is valid

i every lattice valued model.

Proof. Tt follows from the fact that a generalized sequent ® = ¥ is LL-
provable, if there exist finite subsequences I' C ® and A C ¥ such that

LL-T = A.
O
Now we review the proof of the strong completeness of LL by M.Takano.

THEOREM 5.4.5 (Strong completeness, Takano [10]). If a generalized se-

quent is valid in lattice valued model, then it is LL-provable:

ie. IfED =V then F® = U
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Proof. To prove the theorem, a generalized sequent & = ¥ is supposed to
be LL-unprovable, and construct a lattice valued model M = (£, D, I) and

D-assignment v which falsifies

Nl |0 € @} <\/{[] | v € U}

We assume without loss of generality, that p and ¢ are mutually distinct
proposition symbols (namely, 0-ary predicate symbols) which do not occur
in ® UV and that there are infinitely many free variables which do not occur
in®UW.

A formula of the form (¢ — ) is called an implication formula. Let
0y, 01, 05, - be an enumeration of all implication formulas. The sets @,
and Uy (k = 0,1,2,---) of implication formulas are defined recursively as

follows, so as to have infinitely many free variables which do not occur in
b U Uy,

Basis. Define ®; and ¥ as follows:

Po={p—=>¢)|pe@tU{(v—=q) eV} and Vo= {(p—q)}

Induction Step. Suppose that &, and ¥, have been defined. Let a be

any free variable which does not occur in &, U ¥ U {6;}.
Case 1: &, = U, U {0} is LL-provable. Define
1 = 5 U {0k}, Wit1 = V.
Case 2 : &, = U, U{0;} is LL-unprovable.
(1) If 6y is of the form (¢ — Vap(z)), define
O = Dy Uyr = U U {0, (¥ — 0(a))}
(2) If O is of the form (Jzp(z) — ¢), define
D1 =Pp Uppy = U Uy, (p(a) > ¥)}.
(3) Otherwise, define

®k+1 = (bk \Ijk+]_ = \I/k U {ek}
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Having defined all ®;’s and W,’s, let
QJOO:U{cIDk | k=0,1,---} and \IIOO:U{\Ijk | k=0,1,---}.

PROPOSITION 5.4.6. The following properties hold for the set ® of impli-

cation formulas.

(1) Suppose that @1, , @m, Y1, , ¥, are implication formulas, and

LLF @1, om = U1, .
If o1, om € P, then either Yy Edor --- orh, €Dy.
(2) If (¥ — p(a)) € Poo for every a€ FV, then (¢ — Vap(z)) € Pu
(3) If (gp(a) — w) € &, for every a€ FV, then (Elxgp(a:) — ¢) S
(4) (p— ¢) € O for every ¢ € O, while (p — q) ¢ P.

Proof. (1) If @1, - ,om € P but 9y, -+ 1, € P, then

LL|7[9017 790m:>¢17"' a¢n7

which contradicts to the assumption.

(2) Suppose that (¢ — Vap(z)) = 6, and 0, & P. If LL F &y =
Uy U {6}, then ) € &,y contradicting by & P.; hence LL t/ &) =
Uy U {6}. It follows that for some a € FV, (¢ — ¢(a)) € Uyyq, and

so (¥ = ¢(a)) € Pu.
(3) Similar to (2).

(4) (p— ¢) € Og for every p € @, and (v — q) € P, for every ¢ € U. On
the other hand, (p — ¢) € P, since (p — q) € Vy.
O]

PROPOSITION 5.4.7. Fvery implication formula belongs to exactly one of
P, and ¥, and the generalized sequent O, = V., is LL-unprovable.
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Proof. Since 0, € @11 U Wy, every implication formula belongs to at least
one of ., and V.. So it suffices to show that &, = ¥, is LL-unprovable
for every natural number k. We prove this by induction on k.

Basis. Suppose that &y = ¥, were LL-provable. then the sequent

(p%(pl)v "'7(p_><:0m>7 (¢1_>Q)7"'7(1/Jn_>Q) = (p—>Q)

is LL-provable for some 1, - - , ¢,, € ® and some ¥y, - - - , ¢, € V. Replacing
pand g by o1 A+ Ay (p— p, if m=0) and 1 A--- A, (¢ — g, if n=0),
respectively, the sequent

90/17 7()0;717wivwizz> ((SOIA/\QOm)_)(QbI/\/\wn))

is LL-provable, where ¢} and 1} denote ((p1 A+ A ) = i) and (¢; —
(Y1 V- - -\/@Dn)), respectively (i = 1,--- ;m;j=1,--- ,n). Then by Theorem
5.4.2(6),(7),

LLE 1, om = Y1, Uy

which contradicts the assumption that & = ¥ is LL-unprovable. Hence
®y = ¥y is LL-unprovable.

Induction Step Suppose that &, = ¥, is LL-unprovable. We will show
that ®;,1 = V. is LL-unprovable, along the definition of &, and ;.

Case 1 : &, = WU, U {0} is LL-provable. If &,y and ¥y, were LL-
provable, then &, and W, is also LL-provable by Cut, contradicting the
assumption. Hence, ®;,; and ¥y, were LL-unprovable.

Case 2 : & = U, U {0} is LL-unprovable.
If 0y, is of the form ¢ DVxp(z), then

Ppp1=Cp W1 = Ve ULk, (¥ = »(a))}
If ) is of the form Jzp(x) D), then
Ppr1 = Oy Uhpr = W U {0k, (p(a) = ¥)}.

Since .1 and W, are sets of closed formulas, ®;,; and ¥, ,; were LL-
unprovable by the inference rules V-right , 3-right and —-right.
Otherwise : ¥ &;,1 = U, is obvious.



UNDER PEER REVI EW

101

Let

p=1p S (g P) AW = @) € By

= is an equivalence relation by Proposition 5.4.6. Let || be the equivalence

class under the equivalence relation to which ¢ belongs :

1% o {& - formula | £ = ¢}.

Set P of all the equivalence classes under = :

P {le] | ¢ : formula}

is an ordered set under < such that

ol < Y| & (p =) € Dy for formulas ¢, .
PROPOSITION 5.4.8. (P, <) has the following properties.
(1) P has both the greatest element 1 and the least element 0, and 1 # 0.
2) le Al =lel Al
3) leVel=lel VY.
4) | =9l = (ol = [9]).

1, ] =1,

0, otherwise.

() [l =

6) [Vee(r)] = AMlp(a)] [ ac FV}.
(7). Bre(e)] = VH{le(a)| [ a€ FV}.

Proof. (1) Since LLF = (p — p),
LL+6= (p—p)
for every 6. Hence, |p — p| is the greatest. Similarly

LLE = (=(p—p) —0)
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for every 6. Hence, |=(p — p)| is the least.
p—=pl=1 and [=(p—p)[=0.

By Proposition 5.4.6 (4), (p — q) € P. Hence |p| # |q|. Therefore,
14 0.

By Theorem5.4.2 (6) and (8), [¢ A 9| < |o| A |9, and if €] < |¢| and
€] < [¢] then [¢] < |@ A¢].

Similar to (3) by Theorem5.4.2 (7) and (9).
Since ¢ — 1) is [-closed,

(o =)= (p =)
(p =) = (p—= 1), 0
= (¢ = 1), ((p = ¥) = 0)

is a proof for every 6. By Proposition 5.4.6 (1),

either (p = ¥) € Po, or ((p = ¥) = 0) € O
Hence, for every 6,
either (6 — (p = 1)) € Pse, or ((¢p = ¥) = 0) € g
It follows that

either |p = ¢|=1 or |p — ¢|=0.

Since LL - 0 = (p — p) for every 6, p — pisin ®,,. and Theoremb.4.2
(10) and (11).

If || = 0, then |¢| < || in particular, i.e. (¢ = @) € P
For every v, we have

Y= Y= TP

p, (o= —p) = —p

(¢ = ) = ~p
(o = =) = (¥ = —p),
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LLE (¢ = ~¢) = (¢ = ~¢),
Hence, If || = 0, then |¢| < || for every . That is,

if |p| =0, then |—p|=1.

If |¢| # 0, then |p| £ |[¢| for some ¢. That is, (¢ — 1) € P for some
Y. But we have LL F = (¢ — ), (—¢ — 0), for every ¢ and 6.
Because,
v, TP =
P, 2o =, 0
= (¢ =), (e = 0).
Since (¢ = V) € Do, (g — 0) € O for every 6. It follows that
= =0

(6) Since LL - Vxp(x) = ¢(a), hence
Vzo(z)| < |p(a)| for every a € FV.

On the other hand, by Proposition 5.4.6 (3),
Y] < |¢(a)| for every a € FV implies |¢] < |Vzp(x)]| .

Vap(z)] = Alle(a)l | a € FV}.

(7) Similar to (6).

LEMMA 5.4.9. [ McNeille’s theorem ([5], [2])] Any poset P can be embedded
in a complete lattice L, so that order is preserved, together with the suprema

and infima existing in P, where for each X C P,

X* denotes the set of upper bounds in P, i.e. X* ={xe P |Vte X(t <)},
XT denotes the set of lower bounds in P, i.e. X1 ={xeP |Vte X(z <t)

and
L is defined to be the set of all X C P such that X = (X*)':

LY {XcP|X= (X))
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Then

MXiti =N Xi and V{Xi}i = (U, X)) for {Xi} C L.
The embedding i : P — L is defined by i(a) ={teP |t <a} fora€P.

Now, consider the lattice valued model M = (L, D, f), where L is the
complete lattice in which P is embedded, D is F'V, and for every predicate
sysmbol R, f(R) is the mapping from D" to £ such that

F(R)(ar, - ,an) = i(|R(as, -+ a)]) for every aj, -+ ,a, € D.

PROPOSITION 5.4.10. For every formula ¢ and every D-assignment v :
FV — D,

pIM, v] = i([¢"]),

where ¥ designates the formula obtained from ¢ by substituting every occur-

rence of each free variable a by free variable v(a).

Proof. The proof is by induction on the construction of .
Case 1: ¢ is R(ay,- - ,a,), where R is an n-ary predicate symbol. Then
" is R(v(ay), -+ ,v(a,)). So

e[M,v] = f(R)((v(ar), - v(an)) = i(|¢"]).

Case 2: ¢ is ) A 6. By the hypothesis of induction, ¢[M,v] = i(|¢)"|) and
O[M,v] = i(|0"|). On the other hand, by Proposition 5.4.8(2), and by the
fact that ¢ preserves the infimums, i(|¢"|) = i(|¢"]) Ai(]6"]). So

p[M, v] = Y[M, o] AOIM, v] = i(|[9"]) Ai(]0°]) = i(le"])-

Case 3-5: ¢ is (¢ V 0), (¢ — 0) or —e). Similar to Case 2.
Case 6: ¢ is Vap(z). Then ¢V is Vayp¥(z). By hypothesis of induction,

Y(a)[Mu(d/a)] =i(J0°(d)]) for every d € D.
On the other hand, by Proposition 5.4.8(6) ,

'l = Nlw*@l1deD}y . ile'l) = Alilv*())] | d € D},
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since ¢ preserves the infimums. Hence,

= A\{¥(a)[Mv(d/a)] | d € D} = A\{i(|¢"(d)]) | d € D} = i(|¢"])

Case T: ¢ is Jxtp(z). Similar to Case 6. O

Let w be the D-assignment which is the identity mapping on D. It follows
from the previous proposition that p[M,w] = i(|¢|) for every .

PROPOSITION 5.4.11. A{p[M,w]: ¢ € &} L \/{V[M,w]: ¢ € V}.

Proof. Tt suffices to show that

pl € N{plM,w]: o €@} but |p| & \/{¥[M,w]:¢ €V},

If o € @, then (p — ¢) € $, by Proposition 5.4.6(4), so |p| < |p| and so
lp € i(|¢]) = ¢[M, w]. Hence

pl € (HelMw): ¢ € @} = N{p[M,w]: ¢ € @},

If ¢» € U, in the meantime, (¢ — q) € ., by Proposition 5.4.6(4), so || <

gl and so [g] € (i(|9]))* = (¢[M, w])*. Hence |q € ({(G{M,w])" | ¥ € W},
But, since (p — ¢) € ®., by Proposition 5.4.6(4) again, it is not the case
that |p| <lg|. So

pl & (@M, w)* [ € U = \/{¢[M, w] | v € T}

Hence,
NelM, o] [ € @} £ \/{v[M, 0] | ¢ € ¥},

That is , ® = W is not valid. this ends the proof of Theorem 5.4.5.
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5.5 Basic implication and globalization

Lattice valued logic and lattice valued set theory are formulated in Titani
[13] by introducing basic implication —, which represents lattice order on
the truth value set L:

1 a<b

0 a<b,

where 1 and 0 represents ‘true’ and ‘false’, respectively.

(a —b) =

We assume that the truth values of the meta-logic are ‘true’ and ‘false’,
that is, the sublattice 2 = {1, 0}, which is a Boolean algebra, represents the

truth value set of the meta-logic. Thus, the meta-logic is a classical logic.
Logical operation is represented as an algebraic operation on L:
LX--XL—L,
whereas relation is represented by an algebraic relation,
Lx--xL—2(CL).

Since 2 is a sub-lattice of every complete lattice, the basic implication —
can be considered as an algebraic operation on the complete lattice £. So we

could introduce — into logic as a logical operation.

Globalization [

1 a=1
Ua =
0 a#1
is a modal operator on the lattice, satisfying

(1) Oa <gq;

(2) O0Oa = Oe;

(3) OaV(Qa)t =1, OaA (Da)t =0; and
(4

) a<b= Oa <00
The corresponding logical operation [ is also called a globalization.
Thus, if D is an implication, then

(p = ¥) &5 O(pD ).

Furthermore, ¢ is defined by Q¢ & (Opt)*+.



UNDER PEER REVI EW

107

5.5.1 Global classical logic and global intuitionistic logic

Global classical logic GLK and global intuitionistic logic GLJ are obtained
from LK and LJ by introducing globalization.

Formula of the form Oy is said to be [-closed. sequence of [J-closed

formulas {Cip; }; is written as O({¢;}:).

5.5.2 Inference rules

Structural rules :

Thinui I'=A I'=A
inning : - S
& = A o, I'= A
where A is [O-closed for
the intuitionistic logic

. 0,0, = A I'= A p
Contraction : _ _
o, = A = A
It h F?@?w7H:>A F:>A7()07w7‘/\
nterchange :
erenanee T ll=A  T=AUpA
Cut - F'=A¢ ¢oll=A
e T.I1= A A
Logical rules:

5. I'=A¢ ¢ II=A o, '= Ay
. 0D, III= AA = A oD
A o, ['=A '=A¢ I'=>AY
' oA, = A L= ApAy

v, I'= A

oA, T'= A
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v o, '=A p,I'= A I'= Ay
' eV, I'= A = AoV
= A
'=ApVYy
o, ['=A = A
I'= A, - -, ' = A
where A is [-closed for
the intuitionistic logic
v o(t), I = A I'= A p(a)
' Vep(z), I = A I'= A Vzp(x)
where t is any term where a is a free variable which does
not occur in the lower sequent.
3. pla),I'= A I'= A ot
' Jzrp(z), I = A I'= A, Jzp(x)
where a is a free variable which does where ¢ is any term
not occur in the lower sequent.
o, '= A O = OA, ¢ ..
0) : e Globalization].
(0) OpT = A Or = OA, O [Globalization]

Of course it can be formulated using the basic operation — instead of [I.

DEFINITION 5.5.1.
GLK FT' = A denote “a sequent I' = A is provable in GLK 7

GLJ FT'= A denote “a sequent I' = A is provable in GLJ 7

If GLK, GLJ are obvious, we write just

FT = A.
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Obviously we have
THEOREM 5.5.1. (1) IfLKFT = A, then GLKFT = A
(2) IfLJFT = A, then GLJFT = A

(3) (Soundness) If FT' = A then ET = A

5.5.3 Lindenbaum algebra

Let F' be the set of formulas, and for ¢, v € F let
def
p=1Y = Fpsa.

= is an equivalence relation on the set F' of formulas. The equivalence class
of ¢ is denoted by |¢|, and let F//= be the quotient space of F' by =.

Fi=% {lelc FloeF)

The order relation < on F//= is definable by
Pl <] £ ko=,

LEMMA 5.5.2. For ¢,y € F,
(1) lel Al = le A4l
(2) lel VIl =le Vil
3) ~lel = ¢l
4) [Vep(o)] = Nle@)| [ t €T},

(5) Bze(z)] = V{le@)] | t € T}, where T is the set of all terms, i.e.

individual free variables and constants.

Proof. We prove only (1) and (4). Other equations are proved similarly.
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(1)

Since we have F o Ay = ¢ and F Y Ay = 1,

o APl <l and [p A| < [3].
I£ ¢] < || and [€] < [¢] for € € F, then

F{=¢ and F{=7vy, - F{=pAY.
It follows that [¢] < |¢ A %|. Therefore,
[l Al =l Al

Since F Vzp(z) = ¢(t) for all term t € T,

Vzp(x)| < |p(t)| forallt eT.

Assume [¢] < |¢(t)| for all term t € T. That is, & = ¢(t) forallteT.
Choose a free variable a € F'V which does not occur in £ = Vro(z).
Then by inference rule V-right,

&= Vap(z), i.e. €] < |Vxp(x)|.

Therefore,

Vaep(z)] = Alle(a)l | a € FV}.

Thus, A, V and — are defined on F/=.
F/= is a Boolean algebra or Heyting algebra, according as GLK or GLJ,

which is called a Lindenbaum algebra .

5.5.4 Completeness

THEOREM 5.5.3 (Completeness of GLK). If a sequent I' = A is valid in

every Boolean valued model, then it is provable in GLK.

Proof. Lindenbaum algebra F'/= of GLK is a Boolean algebra, which is

extended to a complete Boolean algebra by Theorem 3.3.6,
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Let B be the minimal extension (cf. Theorem 3.3.6, p.30) of the Boolean
algebra F'/=, and the canonical isomorphism h* : F/=— B preserves all

infinite joins and meets, i.e.
it a=ViTa, then h*(a) = V2, h*(a), (5.5.1)

it a= A then  h*(a) = A2y h*(ar). (5.5.2)
For a formula ¢ € F, let

def .
le] = h(|¢l) € B.
if GLK I/ ¢, then || # 1. therefore, [¢] # 1, ie. (B, D,I) forms a model
of GLK such that

(B,D,I) 7 o,

where

D is a domain of individual variables, which contains the individual con-
stants,

I is an interpretation I of predicate symbols

I(p"): D" — B,
and D-assignment
v:FV — D.
O

THEOREM 5.5.4 (Completeness of GLJ). If a sequent I' = A is valid in
every Heyting valued model, then it is provable in GLJ.

Proof. Similar to the case of GLK, where we use Theorem 3.4.7 instead of
Theorem 3.3.6. That is, order of truth values is defined by

[l <[l €5 GLIF =4,
then the set of truth values is a Heyting algebra, and D corresponds to an
implication on the Heyting algebra.
Heyting algebra is extended to a complete Heyting algebra by Theorem
3.4.7.
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Let (F'/=)* is the complete extension of F'/=.

(F/=)*, D, I) forms a model of GLJ according to F'/=, where

D is a domain of individual variables, which contains the individual con-
stants,

I is an interpretation I of predicate symbols
I(p"): D" — (F/=)",

and D-assignment
v: FV — D.

5.6 Predicate orthologic

Ortholattice( cf. Definition 3.5.1) is a lattice provided with ortho-comlementation

L which satisfies the following conditions.

(C1) att =a,
(C2) avVat=1, aAat=0,
(C3) a <b=b-<at

The structure of a complete ortholattice is represented by a global logic,

which is called a predicate orthologic.

5.6.1 Formal system of predicate orthologic OL

The formal system of predicate orthologic, denoted by OL, is obtained from
the lattice-valued logic in Titani [13], by adding a primitive logical symbol
1 together with rules for ortho-complementation. That is, primitive logical

symbols of OL are
A,V H = V3



UNDER PEER REVI EW

113

Defined formulas are:

o
@
n

T
L

(e Veh)

(T)*

p— 1

(e = V) A (W = @)
(p—=>p) =y
(e

!

ﬂa
[¢]
S

ﬂa
@
=8

-
QY
O
Qe

Ha
@
o

Ho_
[¢]
S

ﬂa
@
o

The inference rules of predicate orthologic OL are those of lattice valued
logic LL plus the following inference rules (C1), (C2), (C3):

(1) - o, '= A '= A
' et T = A I'= A bt

(©2) =A@ = AP o, = A .= A
P T=A PI=A T=Agl T=Agp
' T = At

If ' = A is provable in OL, then we write “OLF T = A”. “OLF
¢ =1 and OLF ¢ = ¢” can be shortened as “OLF ¢ < 1" and also
“OLF = ¢” as “OLF ¢”.

A formula of the form Uy is called a U-closed formula. i expresses that

@ is [-closed.

THEOREM 5.6.1. For any formula ¢ of OL:

(1) OLF Op=¢ , OLFp<Op;

(2) OLF T« OT, OLFLlL<e0Ol.

Proof. (1) (¢ — ¢) is O-closed, and OLF (p — ¢). Hence, by (—):

= (=9 p=>p @—9).9=0
((@—M@)—Hp):w Ei((@—@)—%)
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(2) By Rule (C2), OLF ¢V ¢t for any formula ¢. Hence,
OLF (VY ) & (pVgt) & T and OLF (DAD) & (pAgt) < L.
[
THEOREM 5.6.2. For formulas ¢, ¥, £ of OL, we have
(1) OLFpA—-p=:; OLF=37V-y;
(2) OLFpt & —p;
(3) OLF ¢ =1 if and only if OLF (p — ¥);

(4) If p(¥) is a formula with sub-formula ¢ and OLF ¢ < &, then
OLE ¢(¢) < ¢(&).

Proof. (1) OLF = T and OLF L = by Rule (C2). Hence, by Rule (D):

o= 1= P, = L
o (p—1)= r= (-1

where - is an abbreviation of (¢ — L).
(2) By (1) and (C2).
(3) By Rule (—).

(4) If OLF ¢ < 4, then OLF ¢t < ot by (C3). Hence, (4) holds by
5.4.2.
0

Immediately from (C1), (C2), (C3), we have:
THEOREM 5.6.3. For formulas ¢, of OL,
(1) OLF ¢ & o't
(2) OLF = pVpt, OLF pApt= ;

(3) OLE (¢ = v) & (V- = ¢h).
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THEOREM 5.6.4. A theorem of lattice-valued logic LL is a theorem of OL.
That is,
LLF ¢ mplies OLF .

Proof. The inference rules of LL are (A), (V), (=), (V), and (3) of OL to-
gether with the following four rules of (). Hence, it suffices to show that if

the upper sequent of each rule of (—) is provable in OL, then so is the lower

sequent.
I=Ap = AP o, I = A 7, L= A
. —|307F:>Z —\E,F:>A F:>Z7—|gp F:>A,—\@’
where = is an abbreviation of (p D 1). O

THEOREM 5.6.5.
(1) OLE (e V)t & (¢t AYT), OLE (ot Vyt) & (e Av)*;
(2) OLF (Vxp(x))* & Ixpt(x), OLF (Ixe(x))* & Vxot(x).

Proof. Straightforward. ]

5.6.2 Interpretation of OL

Let £ be a complete ortholattice and M = (£, D, I), where
D is a domain of variables, and
I is an interpretation of predicate symbols

I(p"): D" — L.

M = (L, D,]I) is called a ortholattice valued model of OL, where —,

— and * are interpreted as

o] = ofg={" TE=t
0, otherwise
ol = =40 =0

0, otherwise.
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An ortholattice valued model M of OL, shortly OL-valued model, is a

lattice valued model. So obviously we have

THEOREM 5.6.6 (Soundness). If a sequent ® = ¥ is provable in OL, then

it 1s valid.

5.6.3 Strong completeness of OL
Only difference between LL and OL is that OL has the logical operator *.

THEOREM 5.6.7 (Strong completeness). If a generalized sequent ® = W of
OL is valid, where ® and U are not necessarily finite, then it is provable in
OL:

F®=V¥ = OLF®=V.

Proof. The proof of strong completeness of OL is in Titani-Kodera-Aoyama[14],
which is similar to the proof for lattice valued logic LL by Takano [10].
Supposing that OLF & = ¥, we will construct ®., in the same way as

the case of LL, and define a binary relation = between formulas by
A=B &L ((A—>B)ECI>OO and (B—>A)€q)oo>

= is an equivalence relation on the set of formulas. Let |A| denote the

equivalence class to which A belongs: |A] o {B| A= B}, and let

def

P = {|A||Aisaformula}
A< |B| <5 (A— B)edy

1 =T

0 = |1

A= B ifand only if At = B, hence |A|* is defined by
A[F < A%,
P is a lattice, where
(1) [AAB[=[A[A|B];

(2) [AV B[ =|A]V|B|;
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1L if [Al < B,
(3) [A—B|=
0 otherwise;

AT = |A[*

(4)

() VrA(z)| = A{|A(a)] | a € FV};
(6) [FrA(z)| = V{|A(a)| | a € FV}.
(7)

/\ and \/ above denote the infimum and the supremum, respectively,
in P.

(8) For formulas A , B of OL :
(a) [A* =14
(b) [AIAJAE =0, |A]V[A]F =1;
(c) [Al < [B] <= [B|* <|A[.

Thus, P = (P, <, \,\/,1) is an ortholattice.
By Mcneille’s theorem( cf. Lemma 5.4.9), any poset P can be embedded
in a complete lattice £, so that order is preserved, together with the suprema

and infima existing in P, where for each X C P,

X* denotes the set of upper bounds in P, ie. X*={zxeP |VteX(t <x)},
XT denotes the set of lower bounds in P, i.e. XT = {zeP |Vte X(z <)

and
L is defined to be the set of all X C P such that X = (X*)':

LY {XcP|X =X
Then
ANMXiti =N X and  V{X} = (U; X)) for {X;}; C L.
The embedding i : P — L is defined by i(a) ={teP |t <a} foracP.

We denote the infimum of {X;}; in £ by A, X, and the supremum of

i(Antn) = Ani(ta) and i(V, 1) = (U, i(t.)")" =V, i(tn)-
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DEFINITION 5.6.1. For X C P, let
x+t= {acP|x<at foralzecX}.
We have
(1) If XCP, then 0 € X*;
(2) IfX,YCPand XCVY, then Y CX*;
(3) If XCP,then XC X+ and Xt =Xt
(4) XnXx*+={0};
(5) (XUXH)H =P
Proof. (1) VxeX(0 < 1), hence 0 € X*.
(2) Obvious.

(3) If z€ X then Vte X (x < tt). Therefore, X C X1+,
By (2), X+ c Xt and X1LL o XL

(4) Ifz € XN XL, then z <zt hence z = 0.

(5) (XuXxH)tc X+tnX+ ={0}. Therefore, (X UX+)+ = P.

If XCP,then (X*)f=X1L,

Proof.

ze (X)) — Vy(VxEX(xgy):zgy)
— Vy(yLGXLéylgzl>
(

— WylyteXt=:< (yL)L> — zeXxtt
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Thus, P is embedded in the complete ortholattice
L={XCP|X=X"} by i:a—ila)={teP|t<a}l foracP,
where

iAntn) = Npilta) =N, iltn), iV, ta) =V, ilta) = (U, i(ta))

Let D = FV and I(p) : D™ — L for n-ary predicate constant p be defined
by

[(p)(a’la e 7an) = i(‘p(ah e 7an)‘) for every ay, - ,an €D.

Then M = (£, D,I) is an OL-valued model and For every formula A,
AM,v| = i(|AY]), where AV is the formula obtained from A by replacing

every occurence of each a € F'V by the free variable v(a).

Let u be the D-assignment which is the identity map on D.
AM, u] =i(|A]) for every A.
The proof of completeness of OL is completed with the following proposition.
N{AM, u] | Ac @} £ \/{BM,u]|B eV} (5.6.1)
Proof. 1t suffices to show that
pl € N{i(lA]) | A € @}; (5.6.2)

il & (J{i(1B]) | B € W)+ (5.6.3)
Since |p| < |A| for every A€ ®, we have (5.6.2).

Now we assume |p| € (({i(|B]) | B € ¥})**+. Then

[pl < 1X|* forall [X] € ([ G(IBD)* = (1) ((IBD)*

Bev Bev

Since |B| < |q| for all B € ¥, we have

|X| < |q| , whenever |X| < |B|.
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gl € (VAIXTT1X] < B} = () G(UBD)*
Bev Bev
pl<lal =l . (p—q) € D,
which is a contradiction. Hence we have equation (5.6.1). O

5.7 Quantum Logic

The mathematical language of lattice was introduced into quantum physics
by Birkhoff and von Neumann [2].

The truth value set of the standard quantum theory is expressed by the
lattice Q(H) with automorphisms, where H is a Hilbert space ‘H, and Q(H) is
a complete orthomodular lattice 3.6.2 consisting of all projections (or equiva-
lently all colsed subspaces) of H. Thus, the logic of standard quantum theory
is represented by the complete orthomodular lattice Q(H).

Orthomodular lattice 3.6.2 is an ortholattice 3.5.1 satisfying ortho-

modularity (P), i.e. a lattice provided with an operator * satisfying
(C1) att =q;

(C2) aVat=1, aAat=0;

(C3) a <b= b+ <at;

(P) a<b= b=aV (bAa*) (orthomodularity).

The complete orthomodular lattice is represented by a sheaf of complete
Boolean algebra. That is, each formula of quantum logic is interpreted as a
cross-section of a sheaf whose stalks are complete Boolean algebras.

The quantum logic represents the structure of the complete orthomod-
ular lattices.

G.Takeuti adopted an implication defined in terms of A, V, and *, on
the complete orthomodular lattice Q(H), in order to develop a quantum set

theory. We denote his implication by —:

(a—cb) & at v (anb).
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—r is considered as a local implication, in the sense that
¢c<(a—¢b) ifand only if (cAa) < (cAb).

However, this implication is not enough to develop a global set theory, be-

cause it is not transitive. That is,
(a=xb) A (b—=rc) £ (a—rc).

The transitivity of the corresponding logical implication is indispensable for
the development of set theory, since equality axioms of set theory which

depend on the transitivity of implication are fundamental.

Quantum logic QL is obtained from OL by adding inference rule

0. = Ay
U, T = AoV (Y Apt)

(P): [Orthomodularity]

1.e.

QL = OL + (P).

QL is a global logic as well as lattice-valued logic LL (Titani [13]) and
ortho-lattice OL (Titani [15]) introducing the basic implication —.

Since orthomodular lattice has Takeuti’s implication defined by

(a— D) gcﬁ\/(a/\b),

the basic implication — is express in terms of the implication — and the
modal operator [ :
(a —b)=0(a—10).

The logical system provided with the globalization [J instead of the basic
implication is denoted by QL5. QL_, which is equivalent to QL, had been

introduced in Titani-Kodera-Aoyama [14].

Primitive logical symbols of QL are:

AV, 3, O
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(] is interpreted on a orthomodular lattice as

1 a=1
Ua =
0 otherwise
Finite sequences of formulas are denoted by I', A, ---. If I" is a sequence
“o1,-++ ,p,” of formulas, then the sequence “Clpy,--- ,0p,” is denoted by
ar.

Logical axioms of QL. are sequents of the form ¢ = ¢.

Structural rules :

Thinni = A I'= A
inning : =
= A = A

Contraction : % e A‘;D;OSO

r I=A '=A A
Interchange : 0¥, 11 = = 8,09,

g, o Il= A L= A, A
Cut I=0A¢ oll=>A T=Ayp o00=A
ut :

[VII = 0OAA ,amam= AA

I'=AOp Opll=A

[I= A A
Logical rules:
A o, ['=A '=0A¢ I'=0A9
' oA, I = A I'=0OA, oA
v, I'= A I'=A0p I'= Ay

oAU T = A T = A, Op AW
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o, ' =A 0= A '=Ap
eV, O = A = AoV

Op, I'=A Oy, I'= A I'= A9
Op Vv Oy, I'= A '=ApVy

o(t),I'= A I' = 0OA, p(a) I'= A, Op(a)
Vep(z), I = A I'= 0AVep(z) T'= A 0OVzOp(x)

where ¢ is any term where a is a free variable which does

not occur in the lower sequent.

o(a),dr = A Oe(a),I' = A I'= A p(t)
Jzp(z),d0 = A OFz0p(z), ' = A I'= A Jzp(x)

where a is a free variable which does where t is any term
not occur in the lower sequent.

o, I'= A I'= A

1) H =2 el el )
(c1) et T'= A = A et

I'=0Ap I'= A, Oy o, =A Op,I'= A
et I'=0A Op)t,T'=A OF=Aet I'=s A (Op)t

(C2) :

0,00 = OA, ¥
YL, 00 = OA, ot

(C3) :

0,00 = OA, ¥

(P): », 00 = OA, o V (0 A o)

[Orthomodularity]

o, I'=A Or = 0A, ¢

O) : -
©) Op, I'= A O = OA, Op

[Globalization].

Remark

Our formal systems LL, OL, GLK, GLJ, QL, QL are all Gentzen-type
sequent calculi, provided with the basic implication — or the modal operator
(], where cut rules are not eliminable. To have the basic implication — or
the modal operator [J means that the logical system has a dual structure,

consisting of a logic and its meta-logic. The meta-logic is classical.
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Defined formulas are :

def
T & (pVeh)

1 &L (Tt

[oN
o]
—h

Y= S 0tV (pAY) (cf. Takeuti[11],[12])
p—v €S O(p—rv)
def
p = p— 1
Pt L (PP AW - )
Op £S5 (Oph)*
ol <5 DAYV (AYD) V (et AV (et Aph)

THEOREM 5.7.1. For formulas ¢, 1, £ of QLy, we have

(1)
(2)
(3)
(4)
()
(6)
(7)
(8)
(9)

(10)

QLo FOp = ¢, QLo F ¢ = Op;

QL, O = OA, ¢ if and only if QL F O = OA,Op;
QL, F o, 00 = OA  of and only if QLE Op, 0 = OA;
QLo U & O, QLgE O¢ < Loy;

QL (Op A DY) < O(0p A TY) ;

QLoF (Hp v y) < O(0e v Oy) ;

QLoF (Hp)* < O((09)*) ;

QL F VzOe(x) & OVzOe(r) < OVre(x) ;

QL F Fz0p(x) < OFz0p(x) ;

QL F J20p(z) & OFx0p(x) < OJzp(x).

Proof. Straightforward. O]

COROLLARY 5.7.2. If p is a O-closed formula of QL, then QL F ¢ < De.

Proof. For a formula of the form (¢ — ), QLyF (¢ = ) < O(p — ),
since ¢ — 1 is the abbreviation of C(p® V (o A 9)). O-closed formulas of
QL are constructed from formulas of the form ¢ — ¢ by A, Vv, +, V, and 3.
Hence, by Theorem 4.1, we have QL. F ¢ < Oep. m
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(1) QLgkelv, QLoEvl e and QLyE ¢ | ¢+ are all equivalent ;
(2) If QLoF ¢l ¢, then QLoF o< (0AY)V (pAt);

(3) If QLok ¢ =, then QLo o=y A(pVr);

4) If QLoF ¢, then QLoF oVt o (9 Ad) Vb,
Proof.

(1) Immediate from the definition of | .

(2) We have

QLo (0 AY) V(e AYT) = ¢ and QLoE ¢ = (V) A(p V).
(5.7.1)

QLok (P A V(e AYT) = (0 V) A(pVet).  (5.7.2)
By Rule (P) of orthomodularity,
QLok (V) A (pVYT) &
(P AV (@ AUV (0 V) A e V) A (e V) A (0t V1)),
If QL.F ¢ 4, then
QLo (p V) A(p VIH) A (et V) A(p Vi) = L.
QL (9 V) AlpVyt) & (9 AY) V (e Ap).
QLF o< (0 AY)V (o At) by (5.7.1) and (5.7.2).

(3) If QLoF ¢ = v, then QLjF 9t = ot By Rule (P),
QLoF ¢t & ¢t V (9t AY). Hence, QLo ¢ & ¢ A (p Vit).

(4) We have QL,F (o Av) Vot = ¢Vt Hence, by (3),
QLok (e A D) VIt = (o Vet A ([P AY) VIR V (e vV et)h).
By QLok @l and (2),
QLok (P AY) VPV (pVYh)t & vyt o T.

QLo (e AY) VYt & oVt
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THEOREM 5.7.4.

(1)
(2)
(3)

QLoF @l if and only if QLok o & (@ AY)V (0 AYt);
QLoF @ L if and only if QLgE (0 V) A & o A

If QLF =1, then QL,F gpjjw.

Proof. (1) Assume QL_F ¢ < (@A) V (o Apt). Then

QLoE v At S YA (et VU A(pt V).

QLo ¥ At e Y A (ph v ot). (5.7.3)
Applying Rule (P) to QLoF p A =,

QLok ¥ & (P AY)V (VA (e Vb)),

By (5.7.3), QL.F ¥ < (0 AY) V(o A). (5.7.4)

Using the assumption and (5.7.4),
QLoE VYV (V) & oV eV (et AYt) &

(@A) V(e APV (eh A) V (ph Ay,
QLoE (@A) V (e AV (e Ah) V (gt Ay,
It follows that QLyF ¢ < (@ AY) V (p At) implies QL ¢ | 9.

The converse is Theorem 5.7.3(2).
Assume QL (o V) A < o Atp. Then
QLok (P A D)V (e A0) & (VIR AB) V(" AY). (5.75)
By QLyF (¢*A®) = ¢ and Rule (P)
QLok (P A9V ((pv ety Av) & B.

By (5.7.5) QLgF (pA¥) V(¢ AY) & 9.
Therefore, QL F ¢l by (1).
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(3) If QL F ¢ = v, then
QLoE v = oV (@ ApT) by (P) and QLyF ¢ < oA

Therefore, QLo = (o A) V(P A ph).
Hence, QLo ¢4 by (1).

THEOREM 5.7.5.

(1) If QLoE (@lv) A (el €), then
QLoF (0 AY) V(e A & oA (Y VE) and
QLo (0 VY)A(pVE) & oV (P AE).

(2) If QLo @ l4(a), then
QL. F Jz(p Ap(x)) & o A Jzp(z) and
QLy F V(o VY(z)) & ¢ VVz(z).
Proof. (1) Assume QLyF (¢l ¥) A (el ). We have
QLo (p AP) V(e AE) = 0 A (Y VE).
By Rule (P),
QloE oA (M VE) = (pAY)V (P AV
(P A @VOA VI At vED),
By Theorem 4.4(2),
QLo ¢ A (9 VYT) & @AYT and
QLo p A (9t VEY) & oAl
QLok pAWVE & (P AV (P AV (P AW VE AT AEL).
Since QLoF o A VE AYEAEL = 1,

QLo oA (W VE) & (pAY)V (pAE).

We have QL b ¢y and QL F ¢t|&E. Therefore,

QLF (V) A(pVE) & oV (P AL).



UNDER PEER REVI EW

128
(2)  Similarly, assume QLyF ¢|4(a). We have
QLok 32(p A (@) = ¢ A ey (2).

By Rule (P),

QLat A Jzw(x) & Falp M) V (¢ A Fob(e) AVa(et Vot (@),
Since QLyF ¢ | 4(a), we have
QLoF ¢ A 3ugh(x) AVa(p* V()

& o A Jx(z) AV (gp A (ot Vv wL(x)>

< o A Jz(x) AVr(e At (z)), by Theorem 4.4(2)

& A Jay(z) AVt (z) & L

CQLoE o A Jzy(x) < Fz(p A (x)).

THEOREM 5.7.6.

(1) QLgk ¢, ¢" V(e AY) = 4. Thatis, QLok ¢, o=t = ¥ It
follows that — represents an implication.

(2) QLFOL, ¢ =1 if and only if QL,F O = O(p —r ). Therefore,
the following definition of the basic implication in QL is justified :

o= P €5 O(p =2 9).

Proof. (1) We have QLo+ ¢lot and QLo ¢ (¢ A¢).  Hence, by
Theorem 5.7.5,

PNV (o A1)
b,

QLoF @ A (va(sﬁ/\l/J)) =
=
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(2) If QLyF O, ¢ = 9, then QL F O, ¢ = ¢ A. Hence
QL,FOC, ot Vo= o V(pAY). - QLo OL = O(p —x ).
Conversely, if QL. F OI' = O(¢ —1 ¢), then
QLHOI o = 9 A (=1 1),
By (1), we have QL F O, ¢ = 1.
UJ
THEOREM 5.7.7.  QL.F Op ¢ for any formulas ¢ and .
Proof. By using Rule (V)-left,
QLo Op & Op A (V) & O Ag) vV (Op Aph).
Therefore, by Theorem 5.7.4, QL F Oy | 4. ]

5.7.1 Relation between LL, OL, QL and QL

By Theorem 3.4, LLF ¢ implies OLF ¢, and QL is OL + (P). We show
in this section that QL is equivalent to QL, and also GLJy is equivalent to
GLJ.

(¢ — ) in QL is the abbreviation of (! V (¢ A %)), and [t in QL
is the abbreviation of ((¢p — ¥) — ).

THEOREM 5.7.8. QLF ¢ implies QL .

Proof. 1f ¢ is a [-closed formula of QL, then QL F ¢ < Oy by Corollary
4.2. Hence, it suffices to show that if the upper sequent(s) of each of the
following rules of QL is provable in QL_, then so is the lower sequent:

L T=0Ap ¢00=A oOr=0Ay Op, T = A, O
(p—),NO0=0AA O'=0A(p—=v) T'=A (Op—0Oy)

(1) IfQLF I'=0A ¢ and QLyF 9,01 = A, then by (Cut) together
with QLgF ¢, (¢ = ¥) = 9,

QL. (p — ), T, 00 = OA, A.
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(2) QLyF o, 00 = OA ¢ implies QL F O = OA, (¢ — ¥), by
Theorem 5.7.6(2).

(3) If QLoF Op, I' = A, Oy, then QL. F Op, T' = A, Op A Oy. Hence,
QLo (@)™ VO, I = A, (Op)*" Vv (Op A Oy).
Therefore, QL+ Op, I' = A, ¢ implies QL F T = A, (Op — Ov).
O]
THEOREM 5.7.9. QL,F ¢ implies QLF ¢.

Proof. Oy is an abbreviation of ((¢ — ¢) — ¢), hence Oy is O-closed. OT,
A, --- are sequences of [J-closed formulas. Hence, it suffices to show that
if the upper sequent of each of the following rules of QL is provable in QL,

then so is the lower sequent:

o, '= A O = OA, ¢
Op,I'= A Or, = OA,Op

(d) : [Globalization].
(1) Since QLF (p — ¢), if QLF ¢, T' = A, then by (—),

QLFE ((p = ¢) = ), I'= A, ie. QLFOp, ' = A.

(2) If QLF O = OA, ¢, then QLF (p — ¢), 00 = OA, ¢. Therefore,
QLF O = OA, Oe.
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Various Global Set Theories

Formal classical set theory ZFC is the system consisting of classical logic LK
and Zermelo-Freankel axioms A1-A9 and AC.

Truth value set of LK is complete Boolean lattice, i.e. complete Boolean
lattice is a counterpart of classical logic. D.Scott and R.Solovey introduced
a Boolean valued universe. Thus, ZFC is described and interpreted in the
Boolean valued universe.

The usual mathematics can be developed in the Boolean valued universe,
wheras Boolean valued universe is constructed in ZFC.

An intuitionistic logic is represented by a complete Heyting algebra and
the intuitionistic set theory is developed in a Heyting valued universe. Boolean
algebra and Heyting algebra have the structure of sheaf of complete Boolean
algebra 2 = {1,0}. Both of Heyting valued universe and Boolean valued
universe have the structure of sheaf of 2-valued universe.

Classical set theory ZFC is not complete as shown in Godel’s incomplete-
ness theorem. That is, there exists a valid formula of ZFC which is not
provable in ZFC.

Von-Neumann-Bernays-Godel set theory NBG has the notion of class,
which is a collection of sets defined by a formula whose quantifiers range
over sets. NBG is a conservative extension of ZFC, and can define classes
such as the class of all sets and the class of all ordinals.

Global Von-Neumann-Bernays-Godel set theory (GNBG) is the global

classical logic with axioms of global set theory.

131
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A meta-theoretical sentence “A formula ¢ is true” is expressible in GNBG.

As a result, GNBG becomes complete.

6.1 Global set theory

Global set theory GNBG is based on global logic with primitive symbols

e (Class constant V', which indicates ‘universe’

Set constant (), which indicates ‘empty set ’

Class variables A, B, C, ---, X, Y  Z ---

Set variables a, b, ¢, ---, x, vy, 2z, - -

membership relation € and equality =

Logical operators A, V, — (or O), ¥V and 3.

Atomic formulas of GNBG are of the form A = B or a€ A.

6.1.1 Axioms of global set theory

Axioms for global set theory are similar to those of ZFC set theory. Quan-
tifiers of the form Vz € V or dxz € V for set variables will shorten to Vx or
Jdx.

GA1l. Universe VX (Y (X€Y) = JzeV(z = X))
Empty set Vo—(ze€0)
GA2. Extensionality VX,V (X =Y <& Vz(zeX < z€Y)).
GA3. Regularity Vz (Jy(yez) — Jycz(yna = 0)).
GAA4. Infinity Jzx(Ja(acz) ANVyeaxIz(yez A z€x))

GAS5. Pairing Vu,v3z (Vz(zx ez ¢ (z=uV x=0))).

The set z satisfying Vz(re€z < (r=uV x=v)) is denoted by {u,v}.
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GA6. Union Yu3z (Vx(z€z <> Jycu(zey))).
The set z satisfying Vz(re€z <> Jycu(xcy)) is denoted by [Ju.

GAT7. Power set Yu3z (Vo(x €z <> o C u)), where
xCudL Yylyex — yecu).

The set z satisfying Vz(re€z <> xCu) is denoted by P(u).

GAS8. Class comprehension For any global formula ¢(x) containing no

quantifiers over class variable, there is a class A such that
V(z EA o o(x)).
The class A satisfying Vz(z €A ©(z)) is denoted by
{z | p(x)}.
GA9 Collection Yu (‘v’a:(xeu — Jyp(x,y)) — ToVz(reu — Elyévgo(x, y))) :
where yév dlef O(yew).
GA10. Zorn Gl(u) A Vv € A (Chain(v,u) = Jv € u) — Iz € AMax(z, u),

where

Gl(u) & Va:(xGu—)xéu),

Chain(v, u) JELN vCu AV, y(r,ycv —xCyVyCz),

Max(z, u) - uANVe(z€uhzCx — 2z =1).

GA1l. Axiom of ¢ YUIZVt(teZ < O(tel)).
The class Z satistying Vt(t€ Z <» ¢(t€U)) is denoted by OU.

6.2 Basic universe of set theory
Underlying basic universe V( =V? ) (cf. p.78) is constructed inductively:

Vo = {u|3IB<aTDucVs(u:Du— 2)},
vV =U V.

a€EOn " &
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Truth values of atomic formulas in the basic universe are given as
[u=v] = Asepu(ulz) D [zev]) A Apep, (v(x) D[z €u]),
[uev] = Viep,(v(@) Afu=2]).

Logical operators A, V, =, V, 3 are represented by algebraic operators on the

Boolean algebra 2.

[eAd] = [l AY]
[evy] = [e]V[¥]
o -l = { el =
otherwise
[Oe] =
0 otherwise
[Vzp(z)] =
[Bze(z)] = \/[[90(96)]]

Then every formula has truth value 1 or 0. We express mathematical objects

such as numbers, relations, functions and etc. in the universe.

6.3 Lattice valued universe

In general, truth value set of global set theory is an complete lattice. Let £
be a complete lattice, where L is a set. Logical operators are interpreted as
algebraic operators on the complete lattice, where — is the basic implication

and — is the corresponding negation:
- RN p— L.
L-valued universe V¥ is constructed in V by induction:

VE = {u|E|5<aEIDuCVBE(u:Du—>£)}
ve = | JVE

a€On
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The least « such that u € V£ is called the rank of u. Class A of V£ is a
function DA — L, where the domain DA is a sub-class of V~.

A:DA—-L

For classes A, B and a set a, [A= B] and [a € B] are defined by induction
on the rank of A, B.

[A=B] = N\ (A@@) = [zeB)A N (B(x) = [z€A])

z€DA re€DB

[acB] = \/ (la=2] A B(x)).

z€DB

We say an element p of £ is O-closed if p = Op, where [p = ((p —p) —
p). As an immediate consequence of the definition of atomic formulas, we
have:

LEMMA 6.3.1. [A=B] is O-closed for every classes A, B.
Hence we have
LEMMA 6.3.2. For every classed A, B and {by}, C L,
[A=B] AV, br =V [A=B] A by;
and for classes A and By and be L,
(VilA = B]) Ao =V ([A = B A D).
LEMMA 6.3.3. Let A, B are classes of V*. Then
(1) [A=B] = [B=A]
(2) [A=4]=1
(3) Ifx € DA then A(x) < [xeA].

Proof. (1) is obvious.
Let x € DA. Since [r=xz] =1 by induction hypothesis,
A(z) < \/ [x=2"] AN A(2") < [x e A],
z'€DA

and hence, [A=A] = 1. O
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THEOREM 6.3.4. For classes A, B,C,a,b of V-,
(1) [A=BAB=C] <[A=C]
(2) [A=BABe(C] <[Be(]
(3) [A=BACeB] <[CeA]

Proof. (1) We proceed by induction. Assume that A, B, C are classes of V.~
By Theorem 3.7.5.(8),

[A=B] N A(z) < (A(z) = [xreB]) N A(z) < [z e B]
for x € DA. Since [A=B A B=C] is O-closed,
[A=BAB=C]AA(x) < [B=C]A \/ [x=y] AB(y)

<V (o= A [B=C] A B(»))

<V (o=l n V =17 C)
yeDB 2eDC

< \/ \/[[x:y/\y:z]]/\C(z).

By using induction hypothesis,

< \/ [t=2] A C(2)
zeDC
< Jred].

Since [A=B A B=(] is O-closed again,
[A=BAB=C] < )\ (A(z) = [z€C])).

z€DA

Similarly, we have
[A=BAB=C] < )\ (C(2) = [z€A]).
2€D
Hence, [A=B AN B=C] < [A=C].
(2) and (3) follows from (1).
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6.4 Lattice valued set theory

A global set theory on V£ whose primitive formulas are of the form A = B or
a € B and logical operations are A, V, =, —, Vx, dx is called lattice valued
set theory LNBG . We extend the definition of [¢] in natural way:

[=¢] = ~l¢]

[o1 A ] =[] A 2]

[e1 Vo] = [en] V [2]

= el =lal = e = =1
0[] £ [eo]
[Vzo(2)] = Avevele(u)]
[Bro(@)] = Vieyeleo(w)]

[O¢] = O[], where Oy denotes (p — ) — .

The equality axioms are valid on V* :
THEOREM 6.4.1. For any formula ¢ (X) and classes A, B of V*,

[A=BAp(A)] < [e(B)]-

Proof. If ¢(X) is an atomic formula, then it is immediate from Theorem
6.3.3 and 6.3.4. Other cases follows from the fact that [A = B] is O-closed
and Theorem 5.4.2. O

THEOREM 6.4.2. For any formula o(x) and class A of V',
(1) [Ve(zeA = o(@))] = Asepalre A = o(X)]

(2) BrlzeANp)] = V,epalr € AN @(2)]
Proof. (1): [Vx(z€A — p(2))] < Nyepalzr€A = ¢(2)] is obvious. Now we

show (>). By using the fact that [z € A] </, palr = 2], we have
N ['eAd = o) A[zeA]

z’€DA

= A [ed—-p@)Alzeu]n \/ [z=2"]

2'eDA x""€DA

=V (A ed e AreA] Alz=2"])

z"€eDA z'€DA
< [ol@)]
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Since A\ cpalr €A — ¢(x)] is O-closed, we have

N [z€A = o(@)]) < [Va(z € A — o(x))].

z€DA

(2): By using [x€ A] <V, cpalr = '] again,

[Bx(ze AN ¢(z) \/ \/ r=2| A [xe AN p(2)])
xeVE x'€DA
<\ [WedAne@E)]. O

DEFINITION 6.4.1. Restriction A [p of class A of V* by p€ L is defined
by

D(Alp) =A{zlp | zeDA}
(Alp)(xTp) = V{A@) Ap | 2’ €DA, z[p=12'[p} for zeDA.

If ACVE, sois A | p, and we have

THEOREM 6.4.3. If A is a class of V*, x € VX, p,q € L, and p is O-closed
(i.e, p=0p), then

(1) p<[A=ATp]

(2) [zeAlp] =[zeA]A

(3) (Alg)lp=Al(PNq).
Proof. We proceed by induction on the rank of DA,
(1) : For z€DA,

pANA(x) < (Alp)(zlp) ANr=xlp] < [r€ATlp]
(Alp)(zlp) = \V  A@)ApAfe=2'=zlp] < [xpeA]

z'€DA, x|p=x']p

Therefore, p < [A=A[p].
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(2) : By (1) and Theorem 6.4.1,
[teAlAp < [xeAlp].
(<) follows from the fact that 2" [p = 2’ [p implies p < [2"=2] :
[zeArp] = \/ [z=2"Ip] A \ A@") np

z'€DA z""€DA, z" [p=x'[p
< [zeA]Ap

(3) : D((Alq)Ip) =D(A[(qAp)), by the induction hypothesis, and
((ATg)Ip) ((z1q) Ip) = (ul (g Ap)) (x (g Ap))

by using the fact : (V. (A(z") Aq)) Ap =V, (A@') Aq) Ap).

DEFINITION 6.4.2. If ¢ is valid in V*, i.e. o] =1 in V*, then we write
VEE .
VEE o &L (¢ is valid in V*)

THEOREM 6.4.4. Azioms of global set theory are valid in the universe V-.

Proof. We prove V* E ¢ for each axiom ¢ of global set theory.

Axiom of extensionality: Vz(zr€ A <> 2x€B) — A=B.

Proof. By Theorem 6.4.2. ]

Axiom of regularity: Vi (Jy(yex) = Jycx(ynNz=10)).
Proof. Let y be an element of minimum rank of Dx. ]

Axiom of pair: Yu,v3z Vz(z€z <3 x=uV r=0).
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Proof. For u,v € V* define z by

Dz = {u,v}
2(t)=1 for teDz

Then [z €2] = V,cp.[r=t] A 2(t) = [x=u] V [z =0].
Therefore, [Vz(r€z <> z=uVr=v)] =1 O
Axiom of union: VYudwVz(xev + Jy(ycu A zey)).
Proof. For u € V* defined v by
Dov = UyGDu Dy
v(z) = [Fylyeunzey)].

Then, by Theorem 6.4.2,

Bylyeunzey)] = \é[[yEU]]A[[ﬂcey]]
= yiéu[[yEU]]A[[mey]]/\ \{) [ = 2]
_ " u\// [[x:x’]]A[[;eeyyAyEu]]
- e

DEFINITION 6.4.3. For each set x € V we define £ €V~ by
Di = {f | tex}
i) = 1.

T s called the check set associated with z. For check sets &,7, we

have

1 if z= 1
[2=3] = f TV leeg) = f TSV 6
0 if 4y 0 if x&uy.
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DEFINITION 6.4.4. “u is a check set 7, in symbols ck(u), is defined by

ck(u) <L Vi(teu — teu A ck(t)),

where teu < O(t € u). Then [ck(z)] =1 for all z.
Axiom of infinity: Fu (Jzx(recu) AVe(reu — Jycu(zey))).
Proof. w associated with the set w of all natural numbers satisfies

[Fz(zxew) AVe(zew — Jyew(zey))] = 1.

Axiom of power set: YudvVa(z€v <> xCu), where
vCu <L vi(ter — tew).

Proof. Let u € V. For every x € V¥, define 2* by
Dx* =Du
z*(t) = [rCuNntex].

Since

[cuntea] < [teu] < \/ [t=t],
t'€Du

we have

[rcuntex] < \/ [t=t' NeCunt ex]
t'€Du
< [tex’].

It follows that for every z€V* there exists x* € V5 | such that
[rCu] < [z=2*]. Now we define v by

Dv = {z€VE, | Dz = Du}
v(z) = [xCul.
Then

[Ve(zev < zCu)] = 1.
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Axiom of class comprehension: For a first order formula p(a) with free

variable a and class parameters, 3X (z€X < ¢(x)).

Proof. Define X by

We denote O(a € b) by a€b.
Axiom of collection: Vu (‘v’a:(xéu — Jyp(z,y)) — IVz(xceu — Elyéwp(x, y))) :

Proof. Let
p=[r(zeu— yp(,y)] = A ([weu] = e, y)]).

z€Du

It suffices to show that there exists v such that
p < [Ve(zeu — Elyévgo(x, y)]-
Since L is a set, for each x € Du there exists an ordinal a(x) such that

pAlzeu] <\ Loyl
eraﬁ(z)

Hence, by using the axiom of collection externally, there exists an ordinal «
such that

pAJreu] < \/ [e(x,y)] for all x€Du.

yeVE
Now we defined v by
Dv = V-
v(y) =1

Then

pAJreu] < \/ [[yév No(z,y)] = [[Elyévga(x, y)] for all x€Du.
yeDv

Since p = Op, we have

p < [Va(zeu — Iycvp(z,y)].
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Axiom of e-induction: Vz (Vy(yex — ¢(y)) — ¢(x)) = Vrp(z).

Proof. Let p = [Vx (Vy(y€xz — ¢(y)) — ¢(z)]. We prove p < [Vayp(x)] =
A,cvele(z)] by induction on the rank of z. Let z € V£ Since p < [ip(y)
for all ye Dx C V£, by induction hypothesis,

pAJyex] < [e(y)] forall y € Dx.
Hence, by using p = Op, we have
p < [¥ylyex — o))l
It follows that p < [Vap(z)]. O

Zorn’s Lemma : Gl(u) A Vo[Chain(v,u) — |Jv €u] — FzMax(z,u), where

Gl(u) & VZL‘(JJGU—)I&U),

Chain(v, u) & vCuAVr,y(r,yev - xCyVyCx),

Max(z, u) &y e AVz(zE€EuNzCr — z2=ux).
Proof. For u € VX, let
p = [Gl(u) A Vo(Chain(v, u) — UvEu)]],
and let U be a maximal subset of V.* such that
Ve,yeU([reuNFt(tex) NyeuATt(tey) ] Ap < [rCyVyCz]).
U is not empty. Define v by

Dv=U
v(z) =pAreunIttex)].

Now we prove that p < [Max(|Jv,u)]. Since p = Op and p A v(z) < [z €u]
for all € Dv, we have p < [v C u]. Hence, by the definition of v, p <
[Chain(v, u)]. Therefore, p < [|Jv€u]. Now it suffices to show that

p/\[[xEu/\Uvi]] < [[xCUv]] for x € Du.
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Let z€Duand r =pAJr€u A |JvCz]. Then r is O-closed, and we have
r < [x=az[r] by Theorem 6.4.3. Hence x [r€U. In fact, for each y € U, we

have

[yeunIttey) A(xlr)eunITttex|r)]Ap < [yev]Ar
< el Jvca]Alz=x1r]
< [ycair]
< [yczxlr Vv alrcyl.

It follows that

rAaz(t) < [r=zlrAzcuntex]Ap
< [z=zrAxlreunItitexr)|Ap
< [r=xlr] Av(xlr)
< [rev] <fec| o]
Therefore, r < [z CJv]. O

DEFINITION 6.4.5. { is the logical operation defined by QO &L —O-.

Axiom of ¢: VudvVz(rev <> O(z€u)).
Proof. For a given u€V*, defined v by
Dv ="Du
v(x) = [O(zeu)].
By using Theorem 3.7.6,
[O(zeu)] = O \/ [r=2"] Au(x)

z'€Du

<V [=2]A [0 ew)] = [ze].

z'€Du

Hence [Vz(x€v + O(x€u))] = 1. O
[

A set theory on V* for complete lattice £ is formulated as lattice valued
set theory LNBG, which is based on the lattice valued logic.
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6.4.1 Well-Founded Relations in LNBG

Any formula with two free set variables determines a binary relation. For
a binary relation A(z,y), we use the following abbreviations:
z € Dom A <% dyA(x,y), x € RgeA &L IyA(y, x),

z € FldA &% Ay (A(x,y) V Ay, x)).

A binary relation < is said to be well-founded if the following conditions

are satisfied:

WF1 Vz,y—(x <y Ay < x)

WEF2 Vz[zeFld(<) AVy(y < x = ¢(y)) = ¢(x)] = Vx(x€Fld(<) — ¢(x))
WF3 VeIyVz(z <z — z€y)

In view of the axiom GA9 (€-induction), it is clear that the relation € is
m}

itself a well-founded relation, and so is €.

Singlton {z} and ordered pair (z,y) are defined as usual:

(2} ¥ 20}, () (e} (o))

so that z€{y} <> z=y and (z,y)=(2",y) <> r=a' Ay=y hold.

We say a binary relation F(z,y) is global, if Vz, y(F(z,y) — OF(z,v));

and a global relation F'(x,y) is functional, if

Va,y, ¥ (F(x,y) A Fz,y) = y=y).

For a global functional relation F, we write F(z) =y instead for F(x,y).
If F'is a global functional relation and < is a well-founded relation, then
{{z,y) | F(z,y) ANO(x < u)} is denoted by F,, for each set ue€Fld(<). FL,
is a set by WF3, GA11(¢) and GA9(Collection).

The following theorem can be proved in the usual way, by using the fact
that

(y <z — Op(y)) <= (O(y < ) = Dp(y)).
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THEOREM 6.4.5 (Recursion Principle). Let < be a well founded relation
and H be a global functional relation such that Yx3yH (x,y). Then there

exists a unique global functional relation F such that
DomF=FIld(<) A Vx(x € Fld(<) = (F(x)=H(Fxy))) -

DEFINITION 6.4.6. We define the formula Ord(«) (“a is an ordinal”) in
LNBG as follows:

def

Tr(a) <= V6,v7(feEaNyeES = vEQ),
def

Ord(a) <= Gl(a) ATr(a) AVB(BEa — GI(B) A Tr(5)),
where Gl(a) €% V3(B€a — BEq).
As an immediate consequence of the above definition, we have:
LEMMA 6.4.6.
(1) Ord(a) A ea — Ord(B)
(2) GUX)AVz(zreX — Ord(x)) — Ord(|X)

DEFINITION 6.4.7. A global well founded relation < is called a well-

ordering on a set u if
(Fld(<) = u) A (< s transitive) A\ (< is extensional),
where

< s transitive <% V. y, z[(z<y) A (y < z) = (z < 2)]

< is extensional <L Vo, ylr,yeu AVz(z<x <> 2<y) — x = y|.

THEOREM 6.4.7. Fvery global set can be well-ordered, i.e. for every global

set u, there exists a global well-ordering relation < on u.

Proof. Suppose Gl(u), and let

P dlef {{(v,w) | Gl(v) A Gl(w) Av C uA (w is a well-ordering on v)},



UNDER PEER REVI EW

147

and let (v,w)< (v, w’) mean that w = w'[v and v is an initial w’-section of

v, 1e.
(v, w)=< (v, ') & (wCV) A (w=w' N (vxv)) A (vx (¥ —v) Cw).
If (v,w) € P, since Gl(v) A == (y€v) = y € v, we have
(v,W)< W, WY Nxev A (y,x)ew = yew.

Let

def
Z={ICP|VYqpqgel = p<qVp=qVq=<p)A¥p,q(pEINg<p — q€I)}.

Then
(T COAVLI(IL,I'eT »IcI'VIcl)=|JT' €T
By using GA10, there exists a maximal Iy € Z. Let
vo=J{v | (wwyel}, wo=|J{w]| (v,w)€L}.

Then (vg, wp) € P. By maximality of Iy we have Vz—(x € u — vg)). Vz(z €
u— x€vy V (zE€wp)). It follows that u = vy. O

THEOREM 6.4.8. If u is a global set and < is a global well-ordering
relation on u, then (u, <) is isomorphic to an ordinal (o, €), i.e. there exists

p such that

(pru— a)Ap(u) =a A
Ve, yle,y € u = (2 <y < p(x) € py)) Az =y < p(z) = p(y))].

Proof. We define by recursion in <
p(x) = J{o(y) + 1]y < x}.
It is easy to see by WF2 (<-induction) that Vz(z €u — Ord(p(x)), and
Ve[xeu — Vi(tep(z) — Iy < z(t = p(y)))].
Set a = {p(x) | z€u}. Then Ord(«a), and (u, <) is isomorphic to (a, €). O

We call p(z) the rank of z.
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6.4.2 Check sets
We define the notion of check set in LNBG, by € -recursion:
ck(x) &L v (tEx o teTA ck(t)> :

That is, set
H(u,v) <5 v={t | (t,t) €u}.

O
H is a global functional relation such that Yu3vH (u,v). Let < be €. < is
a wf relation. Since Va(z € F1d(<)), there exists a unique global functional
relation C'(x,y) such that

Va [r€Dom(C) A C(x)=H(Cx,)],

by recursion principle. If a set u satisfies C'(u,u) then we say u is a check
set and write ck(u). i.e.
ck(z) & r=C(x).
The class of check sets will be denoted by W, i.e.
reW & ck(z).

THEOREM 6.4.9. The followings are provable in LNBG.

(1) yeC(x) & (yex) Ack(y)

(2) ck(z) © Vi[ter < (t€x A ck(t))]

(3) C(z)=CC(x)

Proof. (1) and (2) are immediate results of definition of C'.

y € CO(x) = y € O(z) A ck(y) (3):
=y €x A ck(y)
— yel(z)
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6.4.3 The model W of ZFC in LNBG

An interpretation of ZFC in LNBG is obtained by relativizing the range of
quantifiers to the class W of check sets. Namely “the class W of check sets
is a model of ZFC ” is provable in LNBG.

We denote quantifiers relativized on check sets by ¥V, 3V i.e.
VWrp(z) €5 Va(ck(z) = o(x))

FVarp(z) & Jz(ck(z) A ().

For a formula ¢ of LNBG, ©" is the formula obtained from ¢ by replacing

all quantifiers Vo, 3z, by VW, 3%z, respectively.

THEOREM 6.4.10. The following (1)-(9) are provable in LNBG, for any
formula .

(1) YWa,y(rey — xéy)

(2) val ) (@W(xh e 71771) - DQOW(ID e 7~rn)>

(3) We(Mylyer = @ () > 0" (@) - WV (2)

(4) Voz(Ord(oz) < ck(a) A Ordw(a)>

(5) ck(), where () is the empty set.

(6) ¥, y(ck({z,y}) A k() A ck({z€ | Dp(2))))

[=
=

e

Suc(y) <= (y=0V Iz(y=2z+1)), where z+1=2U{z},

o
=N

€

)
HSuc(y) <= (Suc(y) AVz(z€y — Suc(z)), and

w o {y : HSuc(y)}.
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w 1s the set of natural numbers. Ord(w) AVWnew(n =0V IVmen(n =
m+1)).

(8) Ifw is a global set, then there exists an ordinal o € On with a bijection

pru—a, where a € On &L Ord(a), i.e.

EIWannEIp<(p:u—>a) A (p(u) = @) A VX, y(x,y €unp(x)=p(y) — x:y)).

Proof. (1): It follows from
ck(z) Nek(y) Nzey < Tt (Ck(x) ANck(y) ANek(t) ANx=y At € y) :

(2): By induction on complexity of ¢. If ¢ has no logical symbol, then ¢ is
of the form x =y or = € y, and hence ¢ — Oy by (1). Now we prove only
the case that ¢ is of the form Jzi)(z, x1, -+ ,x,), since the other cases are
similar. Let ck(z1) A -+ A ck(zy,).

VW (2, xn) Ack(z) = O (ck(x) AWV (2,2, -+ ,xn)) ,
by using induction hypothesis. Hence by Theorem 1,
HWLE,I/JW(J;’ L1, 7xn) — Dawxww(xu L1, 7xn)-

(3): Let v (z) be the formula ck(z) — ¢V (x). Then, using €-induction, we

have

VW <wa(y cx— @W(y)) — an(:L’)> — Vax (Vy(yex — w(y)) — 1/1(:6))
= Vay(x).

(4): By €-induction.
(5): ck(@) follows from:

rel) = -(x=u2x)
— xé@/\ck(m).

(6) ck({x,y}) : Assume ck(x) A ck(y) . Then we have

ze{x,y} <= (z=xVz=y)
— ck(z)/\zg{a:,y}).
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ZGUZB — dtex(z€t)
= EIt(ck(t)/\téx/\zGt)

= ck(z) /\ngx.

te{zex | Dp(z)} = ck(t)AteaADOp(t)
— k() Ate{zex | Op(t)}.

(7): w is a set by GA6 (Infinity). Let ¢(x) be the formula
rEw — ck(x) A rEW.

Now we prove Vy(y€x — (y)) — (x): We have rew = =0V Jz(x=
z+1), x=0—¢(r) and

Vylyex = v(y) Nt€EwAhr=2+1 = zea:/\ck(z)/\zéw
— ck(z—i—l)/\(z—i—l)éw

= ck(x) A =

Hence, ck(w).

It is easy to see Vy(y € w — Tr(y) A (y Cw)), by €-induction, where
Tr(y) & Vs,t(sey Ates — tey). Hence Tr(w) A Vy(y e w — Tr(y)).
Ord(w) by €-induction. It is obvious that

YWnecwn=0v Imen(n=m +1)).

(8): By Theorem 6.4.7, there exists a global well-ordering relation < on u.
Define p(z) = U{p(y) + 1 | y < x}. By Theorem 6.4.8, p is an isomorphism
between (u, <) and («, €), where a = {p(z) | r€u}. O

THEOREM 6.4.11 (Interpretation of ZFC ). If ¢ is a theorem of ZFC, then
oW is provable in LNBG.
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Proof. For a formula ¢(xy,- -, z,) of ZFC,
YW1, 2 (0" — Op")
is provable by Theorem 6.4.5(2), hence,
VWi, - 2, (0" V")

is provable in LNBG. Now it suffices to show that for each nonlogical axiom
A of ZFC, AV is provable in LNBG.

(Equality axiom)" and (Extensionality)"V are obvious.

(Pairing)": By Theorem 6.4.5(6),
ck(u) A ck(v) — ck({u,v}) AV (x € {u,v} & 1 =uVr =0v).

(Union)": Similarly.
(Power set)": We have V"Vu, x(:z: € C(P(u)) <> VWit ez — t € u))
(€ -induction)": By Theorem 6.4.10(3).

(Separation)V: If ck(u), by Theorem 6.4.10(6), ck({z € u | " (z)}) and
VWu,x(x c{rculV (@)} rcun goW(a:)>.
(Collection)": Suppose ck(u) A VW2 € uaWyp"(x,y). By GA8(Colloction),

ElviEuElygv(ck(y) Aoz, y)).
Since yév Nck(y) — yeC(v) Ack(C(v)), we have
FVovYr culdycvp™(z, y).

(Infinity)": By Theorem 6.4.10(7).

(Choice)V, i.e. VVuaWfvWoeufz # 0 — Iy ez ((z,y) € f)], where z # ()
stands for 3Wy(y €x). By Theorem 6.4.10(8). there exists an ordinal o and
a bijection p:|Ju— . Define f:u—|Ju by

f(x) = p((Ye(t) | tea)).
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6.4.4 Lattice valued model WP in W

The power set P(1) of 1 (= {0}) is a global set, i.e.
Vz(zeP(1) —» O(zeP(1))),

and a complete lattice with respect to the inclusion C. We write < instead
of C. Then (P(1),<) is a complete lattice. Let

(p—=q)={zx€l|0ep—0ecq}, —-p={xel]|-(0€p)}.

— is the basic implication and — is the corresponding negation on P(1).

For a sentence ¢, let

def
o] = {tel| ).

|| is an element of P(1), and ¢ <= 0€|¢p|. Thus, the complete lattice P(1)
represents the truth value set of LNBG.
The relation < defined by

o —<B<d:ef>a,560n ANaep
is a well founded relation and Fld(<) = On. Thus, the induction on a€ On
is justified in LNBG. Now we construct the P(1)-valued model by induction

on a € On as follows:

qu) = {u] ElﬁeaEIDuCW;(l)(Gl(Du) ANu:Du—P(1))}
wPL U W;’(l)
acOn

On WP the atomic relation = and € are interpreted as

[e=y] = A @) =[teyhn )\ ()~ [t €a])

teDx teDy

[zeyl = \/ ==t ry().
teDy
Logical operations A, V, —, =V, d are interpreted as the correspondent
operations on P(1). Then every sentence on W7 has its truth value in
P(1), and we have
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THEOREM 6.4.12.  For every sentence , 0 € [p]) «— ¢ is provable
in LNBG.

Proof. We prove that there exists a global functional relation F' such that:
(i) DomF =W?® and
(i) for every formula @(zy,-- - ,z,) of LNBG on WP,

[[QO(IL‘l, e 7xn)]] = |QO(F(.171), U 7F<xn))|
For z € WP define F(x) by
F(x)={F(t) |t € Dz AN 0€[t € z]}.

Then we have:

(2) Vudz(F(zx)=u).
Proof:  Let W(u) & Jo(z € WPW A u=F(z)). Then by using GAS8

(Collection) we have
Vo(weu — U(v)) = Ja[Vu(veu — Iye WP (v = F(y))).
Let

w(y) = {tel| F(y)cu}
Then € WPW and F(z) = u. Hence, Yu3z(F(z)=u).

{ Dz = Wf(l)

(3) 0€lp(r, - wn)] <= $(F(a1), -+ , Plea))
Proof: We proceed by induction on the complexity of . If  is atomic,
then it is (1). If ¢ is of the form 1 V @9, ©1 — @2, —p1 or Oy, then
it follows from induction hypothesis. If ¢(xq, -+, x,) is of the form
Va(z, xq, -+, x,), then, by using (2),

0€fp]l <= 0e Az, 2]

— Ve((F(x), F(x1), -, F(z,))
— Vzup(z, F(z1), -, F(z,)).
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Similarly,

0 € [Fav(x,xq,- - 2] <= F2(2, F(21),- -+, F(xy)).

6.4.5 Completeness of LNBG

Now we will prove in LNBG that P(1) is lattice-isomorphic to a com-
plete lattice H which is a check set. (Theorem 6.4.8). As mentioned in the

introduction, we mean by “a sentence ¢ of LNBG is valid” that
“l¢] = 1 on V* for all complete lattice £” is provable in ZFC.

Then the “completeness” of LNBG in the sense that every valid sentense
of LNBG is provable in LNBG :

ZFCF “[¢] =1 on V* for all complete lattice L7 == LNBG F ¢

can be proved (Theorem 6.4.14).

THEOREM 6.4.13. There exists a complete lattice H which is a check set
and a lattice-isomorphism p:P(1)— H.

Proof. Since P(1) is a global set, there exists a check set H together with
a bijection p:P(1) — H, by Theorem (8). Define operations A, \/ on H as

follows:
AA=p(Vr @), \A=pJr (),

acA a€A

1 : —1 -1
B O VOl
0, if =(p~*(a) C p~(b))
for A C H such that ck(A), and a,b € H. Then p is a lattice -isomorphism.
O

THEOREM 6.4.14 (“Completeness” of LNBG).  If a sentence ¢ is valid

in every lattice-valued universe, then ¢ is provable in LNBG :

ZFCFE “ o] =1 on V= for all complete lattice L7 == LNBG | ¢
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Proof. Suppose that a sentence ¢ is valid in every lattice valued universe.
This means that ( [¢] = 1 on every lattice valued universe ) is provable in
our external universe of ZFC.
Since W is isomorphic to V,
(¢ is valid in every lattice valued universe)"’

is provable in LNBG. Let H € W be a complete lattice with the basic
implication which is lattice-isomorphic to P(1). That is, there exists a lattice-
isomorphism p:P(1) — H. Construct the H-valued universe W in . Then
[¢] = 1 on WH. Tt follows that [¢] = 1 on WP®) and ¢ is provable in LNBG
by Theorem 6.4.12. | O

By Theorem 6.4.14, a sentence ¢ holds in LNBG iff [¢] = 1, on every
lattice valued universe V4. Therefore, in order to discuss LNBG, it suffices

to discuss the set theory on lattice valued universe.

6.5 Global Intuitionistic Set Theory

As seen in the Section 2.4, complete Heyting algebra is a counterpart of the

intuitionistic logic, that is a complete lattice satisfying the distributive law:
aAV,;b;=V,(aAb;) on acomplete lattice .

Hence global intuitionistic logic GLJ is the lattice valued logic LL with

the logical distributive law:
Destributive law : ¢ A Jz(¢(z)) <> Jz(o A P(x)),

GLJ : LL + Distributive law

Equivalent global intuitionistic logic GLJ is obtained from LJ by intro-

ducing [ instead of the basic implication.

(a— b) d:efD(an):D<\/{c€£|c/\a§b}>.
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A global intuitionistic set theory is the global intuitionistic logic with

axioms of global set theory,
GAl,--- ,GA1l

If we assume “P(1) is a cHa”, i.e.“P(1) is distributive”, in LNBG, then

we have the distributive law of the logic:

o A Jz(x) «— Jx(p A Y(z))

In fact, if ] be the truth value of ¢ in WPW  then the following sentences
are provable in LNBG.

¢ A Jp(z) 0 € [ A Jayp(x)]

0 € [el) A (Vaevro [¥(2)])
0 € V,evrmlp A(z)]

0 € [Bx(p A ()]

Fz(p A ip(x))

r T T T2

It follows that the intuitionistic implication D can be defined by

def

(o v) < 0e| {ueP) | (pA(0€u) — o},

The corresponding logical implication is denoted by —;, and equality and
membership relation are denoted by =rand €.

By the completeness of lattice valued set theory, the global intuitionistic
set theory GINBG is also complete (Titani [14]).

ZFCF “[p] = 1 on V® for all Heyting algebra Q@ == GINBG F ¢.

6.6 Global classical set theory

Classical logic LK is a counterpart of complete Boolean algebra. That is, LK

is an intuitionistic logic LJ with logical operation — satisfying
(N1) F=—p & o,

(N2) F ¢V —p, F=(e A ),
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(N3) ¢ = o = ¢ — ).

Complete Boolean algebra is a complete distributive lattice, i.e. Heyting

algebra, with complementation — satisfying:
(N1) ——a < aq,
(N2) aV-a=1, =(aAb) = —aV b,
(N3) a <b< —b< —a.
The classical logic LK has an implication D defined by:
(a D) & av.

Thus, the basic implication can be defined by D and modal operator [.
Another global classical logic GLKy is obtained from LK by introducing .

instead of the basic implication.
(a—b) ¥ 0@>b) = D(wz\/b)).

A global classical set theory is obtained from lattice valued set theory by
adding logical operations and inference rules for them.

Nonlogical axioms of global classical set theory are axioms
GAL,--- ,GA1l

of lattice set theory.

These axioms are valid on the lattice valued universe V%, hence on the
Boolean valued universe V2.

If we assume “P(1) is a complete Boolean algebra c¢Ba” in LNBG, then
the logic satisfies the distributive law and (N1),(N2),(N3).

Hence we have:

THEOREM 6.6.1. It is provable in LNBG + “P(1) is a cBa” that the set
theory is a classical set theory. It follows that GNBG is complete.

Proof. (cf. [5]) For each axiom ¢ of classical set theory,

GNBG F (gp < el =1 on Vp(l)).
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Quantum set theory

Quantum set theory QNBG is developed by the quantum logic (cf.5.7 p.120)
(QL or QL) with axioms GAy,---,GA1l of the global set theory. QNBG
is a set theory on a orthomodular-lattice valued universe.

Closed subspaces of a Hilbert space H (or equivalently projections on H)
form an orthomodular lattice, which is denoted by Q(#). Unitary operator
on H is an automorphism and induces a symmetry on Q(H).

Let U be the set of unitary operators on H. That is, Q(#) is an ortho-

modular lattice with symmetries U.

The orthomodular lattice Q(?) has a structure of sheaf of Boolean lattice
over U. Thus, Q(H)-valued universe has the structure of sheaf of Boolean

valued universe.

7.1 Complete orthomodular lattice Q(H)

Throughout this section, we assume that H is a Hilbert space with a count-

able orthonormal basis :
{€;}jes where J={1,2,---}.

Elements of H are expressed by vectors &, ,---, and the inner product of

vectors @, i is denoted by (Z, ). For vectors & and ¥, ¥ is orthogonal to

¥, in symbols Z L ¢, if (Z,7) = 0:
71L§ES (7,9) =0,

159
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Let Q(H) be the complete orthomodular lattice consisting of closed sub-

spaces of H, where

a<BEL B, ot Y e |VealE L)} fora,BeQH).
If {ai}tier € Q(H), then \/,; a; is the supremum of {;}ie; in Q(H) and
Nic; @i is the infimum of {a;}icr in Q(H). Projection is a bounded operator
on H which is self-adjoint and p?> = p. Range of a projection p, denoted by
R(p), is a closed subspace of H:

def

R(p) = {p(Z) | ¥ € H}

The set of range of projections forms a complete orthomodular lattice, iso-
morphic to Q(H) with respect to < and L defined by

def def def
p < g R(p) <R(@), REP)= Rp)T and plg < Rp)| R(9).
Thus, we use the same notation Q(H) to denote the lattice of projections,
as the orthmodular lattice of the ranges. The identity operator I, V¥ €
H(I(Z) = &), and zero operator 0, VZ'e€ H(0(Z) = 0), are members of Q(H).
If {pr}rea C Q(H), then

VaeaPr =sup{pr [ A € A}, Ayeapr =inf{py | A € A} € Q(H).

Let B be a maximal compatible subset of Q(#). Then B is a complete
Boolean lattice. If a self-adjoint operator « has its spectral decomposition
o = [ AE,, where {E,\}, C B, then « is said to be a self-adjoint operator
“in (B)” .

Self-adjoint operators a = [AdE, and f = [ AdE) are said to be

commutable if for every pair A, X,
Ex-Ex = Ey\ - Ey,

If a and § are bounded, then the commutativity of o and [ is equivalent to
compatibility:
a-f=0-a < alf
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LEMMA 7.1.1. If {a,}, is a set of self-adjoint, pairwise commutable oper-
ators, then there exists a complete Boolean lattice B of projections such that

for every n, ay, is in (B).

Let a and # be commutable self-adjoint operators. It is usual to define

a + (3 as the operator satisfying the conditions

D(a+ ) =DanDF and

Ve eD(a+ B)((a+ B)z = az + fz),

where D(«) denotes the domain of a. The operator a4 3, defined in this
way has a unique closed extension. For our purposes we define a4+ 3 to be
this unique closed extension. The operator a4 (3 is also self-adjoint. In the
same way, « - (3 is defined to be the unique closed extension of the operator
which maps z, with x € D(8) and px € D(«a), to afz. The operator - [ is
also self-adjoint operator and « - § = - a. Because of this definition, there
is a possibility that a+ 8 and /or « - § is defined on the whole Hilbert space,
and therefore bounded, even if o and  are unbounded. In general, if the
result of an operation is not closed but has a unique closed extension, we
define O(a, B) to be the unique closed extension of the result.

An operator v is normal, if v = o + i where a and ( are self-adjoint
and commutable. Also ¥ = o — i3 and v = a? + 2. Furthermore, ~ is said
to be in (B), if @ and 3 are in (B).

Let a and [ be self-adjoint and commutable. Then o < § if and only if
for every x € D(a) N D(S), (ax,z) < (Bz,x).

7.2  Q(H)-valued universe

Q(H)-valued universe V) is constructed by induction:

VRO = lu]3<aIDuc VM (u: Du— QH))},

aceOn
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Truth values [u=v] and [ucv] for u,v € VL) are defined by induction

on the rank of u,v.

[u=v] = A (u(z) = [zev]) A N (v(z) = [z€u])

z€Du z€Dv
[uev] = \/ [u=x] A v(x).
z€Dv
We call the set theory developed in the universe V) Hilbert quantum
set theory.

Observables in the quantum theory are represented by real numbers (i.e.
Dedekind cuts) in the Q(H)-valued universe V@),

In [11] and [12], G.Takeuti developed the quantum set theory on the Q(H)-

valued universe VO™ where implication — is defined by
def
o) S0 V(e AY).

The corresponding equality =1 and membership relation €, are defined
by

[u=zv] = /\ (u(z) =gz ev]) A /\(v(:v)—>T[[x€uﬂ)

r€Du z€Dv
[uerv] = \/ [u=rzx] Nv(z),
z€Dv
G.Takeuti showed in [11] that self-adjoint operators on H, considered as
observables, are represented as real numbers in V@),

The operation —, on QQ(#) is an implication in the sense that
a(a—xb) <b

However,

/

‘a Nb < does not imply ‘a < (b—rc)' if a,b are not compatible,

because of non-distributivity of the lattice Q(#H). Consequently the transi-
tivity of =1 :

(u=rv) A (V=pw) =r(u=1w)
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is not generally valid in the universe V)  That is, the implication —
is not strong enough to develop a set theory. Thus, we need a stronger

implication — for quantum logic.

A quantum set theory is developed in the universe V™) using the local

implication — together with basic implication, i.e. logical symbols :
VvV, A, L, V, 4 0O and —.
Basic implication is defined by [J and —:

1 ifa<b
(a—b)=0(a—rb) = (7.2.1)
0 otherwise.

7.2.1 A sheaf structure of Q(H)

Let ¢; be the subspace of H spanned by singleton {€;},

p; be the corresponding projection onto e;:
def - .
¢j = {a;€j [a; €CY; H=V,¢;

Pr(Bjes a;€;) = axéy for {a;}jes C Ci pe(H) = ex.

For each K C J, the supremum \/jeK p; of {p;}jex in Q(H) is the pro-

jection of H onto the subspace spanned by {€}};cx.
(VjeK pj)(ZjeJ a;j €;) = Zje[( a; €.
Let B C Q(H) be a maximal compatible subset of Q(#) defined by
def
B = {Vjerj | K C J},

B is a complete Boolean algebra, which is isomorphic to the power set P(.J)
of J.

(B,A, V. 7)) = (P(J), N, U )

DEFINITION 7.2.1. A linear operator o : H — H is said to be unitary if

(cZ,07) = (Z,7), for all ¥,y € H.
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Let U be the set of all unitary operators on H.
U={o:H—H|ois unitary }
U is a topological space. Let O(U) be the set of open sets of U.

Each unitary operator o on H induces an isomorphism o on Q(H):

o(p) = opo~ .

a(\Vipi) = Vo), a(A\;pi) = N\io(pi),

g(pt) =), Glp—q) = G(p) = 3(q)).

In what follows we use the same notation o instead for o, i.e.
o(p) = {o(a) | a € p} for closed subspace p C H,

o(p) = opo™! for projection p : H — H.
Vex o(p;) with K CJ is an element of Q(H) spanned by {o(p;)}jex-

Let B be a maximal compatible subset of Q(H). B is a complete Boolean
algebra isomorphic to P(J). If o € U, then o(B) is a complete Boolean
algebra isomorphic to P(J).

For a unitary operator 0 € U there exists a self-adjoint-operator A such
that
oc=c¢e

—

e!™/D1 i a unitary operator such that e/™21(¢&}) = i¢; for j € J, where [

is the identity operator: Iz = x for x € H. "™/ is also denoted by i in

VeMH)
ey —ip for pe Q(H).
If p € B, then
plg = (™P'p)lq  for g € Q(H).
Hence,

peEB < ipeB.

Let f be the set of continuous functions f : U — Q(H) such that

flo) € o(B) foroeU.
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For each U e O(U),
FIU)={f: U = Q(H) continwous | f(¢) € o(B), o € U}, where
f <95 Yo eU(f(o) < g(0).
Then the set F(U) of all f(U) is a Boolean algebra, where
(fAg) (o) = flo) Aglo), (fVg)o)=fo)Vglo), f(o)=(flo))"

For U,V € O(X) such that V.CU and fe F(U), let (f[V) be the restriction
of fonV, ie (fIV)(o)=f(o) foroeV, and let

d:ef

rvu(f) f1v

Then
ryvu(F(U))=F(V) for UV € O(X) suchthat V CU and

(F,r) is a sheaf of Boolean algebra over U, ShB.

7.3 Sheaf structure of V9%

In the previous section, orthomodular lattice Q(#H) was represented as a sheaf
(F,r) of complete Boolean algebra over a topological space (U, O(U)).

Now we extend the sheaf (F,r) to a sheaf of Boolean valued universe
(F,r), where :

(1) For U € O(H), F(U) is a complete Boolean algebra and V) is a

Boolean valued universe, where

FU
Duv C V<OE ) VEW) def U VED)

v E VaF(U) &
v(x) € F(U). acOrd

(2) F is a mapping which associates a Boolean valued universe V() to
each UeO(X).

F: U= VIO for UeO(X)
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If UWeO(X)and UCW, then ryw : VEW) — VO where
D(ryw(u)) = {row(t) [t € Du}  ryw(u)(ruw(t)) = row(u(t))

rUwW - VEW) 5 VEWU) g a homomorphism.

o € U is extended to o : VOH) — YVRH) by

Do(u) = {o(z) | z € Du}, o(u)(o(z)) = o(u(z)) forue VO,

o : VO — V@M is an automorphism, i.e. for a formula ¢ (uy, -+, u,)
of QNBG

O-[[SO<U17 T 7un)]] = [[w(a(ul)a T ,O'(Un))]]

Proof. (a) o(fu=0]) = [o(u)=0(v)], o([u € o]) = [o(u) € o(v)].

") Assume that, for z,y € VEOEH),

Then for and u,v € VaQ(H)v

[o(z) € o(v)] = Ve, ([o(2) = o (y)]A

o(v)(o(y)))
=0 \/ [z =yl Av(y)) = oz ev].

yEDv

Similarly,
[o(y) € o(w)] = V,epulow) = o(@)] A o(u)(o(z)) = oy €u]
oofu=v] = Asep, (0(u)(0(2)) = ofz € v])
A Nyep, (0(0)(o(y)) — oly € u])
= [o(u) = o(v)].

ofuer] = (Vyep, olu =y Ao(v(y)) =V ep,lo(u) € o(v)]-
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(b) o preserves A, V, +, —, V and 3. Therefore,

0-[[90(“17 T 7un)ﬂ = ﬂ@(a(ul)’ T 7U(un))]]

For U € O(U), let
fO)=A4f:U— VM) continuous |Vo e U(f(o) € VU(B))} and

let F(U) be the set of f(U).

For f(U), g(U) € F(U), let
def def

fU) € g(U) <= Vo € U(f(o) € g(0)), [(U)=gU) <= Vo ecU(f(o)=g(0))

Then the set F(U) of all f(U) is a Boolean valued universe. For U,V € O(X)
such that V.U and fe F(U), let (F(U)[V) be the set of restriction on V,
and let

rvo(f(U)) = FU)IV
Then

rvu(FWU))=FV) for UV € O(X) such that V C U and

(F,r) is a sheaf of Boolean valued universe over U , Shy/V5.

7.4 Quantum numbers

The set w of all natural numbers is constructed from the empty set by the

successor function x — x U {z}.
ne€w <= n=0VvVImen(n=mU{m}).
The empty set is a check set which we denote by 0.

0=0.
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If m is a check set then m U {m} is also a check set by Theorem 6.4.10 (6).
Thus, (m + 1) = m U {m}. Therefore, the set of natural numbers in V@)

is W, where Dw = {n | n € w} and w(n) = 1. For convenience we write

o={i|new)

For m,n,m',n’ € w, let

= is an equivalence relation on the set & x @ of pairs of natural numbers.
The integers are equivalence classes of pairs of natural numbers.

Since the relation = is defined by [l-closed formula, the equivalence class
of N by = is a check set according to Theorem 6.4.10. The equivalence class
of (rn,n) is denoted by m — 7. The set of integers in V) is the check set
associated with Z.

Z=w/=) ={m—n|mmnewt={(m-—n)|mnew}.
The rational numbers are constructed as equivalence classes of pairs of
integers :

(a,b) = (@, 1) G =d b forabd, b cZ.

The equivalence class, denoted by a/ B, is a rational number. The set of

rational numbers in VO™ is the check set of Q.

Q=(2/=) ={a/b|a,becZ}.

Real numbers, defined as Dedekind’s cuts of rational numbers, are not
check sets in contrast with integers and rational numbers. Dedekind cut of
Q is a subset of Q, which is not necessarily a check set. The set P(Q) of all
subsets of Q is defined by

PQ) ={a|acQ}, P@Q)a) =1
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DEFINITION 7.4.1. a€P(Q) is called a quantum real if
(D1) FreQ(zca)AIrcQ(zea)t,
(D2) VzeQ((z€a) +— VyeQr<y—ry€ca)).
The set of quantum reals in V) will be denoted by RPM).

LEMMA 7.4.1. If [ac Q] =1 in VO where a C B PN Ve(r € o —
z € f), then there exists v in VM) such that Dv = {7 | r € Q}(= DQ) and
[a =v] =1.

Proof. Note that [z = y] € 2.
[x=y]AV,;a;=V;lz =yl Aa; for V{a;} CQ.

Define v by Dv = {7 | r€Q}, and v(7) = [F€a] for r€Q. If z€Da,

m

alr) £ [reQ]AJrca] = oz =7l A [real)
= Viegllz =7 A[rea]) < [zev]

Therefore, [a = v] = 1. O
We continue to fix a basis {€;};e; of H, and let p; be the projection onto
the subspace spanned by singleton {€}}.
pi(z) = (x,€;) - €; forx e H.
DEFINITION 7.4.2. An element p of Q(H) is called an atom if
(p#0) and ((0<q<p < (0=q or q=p).

Each p; is an atom. The mazimal compatible set {p;};c; of atoms is a basis

of Q(H) such that
p; L pg forall j,keJ and \/jpj = 1.

Another basis of H is {o(€})};es for some unitary operation o, and the
corresponding basis of Q(H) is

{opjo ™ }jes.
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THEOREM 7.4.2. If u is a quantum real in V@) | that is,
[u satisfies D1 and D2 ] =1,
then {[reu] | r € Q} is compatible.

Proof. Because of

r<s= [reu] <[5€u].

Therefore, there exists a unitary operator ¢ € U such that

{o(pj)}jes where J ={1,2,---}

is an orthonormal basis of Q(#), and each [F€u] (r € Q) is spanned by a
subset of the basis, where o(p;) = op;o~". That is,

THEOREM 7.4.3. If u is a quantum real, then

{lreu] |reQ}
is a compatible subset of Q(H) such that
[Feu] <[s€u] ifr<s and V,lf€u]=1.

Hence, there exists a basis {o(e;j)};jes of H such that every [F € u] is spanned
by a subset of {o(e;)}jes-

THEOREM 7.4.4 (cf. [11]). If u is a quantum real in VO then E,:R—
Q(H) defined by
Eu(A) = Aa [red]

1s a resolution of the identity, i.e. F, satisfies

/\AGR Eu(A) =0 \/AER Eu()‘) =1 EuO‘) = /\,\<M EU(:“) .

Hence, we have the spectral representation of the corresponding self-
adjoint operator on the Hilbert space H:
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THEOREM 7.4.5. Quantum real o in V@) represents a self-adjoint oper-

ator on H.

A= [ME,(N),
Conwversely, if A is a positive self-adjoint operator on H,
A= [ME())
then o € VOO defined by Da = {F | r€Q} and a(F) = A\,_,E(s) isa
Dedekind cut in VM) and

A= [ ME4(\).

7.4.1 Representation of projections in V9%

A projection on H is represented as quantum real in V). Let u be a
quantum real represented by the proposition p and A, be the corresponding
self-adjoint operator : A, = [ AdE,()\). Then

SAELN) = 0 Ey(0) + 1+ (By(1) — E,(0)) = E(0)".

Then E,(0)* = p. For, if self-adjoint operator [ AdE,()) is a projection,
then
if r <0,

0,
(i) = N\,os Bu(s) = S pt, if0<r <1,
1, if1<r

which is equivalent to

Thus, projection is characterized as a real number u such that Ju =, 1] =
[u=x0]*.

DEFINITION 7.4.3. For each p€ Q(H), we define p in VO by
0, ifr<o,
Dp=DQ. p(F)=qp*, if0<r<i,
1, fl1<r
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THEOREM 7.4.6. If p€ Q(H), then p € VO satisfies
[p=+1] = [p=x0]" =»p.
Conversely, if a Dedekind cut v in V) satisfies
[u=r1] = [u=20]" =»p,
then J[u=p C 1] = 1. It follows that pe Q(H) is the range of projection As.
Proof. If p€ Q(H), then
1, r<O0,

(FeEp—rFel)AN(FElrFED)=4Cp, 0<r<1,

1<,

1, r<o0,
(FEP—2TE0)A(FEO—FEDP) = pt, 0<r <1,
1, 1<

Therefore, [p=x1] = [p=+0]* = p.

Conversely, let u be a positive real in V™) such that

We show [u = p] = 1. Since Du = {7 | r€Q}, it suffices to show that

0, ifr<o,
u(f) =< pt, ifo<r<l,
1, if1<r
If 1 <r, then
p < (1(7) ==lreu]) < u(r)
and

p- < (0(F) ==[reu]) < u(F)
It follws that u(#) > p VvV pt = 1. Similarly, if 0 < r < 1, then p < u(F)*
and pt < u(¥). Hence, u(¥) = p*t. If r<0, then p < u(¥)*+ and pt < u(#)*.
Hence, u(7#) < p Apt =0 O
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THEOREM 7.4.7. If c € U and p € Q(H), then o : Q(H) — Q(H) is a
bijection preserving \/ and +, and

[o(p) =o(@)] =1 forpeQ(H).

Proof.

[0(p) =2 o(D)] = [0(p) =2 o(O)]* = o(p).

Hence, by Theorem 7.4.6, [o(p) = o(p)] = 1.
[

Projections w,v in VI are said to be orthogonal if

u=r1 ¢ (v=r1)*.

)

LEMMA 7.4.8. Forp,qeQ(H), p<q<=[p<q]=1.

Proof. For reQ,
r<0V1<r=[rep]=I[req],

O<r<l=p<qeliegl=q <p' =[rep]

7.4.2 Operations on real numbers in V¢

DEFINITION 7.4.5. For quantum reals u,v in VM),
u< vl VreQ(rev —reu)
u is said to be positive, if 0 < u.

def
u<ev ESVreQ(rev —,reu)
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DEFINITION 7.4.6. For quantum reals u,v in VM w + v is defined by
ut o {TEQ | VSEQ(T’ < 8 —bp Elrl,rge(@(s =ri+ry AT €U N re€v)}.
For positive quantum reals u,v in V™ - v is defined by
w-v {reQ|VseQ(r < s—3Ir,m€Q(s =717 A T1E€EU A T5€V)}.

LEMMA 7.4.9. Suppose that B is a complete Boolean sublattice of Q(H),

u,v are quantum reals in VB, and p€ B. Then

[ulp +ofp = (u+v)[p] = [ulp-v[p = (u-v)[p] = 1.

Proof.

(w+0)[p)(F) = (ABri.r€Q(s =ri+rm Ari€unreu)]) Ap
s€Q

= [ACV ulr)Ao(rs)]Ap
s€Q 71,72€Q

r<s s=ri+ra

= AC\ ulp(r) Avlp(r)

s€Q r1,r2€Q
r<s s=ri+re

= (u[p+0[p)(F).

[u[p-v[p= (u-v)[p] =1 is proved similarly. O

DEFINITION 7.4.7. Let u,v be real numbers in VO . w v are said to be
compatible, if {[Feu] | reQ} U {[rev] | reQ} is compatible.

LEMMA 7.4.10. u,v are compatible real numbers in VO if and only if
there exists a complete Boolean sublattice B of Q(H) such that u,ve VB,

Proof. M ={[reu]|reQ}U{[rev]|reQ} iscompatible and M C Q(H).
Hence, B = M” is a Boolean sublattice of Q(H) such that u,v € V%, where
A ={peQ(H) |pla forall ac A}. O

THEOREM 7.4.11 ([11]). Let B C Q(H) be a complete Boolean sublattice
of Q(H). If u,v are quantum reals in VB, then u+v and u-v are quantum

reals in V.
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If uy, ug, v1, va are quantum reals in VB, then
[u1 =x ua] A [v1 = v2] < [ug + vy =1 ug + v2],
[ur = ua] A [v1 =1 v2] < [ug - v =1 ug - v2].
Proof. Let [u; =1 us] A [v1 =r v2] = ¢q. Then
[uilg = ualg] A [vi[q = v2[q] = 1.
By using Lemma 7.4.9,
[(wr +v1)[q = (u2 +v2)[q] = 1.
Hence,
q < [ur +v1 = ug + vo].
Similarly,
q < [ur - vy = ug - v2].
O]

THEOREM 7.4.12. If B is a complete Boolean sublattice of Q(H), u is

quantum real in VB, and p€ B, then

~

p<[u-p=ru], and pLS[[u']a\:T()]]'
Proof. p < [u=ru] and p < [p=r 1]. Hence, by Theorem 7.4.11,

p<[u-p=ru-1] and [u-1=u]=1.

Therefore, p < [u - p=ru].
pt < [u=ru] and p* < [p=0]. Hence, by Theorem 7.4.11,

Therefore, pt < [u - p=,0]. O
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THEOREM 7.4.13 ([11]). If u and v are mutually compatible quantum reals

in VL | corresponding to self-adjoint operators A, A,, respectively,

A, = / ME() A, = / ME,(\),
then
Aoy = / By o(A) = / MEL () + / ME,(\) = A, + A,

Ay = / AdE .0 (N) = / AE,()) - / AE,(\) = A, - A,

7.4.3 Quantum complexes in V")

{€;},es continues to be a fixed orthonormal basis of H, and p; be the projec-
tion on €; for each j€ J. Let B be the complete Boolean algebra generated

by orthogonal projections {p, | j€ J}.
i(m/2)I

.=

is a unitary operator such that e’ "/?! (%) = iz,

{p;}iesU{e (W/Q)ij Yied

is a set of mutually compatible projections in B.

Since e

DEFINITION 7.4.8. ¢! ("/217 js denoted by i, and ' ™/>1y for u € |ROM) s
denoted by 1 u.
et T/ Ly,
DEFINITION 7.4.9. If u,v are compatible quantum reals, then u + iv rep-
resenting the pair (u,v) is called a quantum complex.

u+iv is a compler number &L UER A vER A ulv

The set of all quantum complezes in VM) is denoted by €M),
¢ = Ly +iv | ueRY A veR9D A ylo).

If uy, v1,us, vo are compatible quantum reals, then

(u1 + ivl) + (UQ + iUQ) déf (u1 + UQ) + 7 (Ul + UQ)
(ur +iv1) - (ug + ivs) o (ug - v1 — ug - va) + 1 (uy - Vo + ug - v1)
(ul +iv1)} (ug +ivg) PN Vg, v1,u, 00}, de

{uy,v1,us, vo} is a mutually compatible set.
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If B is a maximal compatible subset of Q(#H) and u, v are real numbers
in VB, then u +iv € V5.

7.4.4 Compact complex numbers in V@*)

A quantum complex in V) represents a normal operator u on .
If {g;};es is a complete orthogonal system in (), then there exists
o € U such that each ¢; is the projection on o(€j).

qi(o(€y)) =d;rpo(er) forj kel
Each ¢; will be represented in V@) by a real number Q-
¢; < [G=+1] = [3;=x0]".

LEMMA 7.4.14. If {a;};es CR and a complete orthogonal system {q;}jes
in Q(H), then there exists u in V) such that

¢; < [u=xa;] foreachjeJ.

It follows that [uerR] = 1.
Conversely, if u€ VO satisfies [ucR] = 1, then there exists {a;}jcs C
R and a complete orthogonal system {q;}jes such that

¢; < [u=xa;] foreachjeJ.

Proof. 1f {a;} CR and {g; }i; is a complete orthogonal system, then quantum
real u in V@) defined by

Du={r|reQ}, wu(r)= \/{qj la; <r}
satisfies ¢; < [u=r d;]. Therefore, there exists u such that ¢; < [u=x d;].
Conversely, if a quantum real v in V™) satisfies [[uETR]] =1, then

[ue:R] = \/[u=ra] = 1.

a€R

{[u=ra] | aeR} is compatible and for a # b,

[u=ra] A[u=xb] < [a=0] =0.
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Hence, {[u=ra] | a € R} is a mutually orthogomal set. Therefore, there

exists {a;}je; CR and mutually orthogonal system {g;};es such that

]

Immediately from the preceeding lemma we have the following theorem.

THEOREM 7.4.15. If a; = {a;+ib;} CC and {g; }ics is a complete orthog-

onal system, then there exists u in V) such that

g; < [[u:de+iZ)j = a;].

Hence, [uer C] = 1.

Conversely, if u is a quantum complex in VO such that [u € @]] =1,
then there exists {c;}ier CC and a complete orthogonal system {q;};es such
that

DEFINITION 7.4.10. For {a;} CR and a complete orthogonal system {q;};c.,
the quantum real u in VO such that ¢; < [u=x ;] for each j € J is denoted
by ZjeJ ajé}'
u = Zdquj o Vie (g < [u=ra;]).
jeJ

DEFINITION 7.4.11. A quantum complez u is said to be compact if [u €, C] =
1.

u is a compact complex number <= [ueLC] =1

Remark. If {g;}ics is a complete orthogonal system, then {a | a € C} U

{@;};es is a compatible set of quantum complexes.

COROLLARY 7.4.16. For {a;};cs,{bj}jes CC and a complete orthogonal
system {q;} e,

Djes i€y =D jesbie; = [ 40 = Xje b4] = 1.
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7.4.5 Quantum complexes in the sheaf representation
Quantum complexes represent normal operator valued functions on U.

Let u+iv be a quantum complex. {[r € u] | r € Q}U{[r € v] | r € Q} is
a compatible subset of Q(H). Hence, there exists a unitary operator oy € U
such that

{[Feu]lreQtuilrev]|reQ}) L{oolp)|j€ T}

Let
E,:R—Q by /\[[fEu]]

E,:R—Q by NAl[Fed]

pu<r

Then FE, and F, are resolutions of identity and

i = //\Eu(/\) b= /)\Eu(u)

U + 0 is a normal operator on H, where

A =inf{r € Q| oo(p;) < [F € u]} € R,

p; =inf{r € Q| oo(p;) <[ €v]} € R.

f(o0) = {Ajoo(p)) + i pjoo(p;) ties

For each o € U, f(0) = (00y")f(00)(ooy')™t is a normal operator on
H. Then f is a normal operator valued continuous function on U, which
represents the quantum complex u + i v, and forms a sheaf of ring of normal

operator valued functions over U, i.e.
FU)={f(o)|oceU} for U e OMU)

form a sheaf Sh;&€, where € is the set of complex numbers in a Boolean

valued universe.
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7.5 Propositional system
DEFINITION 7.5.1. For elements b, c of a complete lattice L, if b < c,
b covers c<d:ef>Vx[(b§x§c) — (z=0borx=c)

. def
a 18 an atom <= a covers (

A lattice L is said to be atomic if for every element b such that b # 0 there
exists at least one atom p such that p < D.
Propositional system is a complete orthomodular lattice (p.39) Q sat-

isfying axioms Al and A2, i.e.
Cl ¢t =g,
C2cVet=1, cAct =0,

C3 b<c= ¢t <bt.

def

P (=) = (W] e), where | o < (0= W A@)V (AL

A1l : Q is atomic, i.e. for every element b € L such that b # 0 there exists
at least one atom p such that p < b:

A2 : Let pe Q is an atom and b € Q.
If p Nb=0, then pV b covers b.

LEMMA 7.5.1. For a € Q, let a be the set of atoms < a :

ddéf{p s atom | p <a}

Then
Uz‘ela_i = Vz‘el ag, (a>c =a

DEFINITION 7.5.2. A symmetry transformation is a bijective mapping
of the propositional system onto itself which preserves the least upper bound

and the orthocomplimentation, i.e. automorphism:

Autl o(\/,a;) =V, 0(a)
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Aut2 o(at) = (o(a))t

If Q is a propositional system with symmetry transformations U , and
B is a maximal compatible subspace of O, then O has a sheaf structure of
Boolean lattice over U: Shy B

Hilbert quantum set theory is developed on a universe whose truth value

set is a propsitional system, with symmetry transformations.
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