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Chapter 1

Introduction

The law of nature is described in the language of classical logic based on the

assumption that the truth value of propositions is either true (1) or false (0).

The true (1) and the false (0) are expressions of the degree of truth, and

called truth values. Truth values 1 and 0 form a complete Boolean lattice 2

with the order relation ≤ and operations ∨, ∧, ¬ :

2 = 〈 {1, 0} : ∧(and), ∨ : (or), ¬(not) 〉

In a sense, the algebra of the 2-valued logic 2 = {1, 0} represents the logo-

centric human interest. A logical counterpart of complete Boolean lattice is

called a classical logic.

Intuitionistic logic drops the law of excluded middle of classical logic,

while quantum logic replaces the full distributive law of classical logic by

a weaker distributivity. These logics are two essential non-classical logical

systems.

The usual set theory is formulated on basis of classical logic with the

axioms of set theory like that of ZFC. The whole mathematics can be for-

mulated in the set theory.

Propositions of set theory are build up starting from formulas of the form

”a ∈ b” (a is an element of b), and then applying recursively the logical

connectives (occasionally replacing constants with variables) :

∧(and), ∨(or), ¬(not), ∀(for all), ∃(exists), ⊃ (implies)

7

UNDER PEER REVIEW



8

Classical set theory is developed in the frame of the classical logic with

axioms which claim basic properties(like Extendibility) and existence of each

specific sets. The whole sets form the universe of set theory. The universe

of classical set theory may be reinterpreted as the class model constructed

inductively starting from the empty set ∅ (= V 2
0 ), and then extending recur-

sively the part of the universe obtained sofar by adding(”classical” charac-

teristic functions of) elements of its power set.

V 2
α = {u | ∃β∈α(u ⊂ V 2

β )},
V 2 =

⋃
α∈On V

2
α ,

where

u ⊂ V 2
β

def⇐⇒ u :V 2
β →2.

V 2 is simply written as V .

Mathematics, the language of science, is developed in the classical set

theory.

G.Gentzen formalized a system of the classical logic, which is called LK

(cf.[3]). Formulas which represent propositions of set theory are constructed

from atomic formulas of the forms :

u = v or u ∈ v

by using logical operations :

∧(and), ∨(or), ¬(not), ∀(for all), ∃(exists), ⊃ (implies),

where the implication ⊃ denotes the lattice operation satisfying :

a ≤ (b ⊃ c) ⇐⇒ a ∧ b ≤ c.

The lattice order ≤ for classical logic is representable as combination of

¬ and ∨ :

φ ⊃ ψ
def⇐⇒ ¬φ ∨ ψ since a ⊃ b =

1 if a ≤ b ⇐⇒ ¬a ∨ b = 1

0 otherwise .

Hence, the implication ⊃ is dispensable for the classical logic.
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However, the quantum physics does not follow all the rules of the classical

logic. Quantum logic is not compatible with the distributive law of the

classical logic. In particular, the truth values set of quantum logic do not

form a Boolean lattice. The algebraic counterpart of quantum logic is an

orthomodular lattice. The axiom of orthomodular lattice is obtained from

that of Boolean lattice by replacing the distributive law by the weaker law :

a ≤ b =⇒ b = a ∨ (b ∧ ¬a) .

Let Q be an orthomodular lattice which is the set of truth values of an

instance of the quantum logic. Then Q-valued universe V Q constructed in V

is the universe of the quantum set theory, in which quantum theory may be

described.

For formalization of non-classical logics, we introduce a new logical oper-

ator
2→ called basic implication, representing :

a
2→ b =

1 a ≤ b

0 otherwise,

which should replace the classical implication ⊃. The basic implication is a

logical operation representing the lattice order :

a implies b ⇐⇒ a ≤ b ⇐⇒ (a
2→ b) = 1.

A logic with the basic implication is called a global logic. Global set

theory is based on the global logic.

Lattice valued logic, which is a logical counterpart of complete lattice,

is formalized as a global logic. Logical operations of lattice valued logic are

:

∨, ∧, ∃, ∀ and the basic implication
2→ .

If we introduce a logical operator □ representing :

□a def⇐⇒

1 ( = a ∨ a⊥) if a = 1

0 ( = 1⊥) otherwise
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then the basic implication
2→ is replaced by using □ and ⊃ :

a
2→ b

def⇐⇒ □(a ⊃ b) =

1 (a ⊃ b) = 1

0 otherwise

In §6, we construct universes of various truth value sets in the universe V .

Then, the metatheory of global set theory is subsumed in the global set

theory itself.

Axioms GZFC of global set theory is obtained from ZFC by rephrasing

in the global logic. Axioms GNBG of global von-Neumann-Bernays-Gödel

set theory is a conservative extension of GZFC with the notion of class.

Global von-Neumann-Bernays-Gödel set theory is developed by the global

logic based on axoims GNBG.

In §7, we deal with quantum set theory developed on the axioms GNBG

by quantum logic, which is a counterpart of complete orthomodular lat-

tice. Birkhoff and von Neumann proposed quantum logic represented by the

complete orthomodular lattice in [2].

Projections on a Hilbert space H form an atomic complete orthomodu-

lar lattice with symmetry transformations, which is denoted by Q(H). An

atomic complete orthomodular lattice is called a propositional system.

The logical operators of quantum logic are :

∨, ∧, ∃, ∀, ⊥,
2→ .

A Q(H)-valued universe V Q(H), which is a universe of a quantum set

theory, is constructed in V . Mathematics described in the quantum universe

V Q(H) can be reconsidered from the view point of the 2-valued universe V :

The quantum universe V Q(H) is an inner universe constructed in V . The

automorphisms U on H induce the symmetry transformation on Q(H), and
hence on V Q(H). Set theory on the Q(H)-valued universe V Q(H) is called a

Hilbert quantum set theory.

A maximal compatible subset of Q(H) is a complete Boolean lattice, say

B. Then

Q(H) =
⋃
σ∈U

σ(B).
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Q(H) has a sheaf structure Sh UB of Boolean lattice over U , and the orthomodular-

lattice-valued universe V Q(H) has the sheaf structure Sh UV
B of Boolean val-

ued universe over U .

Real numbers are defined as Dedekind cuts in a Boolean valued sub-

universe V B, and represented by self-adjoint operators on H. An ‘observ-

able’ in quantum theory is represented by a real number in the quantum

universe V Q(H). Therefore, in the sheaf representation of the universe V Q(H),

’observables’ are represented by self-adjoint operators moving on U .

In §6 (6.4.2), we define check set. Check set is a classical member in

V Q(H). Each set x in V corresponds to a check set x̌ ∈ V Q(H). Let W be the

class of check sets x̌ corresponding x∈V . Then W is a universe of classical

set theory in V Q(H).

W = V̌ ⊂ V Q(H)

Since W in V Q(H) is isomorphic to V , W includes various universes as if V

includes various universes. It means that various universes are nested, i.e.

each universe is an inner universe of the others.

Since universe V is constructed from empty set ∅ and empty set is a

subset of every set, universe V is constructed everywhere in V .

This mysterious construction is similar to the construction of the universe

of Kegon Sutra (Avatamska Sutra).

Logical science, which is founded on the base of global classical logic, com-

prehends extensive field including quantum physics. Thus, we can observe

and describe various inner universes from the point of view of the 2-valued

universe V of classical set theory.

However, it seems to cover still only a bounded aspect of nature. We

might be able to perceive more in assimilation with the nature. The whole

nature seems to be far beyond the scope of logic.
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Chapter 2

Naive set theory

We use some symbols as abbreviations of words of informal language.

A =⇒ B : “ if A then B ”

A⇐⇒ B : “ A if and only if B ”

A
def⇐⇒ B : “ A is defined as B ”

a
def
= b : “ a is defined as b ”

∀xA(x) : “ for all x, A(x) ”

∃xA(x) : “ there exists x such that A(x) ”

Propositions in a set theory is represented as formulas constructed from

atomic formulas of the form:

u∈v (u is a member of v) or u = v (u is equal to v)

by operations ∧, ∨, ¬, ∀, ∃ ;

φ ∧ ψ (φ and ψ), φ ∨ ψ (φ or ψ), ¬φ (not φ),

∀xφ(x) (for all x φ(x)), ∃xφ(x) (φ(x) for some x).

We suppose that atomic formulas u ∈ v, u = v are either true or false.

Then every formula is either true(1) or false(0). 1 and 0 are called truth

12
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values. The set {1, 0} form a complete Boolean algebra, denoted by 2.

Logical operators ∧, ∨, ¬, ∀, ∃ are interpreted on the complete Boolean

algebra as the corresponding Boolean operators.

Truth value of a formula φ is denoted by [[φ]].

[[φ]] = 1 (true) or 0 (false)

The logical structure of a classical set theory is represented by the alge-

braic structure of Boolean algebra 2.

Sets and formulas

Objects of set theory are sets, and it is indicated by the elements which

belong to the set, or by a condition that the elements satisfy :

{a1, a2, · · · an} or {x | φ(x)}

A set u is also expressed by the characteristic function χu : Du → 2, where

Du denotes the domain:

χu(x) =

1, x ∈ u

0, x 6∈ u
for x ∈ Du

Two sets u and v are equal if and only if they have the same members :

u = v
def
= (x ∈ u⇐⇒ x ∈ v for every x.)

There is only one set which has no elements at all. This set is called the

empty set, and denoted by the symbol ∅.
We say that u is a subset of v, in symbols u ⊂ v, if every element of u

belongs to v.

Given sets u and v, one can perform some basic operations with them

yielding the new sets:

(1) the set u ∪ v called the union of u and v, whose elements are the

elements of u or v.

u ∪ v = {x | x ∈ u ∨ x ∈ v}
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(2) the set u ∩ v called the intersection of u and v, whose elements are

the elements common to u and v.

u ∩ v = {x | x ∈ u ∧ x ∈ v}

(3) the set u−v called the difference of u and v, whose elements are those

elements of u that are not elements of v.

u− v = {x | x ∈ u ∧ ¬(x ∈ v)}

Thus, logical operations ∨, ∧ and ¬ correspond to the set theoretical opera-

tions ∪, ∩ and complement.

The set theoretical operations satisfy the following properties:

(1) Associativity:

u ∪ (v ∪ w) = (u ∪ v) ∪ w, u ∩ (v ∩ w) = (u ∩ v) ∩ w

(2) Commutativity:

u ∪ v = v ∪ u, u ∩ v = v ∩ u

(3) Distributivity:

u ∪ (v ∩ w) = (u ∪ v) ∩ (u ∪ w), u ∩ (v ∪ w) = (u ∩ v) ∪ (u ∩ w)

(4) Idenpotency:

u ∪ u = u, u ∩ u = u

(5) Empty set:

u ∪ ∅ = u, u ∩ ∅ = ∅, u− u = ∅

(6) If u ⊂ v, then

u ∪ v = u ∪ (v − u) = v, u ∩ v = u.

If u = v, then {u, v} is denoted by {u}.
We define ordered pair (u, v) as the set {{u}, {u, v}}. Then

(u1, v1) = (u2, v2) if and only if u1 = u2 and v1 = v2.
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Relations

A binary relation R on a set X is a set of ordered pairs of elements of X.

R ⊂ X×X={(u, v) | u, v ∈ X}

A binary relation R on a set X is called reflexive if (x, x) ∈ R for every

x ∈ X. It is called symmetric if (v, u) ∈ R whenever (u, v) ∈ R. And it

is called transitive if (u,w) ∈ R whenever (u, v) ∈ R and (v, w) ∈ R. A

relation that is reflexive, symmetric and transitive is called an equivalence

relation. If R is an equivalence relation on a set X and (u, v)∈R, then we

say that u and v are R-equivalent. For u∈X, the set of all elements of X

that are R-equivalent to u is called R-equivalence class of u The set of all

R-equivalence classes is called the quotient set and denoted by X/R.

For a binary relation R, one usually write aRb instead of (a, b)∈R.

Functions

A function on a set X is a binary relation F on X such that for every a∈X
there exists exactly one pair (a, b) ∈ F . Then the element b is called the

value of F at a, and denoted by F (a). The set {x ∈X | ∃y
(
(x, y) ∈ F

)
}

is called the domain of F . The notation F : X → Y indicates that F is a

function with domain X and values in the set Y .

A function F : X → Y is said to be one-to-one if a 6= b implies F (a) 6=
F (b) for elements a, b of X. And F is said to be onto if for every b ∈ Y

there is some a ∈ X such that F (a) = b. Finally, F is said to be bijection

if it is one-to-one and onto.

Given functions F : X → Y and G : Z → W , the composition of F

and G, written G ◦F , is the function G ◦F : X → W whose elements are all

pairs (x,G(F (x))), where x ∈ X.

Ordinals

A binary relation R on a set X is called antisymmetric if a = b whenever

R(a, b) and R(b, a). A relation R on a set X that is reflexive, antisymmetric,

and transitive, is called a partial order. If we remove from R all pair (a, a)

for every a∈X, then we get strict partial order. A partial order on a given
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set X is usually represented by the symbol ≤ and the corresponding strict

partial order by ⪇ or <. A partial order ≤ on a set X with the additional

property that either a ≤ b or b ≤ a, for all elements a and b of X, is called a

total order, or linear order.

If ≤ is a linear order on a set X, then we say that a∈X is the ≤-least
element of X if there is no b ∈ X distinct from a such that b ≤ a.

A linear order ≤ on a set X is a well-order if every non-empty subset

of X has a ≤-least element.

A set α is called an ordinal if

(1) α is well-ordered with respect to the order ≤ defined by

β ≤ γ
def⇐⇒ β∈γ ∨ β = γ,

(2) if β ∈ α then β ⊂ α.

The first ordinal number is defined as the empty set ∅. Given an ordinal

α, the next bigger ordinal, called the successor of α, is the set α ∪ {α}.
The finite ordinal numbers are those obtained by starting with ∅ and

repeatedly taking the successor.

In the set theory, the natural numbers are defined as the finite ordinals.

Thus,

0 = ∅
1 = ∅ ∪ {∅} = {∅}
2 = 1 ∪ {1} = {∅, {∅}}
...

n = {0, 1, 2, · · · , n− 1}
...

N def
= {0, 1, 2, · · · , n, · · · }

A set u is finite if there is a one-to-one correspondence between some natural

number n and the elements of u. A set is infinite if it is not finite.

The set of all finite ordinals is an ordinal and denoted by ω. Thus, ω is

the set N of all natural numbers.

The cardinarity of a finite set u is the unique natural number n such

that there is a bijection F : n→ u.
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Universe of set theory

Objects of set theory are sets. The class of whole sets is called a universe

of set theory.

Underlying universe of set theory is defined inductively as follows.

Vα = {u | ∃β<α(u ⊂ Vβ},
V =

⋃
α∈On Vα.

The least α such that u∈Vα is called the rank of u.

Truth values of atomic formulas are expressed using [[ ]]:

[[u=v]] =

1 u=v

0 u 6= v
[[u∈v]] =

1 u ∈ v

0 u 6∈ v

Logical operators ∧, ∨, ¬, ∀, ∃ are interpreted as algebraic operators on

the Boolean algebra 2:

[[φ ∧ ψ]] = [[φ]] ∧ [[ψ]]

[[φ ∨ ψ]] = [[φ]] ∨ [[ψ]]

[[¬φ]] = ¬[[φ]]
[[∀xφ(x)]] =

∧
x∈V

[[φ(x)]]

[[∃xφ(x)]] =
∨
x∈V

[[φ(x)]]

Then every formula has truth value 1 or 0 on V .
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Chapter 3

Lattice theory

3.1 Lattices

In a logical system, a propositions are expressed by formulas. Lattice repre-

sents the structure of truth value of formulas.

Lattice is an ordered set such that any two elements has supremum and

infimum. The truth value of a formula φ is denoted by [[φ]]. The order

relation ≤ of the lattice represents “implies”. That is,

[[φ]] ≤ [[ψ]] means that “φ implies ψ ”.

DEFINITION 3.1.1. A set L is said to be ordered if there is a relation ≤
on L satisfying

O1 x ≤ x (reflexive law)

O2 If x ≤ y and y ≤ x, then x = y (antisymmetric law)

O3 If x ≤ y and y ≤ z, then x ≤ z (transitive law)

DEFINITION 3.1.2. Let 〈L,≤〉 be an ordered set and A be a subset of L.
An element a of L is a supremum of A, when

(1) ∀x ∈ A(x ≤ a), and

(2) if ∀x ∈ A(x ≤ y) then a ≤ y.

a ∈ L is an infimum of A, when

18
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(1) ∀x ∈ A(x ≥ a), and

(2) if ∀x ∈ A(x ≥ y) then a ≥ y.

The supremum of A is denoted by
∨
A. The infimum of A is denoted by

∧
A.

If A is a finite subset {a1, · · · , an} ⊂ L, then
∨
A and

∧
A are denoted by

a1 ∨ · · · ∨ an and a1 ∧ · · · ∧ an, respectively.

DEFINITION 3.1.3. An ordered set L is called a lattice if L is closed

under operations ∨ and ∧ :

L is a lattice
def⇐⇒ ∀a, b∈L

(
(a ∨ b), (a ∧ b) ∈ L

)
.

A lattice L is called a complete lattice if L is closed under operations
∨

and
∧

:

L is a complete lattice
def⇐⇒ ∀A ⊂ L

(
(
∨
A), (

∧
A) ∈ L

)
.

The largest element
∨
L of L is denoted by 1, and the smallest element∧

L of L is denoted by 0. ∨
L = 1,

∧
L = 0.

We assume that 1 6= 0.

Example 3.1.1. The two element set {1, 0} consisting of 1 and 0 is a com-

plete lattice, where 0 ⪇ 1. This lattice 〈{1, 0},≤;∧,∨}〉 is denoted by 2.

THEOREM 3.1.1. The binary operations ∧ (meet) and ∨ (join) of lattice

〈L,≤〉 satisfies the following L1–L3:

L1 a ∧ b = b ∧ a, a ∨ b = b ∨ a (commutative laws)

L2 a ∧ (b ∧ c) = (a ∧ b) ∧ c, a ∧ (b ∧ c) = (a ∧ b) ∧ c (associative laws)

L3 a∧ (b∨ a) = a = a∨ (b∧ a), a∨ (b∧ a) = a = a∧ (b∨ a) (absorption

laws)

THEOREM 3.1.2. If a set L with binary operations ∧, ∨ and relation =

satisfies the conditions L1, L2, L3, then (L,≤,∧,∨) is a lattice, where

a ≤ b
def⇐⇒ a = a ∧ b.
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Proof. If 〈L, =, ∧, ∨〉 satisfies the conditions L1, L2, L3, then define ≤ by

a ≤ b
def⇐⇒ a = a ∧ b.

By absorption laws,

a = a ∧ b =⇒ a ∨ b = (a ∧ b) ∨ b = b,

a ∨ b = b =⇒ a ∧ b = (a ∨ b) ∧ b = b.

∴ a ≤ b ⇐⇒ a = a ∧ b ⇐⇒ b = a ∨ b.

(1) 〈L,≤〉 is an ordered set, because

O1: a = a∧ ((a∧ a)∨ a) = a∧ (a∨ (a∧ a)) = a∧ a by L3 and L1.

Hence, ≤ is reflexive.

O2: If (a ≤ b) ∧ (b ≤ a), then a = (a ∧ b) = (b ∧ a) = b. Therefore, ≤
is antisymmetric.

O3: If (a ≤ b) ∧ (b ≤ c), then a ≤ c. That is, transitive.

∵) (a = a ∧ b) ∧ (b = b ∧ c), ∴ a = a ∧ b ∧ c = a ∧ c.

(2) a ∨ b is the supremum of {a, b}, because

a ≤ a ∨ b since a = a ∧ (a ∨ b) by L3. Similarly, b ≤ a ∨ b.

Assume a ≤ c and b ≤ c. By using L3 again,

a = a ∧ c =⇒ a ∨ c = (a ∧ c) ∨ c = c.

c = a ∨ c =⇒ a ∧ c = a ∧ (a ∧ c) = a.

Hence, a = (a∧c)⇐⇒ c = (a∨c). Similarly, b = (b∧c)⇐⇒ c = (b∨c).
Therefore,

c = c ∨ c = (a ∨ c) ∨ (b ∨ c) = (a ∨ b) ∨ c. ∴ a ∨ b ≤ c.

(3) Similarly, a ∧ b is the infimum of {a, b}.
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DEFINITION 3.1.4. A lattice L is said to be distributive if the following

distributive law is satisfied.

Distributive law: If a∈L, {bi}i⊂L,
∨

i bi ∈ L and
∨

i(a∧ bi) ∈ L, then

a ∧
∨
i

bi =
∨
i

(a ∧ bi).

Especially, a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for elements a, b, c of distributive

lattice.

THEOREM 3.1.3. The following two conditions (1) and (2) of a lattice L
are equivalent.

(1) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for elements a, b, c of L.

(2) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) for elements a, b, c of L.

Proof. If a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for a, b, c ∈ L, then

(a ∨ b) ∧ (a ∨ c) =
(
(a ∨ b) ∧ a

)
∨
(
(a ∨ b) ∧ c

)
= a ∨ (a ∧ c) ∨ (b ∧ c)
= a ∨ (b ∧ c)

If a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) for a, b, c ∈ L, then

(a ∧ b) ∨ (a ∧ c) =
(
(a ∧ b) ∨ a

)
∧
(
(a ∧ b) ∨ c

)
= a ∧ (a ∨ c) ∧ (b ∨ c)
= a ∧ (b ∨ c)

DEFINITION 3.1.5. If a, b are elements of a lattice L and there exists the

greatest element c of L such that a ∧ c ≤ b, then c is called a pseudo-

complement of a relative to b, and denoted by a ⊃ b :

c ≤ (a ⊃ b) ⇐⇒ c ∧ a ≤ b for every c ∈ L (3.1.1)

Classical logic and intuitionistic logic have the corresponding logical op-

eration ⊃.
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DEFINITION 3.1.6. A lattice L is called a Heyting algebra if L has the

largest element 1 and the least element 0, and also if there exists a pseudo-

complement a ⊃ b, for any elements a, b∈L, i.e.

A lattice 〈L,⊃, 0, 1〉 is a Heyting algebra
def⇐⇒ ∀a, b∈L∃c∈L(c = (a⊃b))

DEFINITION 3.1.7. A distributive lattice L is called Boolean algebra or

Boolean lattice if it is provided with negation ¬ satisfying

(1) a ∧ ¬a = 0,

(2) a = ¬¬a, and

(3) a ≤ b =⇒ ¬b ≤ ¬a

.

THEOREM 3.1.4. If a complete lattice L has a negation and satisfies

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for a, b, c ∈ L,

then L is a complete Boolean lattice, i.e. a ∧
∨

i bi =
∨

i(a ∧ bi) for a∈L
and {bi}i⊂L.

Proof. a ∧
∨

i bi ≥
∨

i(a ∧ bi) is obvious.

If a ∧ bi ≤ c for all i, then bi ≤ ¬a ∨ (a ∧ bi) ≤ ¬a ∨ c for all i. It follows
that ∨

i bi ≤ ¬a ∨ c, ∴ a ∧
∨

i bi ≤ a ∧ (¬a ∨ c) ≤ c.

THEOREM 3.1.5. Complete Heyting algebra is distributive.

Proof. It is obvious that ∨
i(a ∧ bi) ≤ a ∧ (

∨
i bi)

for elements a, bi of the Heyting algebra.

Conversely, if a∧ bi ≤ c for all i, then by (2), bi ≤ (a ⊃ c) for all i, hence∨
i bi ≤ (a ⊃ c). Therefore, by (2) again, a ∧

∨
i bi ≤ c.

∴ a ∧
∨

i bi =
∨

i(a ∧ bi).
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THEOREM 3.1.6. A complete distributive lattice L is a Heyting algebra with

⊃ defined by

(a ⊃ b)
def
=

∨
{x ∈ L | x ∧ a ≤ b}.

Proof. 　 If c ∧ a ≤ b, then c ∈ {x ∈ L | x ∧ a ≤ b}. Hence, c ≤ (a⊃b).
a ∧ (a ⊃ b) = a ∧

∨
{x ∈ L | a ∧ x ≤ b} ≤ b.

DEFINITION 3.1.8. If L is a Heyting algebra, then operation ¬ is defined

by

¬a def
= (a ⊃ 0).

THEOREM 3.1.7. If L is a Heyting algebra, then for a, b ∈ L,

(1) a ∧ ¬a = 0

(2) a ≤ ¬¬a

(3) a ≤ b =⇒ ¬b ≤ ¬a

THEOREM 3.1.8. An operation ⊃ on a Boolean lattice defined by

(a ⊃ b)
def
= ¬a ∨ b

is a pseudo-complement of a relative to b, so Boolean lattice is an Heyting

algebra.

Proof. By distributive law,

c ≤ (a ⊃ b)⇐⇒ c ∧ a ≤ b and a ∧ (a ⊃ b) ≤ b.

Example 3.1.2. For a topological space X, the set O(X) of open sets of X

is a complete Heyting algebra with respect to the order of inclusion.

Example 3.1.3. The power set P(X) (= {Y | Y ⊂ X}) of a set X is a

complete Boolean lattice with respect to the order of inclusion.

Especially, if X is a singleton {x}, then P(X) = {X, ∅}:

1 =
∨
P(X) = {X} and 0 =

∧
P(X) = ∅.

The complete Boolean lattice {1, 0} is denoted by 2.
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DEFINITION 3.1.9. Let L and L′ be distributive lattices. A mapping f :

L → L′ is called a (lattice) homomorphism, if

f(a ∧ b) = f(a) ∧ f(b) and f(a ∨ b) = f(a) ∨ f(b) for a, b ∈ L.

A lattice homomorphism f : L → L′ is said to be a (lattice) isomorphism

if f is one-to-one and onto mapping.

3.2 Stone spaces

The set of all subsets of a set X is called a power set of X, and denoted

by P(X). P(X) is a lattice with respect to order ⊂ of inclusion, where the

supremum is the union
⋃

and the infimum is the intersection
⋂
:⋃

A
def
= {x∈X | ∃a∈A(x∈a)},

⋂
A

def
= {x∈X | ∀a∈A(x∈a)}.

A subset A of P(X) is called a set lattice, if A is closed under
⋃

and
⋂
,

i.e.

if B⊂A, then
⋃
B ∈ A and

⋂
B ∈ A.

Every lattice which is isomorphic to a set lattice is distributive. The converse

Theorem 3.2.3 will be proved later.

DEFINITION 3.2.1. Let 〈L, ∨, ∧〉 be a distributive lattice. A subset I of

L is called an ideal if

I1 : a, b ∈ I =⇒ a ∨ b ∈ I.

I2 : a ∈ I and b ∈ L =⇒ a ∧ b ∈ I.

An ideal I of the distributive lattice L is said to be a prime ideal if

I3 : a, b ∈ L and a ∧ b ∈ I =⇒ either a ∈ I or b ∈ I.

DEFINITION 3.2.2. An ideal I of a lattice L is said to be maximal if

(1) I is an ideal of L such that I ⫋ L, and

(2) there is no ideal I ′ such that I ⫋ I ′ ⫋ L.
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PROPOSITION 3.2.1. A maximal ideal of a distributive lattice L is a prime

ideal.

Proof. Suppose that I is an ideal which is not prime, i.e. there exist elements

a, b ∈ L such that

a ∧ b ∈ I, a 6∈ I, b 6∈ I.

Then I∗ = {x ∈ L | ∃c ∈ I(x ≤ a ∨ c)} is an ideal of L such that I ⊂ I∗.

a ∈ I∗, ∵) a ≤ a ∨ c for c ∈ I,
b 6∈ I∗, ∵) if b ∈ I∗ then b = b∧ (a∨ c) = (a∧ b)∨ (b∧ c) ∈ I for c ∈ I,

but b 6∈ I.
Therefore,

I ⫋ I∗ ⫋ L, ∴ I is not maximal.

PROPOSITION 3.2.2. For an arbitrary elements a, b of a distributive lattice

L, if b 6≤ a, then there exists a prime ideal I such that

a ∈ I and b 6∈ I.

Proof. Let I be the set of all ideals of L, and I ′ be the set of all ideals I

such that

a ∈ I and b 6∈ I (3.2.1)

I ′ is not empty, because {x ∈ L | x ≤ a} is an ideal to which a belongs and

b does not belong. If J is a nonempty ordered subset of I ′, then (
⋃
J ) ∈ I ′.

Therefore, by Zorn’s lemma, there exists a maximal ideal in I ′. Let I be a

maximal ideal in I ′. It suffices to show that I is a prime ideal.

Suppose that I is not prime, i.e. there exist elements a1, a2 ∈ L such that

a1 ∧ a2 ∈ I, but a1 6∈ I and a2 6∈ I.

Let Ii be the ideal generated by {ai} ∪ I, i = 1, 2, i.e.

Ii = {x ∈ L | ∃c ∈ I(x ≤ ai ∨ c)}.

One of the ideals I1 and I2 does not contain a. For,

a ∈ I1 ∧ a ∈ I2 =⇒ ∃c1, c2 ∈ I(a ≤ a1 ∨ c1 and a ≤ a2 ∨ c2).
Setting c = c1 ∨ c2,

a ∈ I1 ∧ a ∈ I2 =⇒ ∃c ∈ I (a ≤ (a1 ∨ c) ∧ (a2 ∨ c))
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a ≤ (a1 ∨ c) ∧ (a2 ∨ c) = (a1 ∧ a2) ∨ (a1 ∧ c) ∨ (a2 ∧ c) ∨ (c ∧ c) ∈ I.

This implies a ∈ I, which is impossible. Therefore, I is a prime ideal satis-

fying (3.2.1).

Let X be the set of all prime ideals of a distributive lattice L, and let

h(a) = {x ∈ X | a 6∈ x}, for a ∈ L.

h is a mapping L → P(X). Set

h(L) = {h(a) ⊂ X | a ∈ L}.

THEOREM 3.2.3. If L is a distributive lattice, then h(L) is a set lattice and

h is an isomorphism of L to h(L):

(1) If a, b ∈ L and h(a) = h(b) then a = b, that is, h is one-to-one mapping.

(2) h(a ∧ b) = h(a) ∩ h(b),

(3) h(a ∨ b) = h(a) ∪ h(b),
for a, b ∈ L, where ∩ and ∪ are set theoretical intersection and union.

(4) a ≤ b ⇐⇒ h(a) ⊂ h(b) for a, b ∈ L.

Proof. (1) By Proposition 3.2.2.

(2) If x ∈ h(a ∧ b), then a ∧ b 6∈ x. Then a 6∈ x and b 6∈ x. Hence,

x ∈ h(a) ∩ h(b). Conversely, if x ∈ h(a) ∩ h(b), then a 6∈ x and b 6∈ x.
Since x is a prime ideal of L, (a ∧ b) 6∈ x, i.e. x ∈ h(a ∧ b).

(3) If x ∈ h(a∨ b), then a∨ b 6∈ x. Then a 6∈ x or b 6∈ x. Hence, x ∈ h(a) or
x ∈ h(b), which proves x ∈ h(a) ∪ h(b). Conversely, if x ∈ h(a) ∪ h(b),
then a 6∈ x or b 6∈ x. Since x is an ideal of L, (a∨b) 6∈ x, i.e. x ∈ h(a∨b).

(4) follows from (1),(2).

COROLLARY 3.2.4. For a subset {ai}i∈I of a distributive lattice L, if there
exist the supremum

∧L
i ai, and infimum

∨L
i ai in L, then

h(
∧L

i ai) =
⋂

i h(ai) =
∧h(L)

i h(ai) and h(
∨L

i ai) =
⋃

i h(ai) =
∨h(L)

i h(ai).
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DEFINITION 3.2.3. For a distributive lattice L, the set X of all prime ideals

of L is called the Stone space of L, the isomorphism h : L → h(L) ⊂ P(X),

where h(a) = {x ∈ X | a 6∈ x}, is called the Stone isomorphism, and h(L)
is called the Stone lattice.

3.3 Completion of Boolean algebras

3.3.1 Stone space of Boolean algebra

Stone space of a Boolean algebra B = 〈B, ∨, ∧, ¬ 〉 is the set of all prime

ideals of B, and the Stone isomorphism h is an embedding of B into P(X)

by Theorem 3.2.3:

h : B → P(X), h(a) = {x ∈ X | a 6∈ x},

h(a ∨ b) = h(a) ∪ h(b), h(a ∧ b) = h(a) ∩ h(b).

PROPOSITION 3.3.1. If B is a Boolean algebra, then the Stone lattice h(B)

is a field of subsets of the Stone space X of B (Definition 3.2.3) and the Stone

isomorphism h is a Boolean isomorphism of B onto h(B), where

h(¬a) = X − h(a).

Proof. x ∈ h(¬a)⇔ (¬a) 6∈ x⇔ a ∈ x⇔ x 6∈ h(a).

The Boolean algebra 〈 h(B), ∪, ∩, c 〉 is called the Stone field of B,

where h(a)c
def
= X − h(a).

The Stone space X is a topological space with open base {h(a) | a ∈ B},
where each h(a) is closed and open, since h(a) = h(¬¬a) = X − h(¬a).

PROPOSITION 3.3.2. The Stone space X of a Boolean algebra B is a com-

pact totally disconnected Housdorff space.

Proof. If x1, x2 ∈ X and x1 6= x2, then there exists an element a∈B which

belongs precisely one of the the sets x1 and x2, say a ∈ x1 and a 6∈ x2 by

Proposition 3.2.2. Consequently x1∈h(¬a) and x2∈h(a), and both of h(¬a)
and h(a) are open and closed. Thus X is a totally disconnected Hausdorff

space.
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To prove the compactness, suppose that {at}t∈T ⊂ B andX =
⋃

t∈T h(at).

It suffices to prove that

X = h(at1) ∪ · · · ∪ h(atn)

for some at1 , · · · , atn ∈ {at}t∈T .
Suppose the contrary, that is, for all at1 , · · · , atn ∈ {at}t∈T

h(at1 ∨ · · · ∨ atn) = h(at1) ∪ · · · ∪ h(atn) 6= X = h(1).

Since h is one-to-one, we infer that

at1 ∨ · · · ∨ atn 6= 1 for t1, · · · tn ∈ T,

i.e. that the ideal ∆0 generated by all at (t ∈ T ) does not contain the unit

element 1. ∆0 is contained in a maximal ideal ∆ which is prime, i.e. ∆ ∈ X.

Since at ∈ ∆ for t ∈ T ,
∆ 6∈

∨
t∈T h(at) = X

which is imposible.

PROPOSITION 3.3.3. For a, ai ∈ B (i ∈ I), if the equation

a =
∨

i ai (3.3.1)

holds, then

h(a)−
⋃

i h(ai)

is closed, nowhere dense subset of the Stone space X.

Proof. The set A = h(a) −
⋃

i h(ai) is closed since it is the difference of a

closed and a open set. Suppose that A is not nowhere dense, i.e. A contains

a non-empty open set. Then there is an element a0 ∈ B such that

h(a0) ⊂ A, a0 6= 0.

Since h(a0) ⊂ h(a), we have a0 ≤ a on account of Theorem 3.2.3. Thus

a 6= a ∧ ¬a0 ≤ a. On the other hand,

h(a0) ⊂ h(a)− h(ai), i.e. h(ai) ⊂ h(a)− h(a0) = h(a ∧ ¬a0).

Hence, ai ≤ a∧¬a0 for every i ∈ I. It follows that a =
∨

i ai ≤ a∧¬a0. This
contradicts (3.3.1).
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3.3.2 Minimal extensions of Boolean algebras

Every Boolean algebra B is isomorphic to a subalgebra of a complete Boolean

algebra, by Proposition 3.2.3. For instance, the Stone isomorphism maps B

into the complete field of all subsets of the Stone space. This isomorphism

does not, in general, preserve infinite joins and infinite meets. The minimal

extension defined in this section is an isomorphism h∗ : B → h∗(B) of B into

a complete Boolean algebra, which preserves all the infinite joins and meets.

A proof is shown as follows ( cf. H.Rasiowa and R.Sikorski [7] ).

DEFINITION 3.3.1 (MacNeille [5] , Sikorski [8] ). Let X be the Stone space

of a Boolean algebra B. A set A ⊂ X is said to have the Baire property

provided there exists an open set G such that

A−G and G− A are of the first category. (3.3.2)

PROPOSITION 3.3.4. If A, A′ have the Baire property, then

A ∪ A′, A ∩ A′, X − A

have the Baire property.

Proof. Suppose that statement (3.3.2) is satisfied and G′ is an open set such

that

A′ −G′ and G′ − A′ are of the first category.

Then G ∪G′ is open and

(A ∪ A′)− (G ∪G′) ⊂ (A−G) ∪ (A′ −G′),

(G ∪G′)− (A ∪ A′) ⊂ (G− A) ∪ (G′ − A′).

Since the set on the right-hand side are of the first category, so are the sets

on the left-hand side.

The complement Ac = X − A of a set A with Baire property also has

Baire property.

∵) Suppose that (3.3.2) holds, and let G be the closure of G. The set

G0 = G
c
is open and the set G−G is nowhere dense.

Ac −G0 = G0
c − A = G− A ⊂ (G−G) ∪ (G− A),
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G0 − Ac = G0 ∩ A = A ∩G c
= A−G ⊂ A−G,

which proves that the sets on the left-hand side are of the first category.

DEFINITION 3.3.2. Let X be the Stone space of Boolean algebra B and B

be the class of all sets having the Baire property, which is a field of subsets

of space X.

Let ∆ be the ideal of all sets ⊂ X of the first category. The Boolean

algebra B∗ = B/∆ is called the minimal extension.

PROPOSITION 3.3.5. The mapping

h∗(a) = |h(a)| ∈ B∗

is an embedding of Boolean algebra B into complete Boolean algebra B∗,

where h is the Stone isomorphism of B onto the Stone field h(B) of all both

open and closed subset of X.

Proof. h∗ is a homomorphism of B into B∗. If h∗(a) is zero of B∗, then

h(a) ∈ ∆, i.e. the open set h(a) is of the first category. Hence h(a) is empty.

Since h is an isomorphism, a is the zero element of B. This proves that h∗

is an isomorphism of B into B∗.

THEOREM 3.3.6. The minimal extension B∗ of an arbitrary Boolean alge-

bra B is complete. The canonical isomorphism h∗ preserves all infinite joins

and meets, i.e.

if a =
∨B

t∈T at, then h∗(a) =
∨B∗

t∈T h
∗(at), (3.3.3)

if a =
∧B

t∈T at, then h∗(a) =
∧B∗

t∈T h
∗(at). (3.3.4)

Proof. If (3.3.2) holds, then |A| = |G|. Therefore every element of of B∗ can

be represented in the form |G| where G is open.

First we shall prove that

|
⋃

t∈T Gt| =
∨B∗

t∈T |Gt| (3.3.5)

for every indexed set {Gt}t∈T of open sets of X.
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Let G0 be the union of all set Gt. Since Gt ⊂ G0, we have

|Gt| ≤ |G0| for every t ∈ T.

On the other hand, suppose that |G| ∈ B∗ (G is open) is an element in B∗

such that

|Gt| ≤ |G| for every t ∈ T.

Since |Gt − G| = |Gt| − |G| = 0B∗ , the set Gt − G is open and of the first

category, thus it is empty. i.e.

Gt ⊂ G for every t ∈ T.

Hence G0 ⊂ G = G ∪ (G−G) and consequently

|G0| ≤ |G| = |G| ∨ |G−G|.

Since G−G is nowhere dense, |G−G| = 0B∗ and consequently

|G0| ≤ |G|

which completes the proof of equation (3.3.5). Since every index set of ele-

ments of B∗ can be represented in the form {|Gt|}t∈T , where the sets Gt are

open, it follows from (3.3.5) that its join exists, i.e. B∗ is complete.

Suppose that the hypothesis of (3.3.3) holds. We have

h(a) = (h(a)−
⋃
t∈T

h(at)) ∪
⋃
t∈T

h(at).

By Proposition 3.3.3, the element |h(a)−
⋃

t∈T h(at)| is zero of B∗. Hence

h∗(a) = |h(a)| = |
⋃

t∈T h(at)| =
∨B∗

t∈T |h(at)| =
∨B∗

t∈T h
∗(at)

on account of (3.3.5).

(3.3.4) follows from (3.3.3) and De Morgan laws.

3.4 Completion of Heyting algebra

3.4.1 Topological Boolean algebra

DEFINITION 3.4.1. 　An unary operator ◦ on a Boolean algebra

B = 〈B,∧,∨,¬, 0, 1〉

is called an interior operator if the followings are satisfied for a, b ∈ B.
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I1 (a ∧ c)◦ = a◦ ∧ c◦

I2 a◦ ≤ a

I3 a◦◦ = a◦

I4 1◦ = 1

a◦ is called the interior of a. Boolean algebra with interior operation is called

a topological Boolean algebra. An element a of a topological Boolean

algebra such that a = a◦ is called an open element. The set of all open

elements of an topological Boolean algebra B is written as O(B).

O(B)
def
= {a ∈ B | a = a◦}

PROPOSITION 3.4.1. In a topological Boolean algebra B = 〈B,∧,∨,¬, 0, 1〉

(1) 0, 1 ∈ O(B)

(2) If a, b ∈ O(B), then a ∧ b ∈ O(B) and a ∨ b ∈ O(B).

3.4.2 Embedding of Heyting algebra into a Boolean

algebra

In this section, let L be a Heyting algebra. Let X be the Stone space of L
and h be the Stone isomorphism:

X
def
= {x ⊂ L | x is a prime ideal of L},

h : L → P(X), where h(a) = {x ∈ X | a 6∈ x},

〈h(L),⊂,∩,∪,⊃〉 is a Heyting algebra which is a sublattice of P(X), where

h(a ⊃ b) =
⋃
{h(c) | c ∈ L, a ∧ c ≤ b}.

As seen in Theorem 3.2.3, we have

PROPOSITION 3.4.2. For a, b, c ∈ L,

(1) h(a) = h(b)⇐⇒ a = b,
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(2) h(a) ∩ h(b) = h(a ∧ b), h(a) ∪ h(b) = h(a ∨ b),

(3) h(0) = ∅, h(1) = X,

(4) h(c) ⊂ h(a ⊃ b)⇐⇒ h(c) ∩ h(a) ⊂ h(b),

(5) h(a ⊃ b) ⊂ (X − h(a)) ∪ h(b)

Let

H
def
= h(L) = {h(a) | a ∈ L}

h(a) ∧H h(b)
def
= h(a) ∩ h(b)

h(a) ∨H h(b)
def
= h(a) ∪ h(b)

h(a) ⊃H h(b)
def
= h(a ⊃ b)

0H
def
= ∅, 1H

def
= X

By Proposotion 3.4.2, 〈H, ∧H , ∨H ,⊃H , 0H , 1H〉 is a Heyting algebra which

is isomorphic to L.
Let B be the Boolean subalgebra of P(X) generated by H, i.e.

B = {(a1 ⊃B b1) ∩ · · · ∩ (an ⊃B bn) | a1, · · · , an, b1, · · · , bn ∈ H},

where (ai ⊃B bi) = (X − ai) ∪ bi, and 0B = ∅, 1B = X. We write (a1 ⊃B

b1) ∩ · · · ∩ (an ⊃B bn) as
⋂n

i=1(ai ⊃B bi).

H ⊂ B ⊂ P(X)

Now we define an interior a◦ of a∈B.

LEMMA 3.4.3. If ai, bi ∈ H for i = 1, 2, · · · , n, then
⋂n

i=1(ai ⊃H bi) ∈ H,

where
⋂n

i=1(ai ⊃H bi) = (a1 ⊃H b1) ∩ · · · ∩ (an ⊃H bn), and⋂n
i=1(ai ⊃B bi) =

⋂n
i=1(ci ⊃B di) =⇒

⋂n
i=1(ai ⊃H bi) =

⋂n
i=1(ai ⊃H bi)

for ai, bi, ci, di ∈ H (i = 1, 2, · · · , n).

DEFINITION 3.4.2 (Funayama [9]). By Lemma 3.4.2, if element a =
⋂n

i=1(ai ⊃B

bi) ∈ B ⊂ P(X), then element
⋂n

i=1(ai ⊃H bi) of H is uniquely determined.

So we define a operation ◦ on B by(⋂n
i=1(ai ⊃B bi)

)◦ def
=

⋂n
i=1(ai ⊃H bi).
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⋂n
i=1(ai ⊃H bi) is the infimum of {(ai ⊃H bi) | i = 1, · · · , n} in H, and⋂n
i=1(ai ⊃B bi) is the infimum of {(ai ⊃B bi) | i = 1, · · · , n} in B.∧H

i (ai ⊃H bi) =
⋂n

i=1(ai ⊃H bi) and
∧B

i (ai ⊃B bi) =
⋂n

i=1(ai ⊃B bi).

Then we have

THEOREM 3.4.4. If L is a Heyting algebra, then there exists a topological

Boolean algebra 〈B, ◦〉 such that L is isomorphic to H = O(B), i.e. For

a, c ∈ B,

I1 (a ∩ c)◦ = a◦ ∩ c◦

I2 a◦ ≤ a

I3 a ∈ H =⇒ a◦ = a

I4 1◦ = 1

Proof. I1 if a =
⋂m

i=1(ai ⊃B bi) and c =
⋂n

j=1(cj ⊃B dj), then

(a ∩ c)◦ =
(⋂m

i=1(ai ⊃B bi) ∩
⋂n

j=1(cj ⊃B dj)
)◦

=
(⋂m

i=1(ai ⊃H bi)
)
∩
(⋂n

j=1(cj ⊃H dj)
)

= a◦ ∩ c◦

I2 a◦ = (1 ⊃B a)◦ = (1 ⊃H a) ≤ (1 ⊃B a) = a

I3 Since a◦ ∈ H, a◦◦ = (1 ⊃H a◦) = a◦

I4 1◦ = (1 ⊃B 1)◦ = (1 ⊃H 1) = 1

Therefore, ◦ is an interior operation, B is a topological Boolean algebra

and H = O(B) ⊂ B.

LEMMA 3.4.5. For {ai}i∈I ⊂ H,

(1) if
∨B

i∈I ai exists in B, then
∨H

i∈I ai exists and
∨H

i∈I ai =
∨B

i∈I ai.

(2) if
∧B

i∈I ai exists in B, then
∧H

i∈I ai exists and
∧H

i∈I ai = (
∧B

i∈I ai)
◦.
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Proof. (1) Assume
∨B

i∈I ai exists in B. Then ai ≤ (
∨B

i∈I ai)
◦ for ∀i ∈ I,

and for c ∈ H, ∀i(ai ≤ c) =⇒
∨B

i∈I ai ≤ c.

∴
∨H

i∈I ai =
∨B

i∈I ai.

(2) Assume
∧B

i∈I ai exists in B. Then
∧B

i∈I ai ≤ ai for ∀i ∈ I.

If c ∈ H and c ≤ ai for ∀i ∈ I, then c ≤
∧B

i∈I ai. Since c ∈ H,

c ≤ (
∧B

i∈I ai)
◦.

∴ (
∧B

i∈I ai)
◦ =

∨H
i∈I ai.

By the Theorem 3.3.6, The minimal extension B∗ of the Boolean algebra

B is complete, and the canonical isomorphism h∗ preserves all infinite joins

and meets. That is,

B∗ = B/∆, where

X is the Stone space of Boolean algebra B;

B is the class of all subset of X having the Baire property, which is a field

of subset of the space X;

∆ is the ideal of all sets ⊂ X of the first category.

The mapping

h∗(a) = |h(a)| ∈ B∗

is an embedding of Boolean algebra B into complete Boolean algebra B∗,

where h is the Stone isomorphism of B onto the Stone field h(B) of all both

open and closed subset of X.

Then we have

if a, b ∈ B, then a ≤ b ⇐⇒ h∗(a) ≤ h∗(b), (3.4.1)

if a =
∨B

t∈T at, then h∗(a) =
∨B∗

t∈T h
∗(at), (3.4.2)

if a =
∧B

t∈T at, then h∗(a) =
∧B∗

t∈T h
∗(at), (3.4.3)
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DEFINITION 3.4.3. For {ai}i∈I ∈ B,

H∗ = {
∨B∗

h∗(a∗i ) | ai ∈ H}
b◦

∗
=

∨B∗
{h∗(a) ≤ b | a ∈ H} for b ∈ B∗

O(B∗) = {b◦∗ | b ∈ B∗}

Then we have

LEMMA 3.4.6. (1) h∗(b◦) = h∗(b)◦
∗
for b ∈ B

(2) (a ∩ c)◦∗ = a◦
∗ ∩ c◦∗ for a, b ∈ B

(3) a◦
∗ ≤ a for b ∈ B

(4) a ∈ H =⇒ a◦
∗
= a for b ∈ B

(5) 1◦
∗
= 1

As a result, we have the following theorem.

THEOREM 3.4.7. Heyting algebra can be embedded into a complete Heyting

algebra, i.e. there exist a complete Heyting algebra H∗ and embedding h∗ :

H → H∗.

3.5 Ortholattice

DEFINITION 3.5.1. A lattice with operation ⊥ is called an ortholattice if

Axiom C is satisfied:

Axiom C

(C1) a⊥⊥ = a,

(C2) a ∨ a⊥ = 1, a ∧ a⊥ = 0,

(C3) a ≤ b =⇒ b⊥ ≤ a⊥.
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3.5.1 McNeille’s completion of orthlattice

DEFINITION 3.5.2. If α⊂Q, then α⊥ is the set of all elements of Q which

is orthogonal to α.

α⊥ def
= {ξ∈Q | ∀a∈α(ξ ≤ a⊥)}.

LEMMA 3.5.1. Let α, β⊂Q.

(1) 0 ∈ α⊥ ;

(2) If α⊂β, then β⊥⊂α⊥ ;

(3) α⊂α⊥⊥ and α⊥ = α⊥⊥⊥ ;

(4) α ∩ α⊥ = {0} ;

(5) (α ∪ α⊥)⊥⊥ = Q.

DEFINITION 3.5.3. The set of all subsets of Q such that α = α⊥⊥ is

denoted by L⊥⊥(Q).

L⊥⊥(Q)
def
= {α ⊂ Q | α = α⊥⊥}.

LEMMA 3.5.2. If a ∈ Q, then

(1) {a}⊥⊥ = {ξ ∈ Q | ξ ≤ a}.

(2) {a}⊥ = {a⊥}⊥⊥.

Proof. Using Lemma 3.5.1,

(1) ξ∈{a}⊥⊥ ⇐⇒ ∀η ∈ {a}⊥(ξ ≤ η⊥), where a⊥∈{a}⊥,

∴ ξ∈{a}⊥⊥ =⇒ ξ ≤ a⊥⊥ = a.

ξ ≤ a ∧ η∈{a}⊥ =⇒ a⊥ ≤ ξ⊥ ∧ η ≤ a⊥

=⇒ ξ ≤ η⊥

∴ ξ ≤ a =⇒ ξ∈{a}⊥⊥

(2) ξ ∈ {a}⊥ ⇐⇒ ξ ≤ a⊥. ∴ {a}⊥ = {a⊥}⊥⊥
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COROLLARY 3.5.3. Q is embedded into L⊥⊥(Q) by a 7→ {a}⊥⊥ .

LEMMA 3.5.4. For α, β ⊂ Q,

β⊥⊥ ⊂ α⊥⊥ ⇐⇒ ∀c∈L
(
α⊂{c}⊥⊥ ⇒ β⊂{c}⊥⊥

)
.

Proof.(
β⊥⊥ ⊂ α⊥⊥

)
∧
(
α ⊂ {c}⊥⊥

)
=⇒ β ⊂ β⊥⊥ ⊂ α⊥⊥ ⊂ {c}⊥⊥

∴ β⊥⊥ ⊂ α⊥⊥ =⇒ ∀c∈L
(
α⊂{c}⊥⊥ =⇒ β⊂{c}⊥⊥

)

∀c∈L
(
α⊂{c}⊥⊥ =⇒ β⊂{c}⊥⊥

)
∧
(
x∈α⊥

)
=⇒ ∀y∈α(x ≤ y⊥)

=⇒ ∀y∈α(y ≤ x⊥)

=⇒ ∀z∈β(z ≤ x⊥)

=⇒ ∀z∈β(x ≤ z⊥)

=⇒ x∈β⊥

∴ ∀c∈L
(
α⊂{c}⊥⊥ =⇒ β⊂{c}⊥⊥

)
=⇒ α⊥ ⊂ β⊥

∴ ∀c∈L
(
α⊂{c}⊥⊥ =⇒ β⊂{c}⊥⊥

)
=⇒ β⊥⊥ ⊂ α⊥⊥

LEMMA 3.5.5. If {ai}i⊂Q and (
∨

i ai)∈Q, then {
∨

i ai}⊥⊥ = (
⋃

i{ai}⊥⊥)⊥⊥.

Proof. {ai}⊥⊥⊂{
∨

i ai}⊥⊥ for all i. Hence, (
⋃

i{ai}⊥⊥)⊥⊥ ⊂ {
∨

i ai}⊥⊥.

If
⋃

i{ai}⊥⊥⊂{c}⊥⊥, then
∨

i ai ≤ c. Hence, {
∨

i ai}⊥⊥⊂{c}⊥⊥. It follows

by Theorem 3.5.4 that

(
⋃

i {ai}⊥⊥)⊥⊥ = {
∨

i ai}⊥⊥.

It follows that

THEOREM 3.5.6 (McNeille[5]. cf. Titani-Kodera-Aoyama[14]; ). L⊥⊥(Q)

is a complete ortholattice, in which Q is embedded, where

α ≤ β ⇐⇒ α ⊂ β,
∨

i αi = (
⋃

i αi)
⊥⊥,

∧
i αi =

⋂
i αi.
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3.6 Orthomodular lattices

DEFINITION 3.6.1. Elements a, b of an ortholattice L are said to be com-

patible, in symbols a |◦ b , if the sublattice generated by {a, a⊥, b, b⊥} is dis-

tributive.

Let L be an ortholattice. “ b∈L is compatible with a subset A⊂L”,
in symbols b |◦A , means that “b is compatible with all elements of A”:

b |◦A
def⇐⇒ ∀a∈A (b |◦ a).

DEFINITION 3.6.2. An ortholattice L is said to be orthomodular if :

Axiom P a, b∈L, a ≤ b =⇒ a |◦ b.

Boolean algebra is an orthomodular lattice where the orthocomplemen-

tation ⊥ is the negation ¬.

THEOREM 3.6.1 (cf. Piron [6]). For elements a, b of an orthomodular

lattice, the following conditions are equivalent.

(1) a, b are compatible

(2) (a ∧ b) ∨ (a⊥ ∧ b) ∨ (a ∧ b⊥) ∨ (a⊥ ∧ b⊥) = 1

(3) (a ∧ b) ∨ (a⊥ ∧ b) = b

(4) (a ∨ b⊥) ∧ b = a ∧ b

THEOREM 3.6.2 (cf. Piron [6]). If L is an orthomodular lattice, and if

a∈L, C⊂L,
∨
C ∈ L, a |◦C, then∨

c∈C(c ∧ a) ∈ L and
∨

c∈C(a ∧ c) = a ∧ (
∨
C).

If a∈L, C⊂L,
∧
C ∈ L and a |◦C, then∧

c∈C(c ∨ a) ∈ L and
∧

c∈C(a ∨ c) = a ∨ (
∧
C).

THEOREM 3.6.3 (cf. Piron [6]). If L is an orthomodular lattice, and if

a∈L , C⊂L,
∨
C ∈ L, a |◦C, then a |◦

∨
C; and if

∧
C ∈ L, then a |◦

∧
C.
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Clearly we have:

THEOREM 3.6.4. If a, b, ai, bi (i∈I) are elements of an orthomodular lattice

L such that
∨

i∈I ai ,
∧

i∈I ai ∈ L , then

(
∨

i∈I ai)
⊥ =

∧
i∈I a

⊥
i ; (

∧
i∈I ai)

⊥ =
∨

i∈I a
⊥
i .

Example 3.6.1. Closed subspaces ( or equivalently projections ) of a Hilbert

space H form a complete orthomodular lattice with respect to inclusion as the

order relation:

Q(H) def
= {a ⊂ H | a is a closed subspace of H},

a ≤ b
def⇐⇒ a⊂b, a⊥

def
= {x | ∀y ∈ a(x ⊥ y)}, for a, b∈Q(H).

Q(H) is isomorphic to Q(H):

Q(H) def
= {p : H → H | a projection of H},

p ≤ q
def⇐⇒ R(p)⊂R(q), p⊥

def
= R(p) ⊥ R(q), for p, q∈Q(H),

where R(p) denotes the range of projection p.

3.7 Implication and globalization

DEFINITION 3.7.1. Implication is an operation ⊃ on a lattice L such that

(1) a ⊃ b = 1 ⇐⇒ a ≤ b

(2) c ≤ (a ⊃ b) ⇐⇒ c ∧ a ≤ b for every c.

DEFINITION 3.7.2 (Takeuti [12]). Takeuti defined operation →T on an

orthomodular lattice :

(a→T b)
def
= a⊥ ∨ (a ∧ b)

in order to develop a quantum set theory.
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THEOREM 3.7.1. Operation →T is an implication on the complete ortho-

modular lattice.

Proof. Since a |◦a
⊥ and a |◦(a ∧ b),

a ∧
(
a⊥ ∨ (a ∧ b)

)
= (a ∧ a⊥) ∨ (a ∧ b) ≤ b

∴ a ∧ (a→T b) ≤ b,

and then

a ≤ b⇐⇒ (a→T b) = 1.

Therefore, →T is an implication.

THEOREM 3.7.2. In an orthomodular lattice, if a |◦ c, then

c ≤ (a→T b) ⇐⇒ a ∧ c ≤ b ∧ c.

In this sense, →T is considered as a local implication.

Proof. Assume a |◦c. Then c = (a⊥ ∧ c) ∨ (a ∧ c). Since a |◦a
⊥ and a |◦(a ∧ b),

c ≤ (a→T b) =⇒ a ∧ c ≤ a ∧ (a⊥ ∨ (a ∧ b))
=⇒ a ∧ c ≤ (a ∧ a⊥) ∨ (a ∧ b)) ≤ b

a ∧ c ≤ b =⇒ a ∧ c ≤ a ∧ b
=⇒ c = (a⊥ ∧ c) ∨ (a ∧ c) ≤ a⊥ ∨ (a ∧ b)

However, Takeuti’s implication →T is not enough to develop a set theory,

because it is not transitive:

(a→T b) ∧ (b→T c) ≰ (a→T c).

The transitivity of the corresponding logical implication is indispensable

for the development of set theory, since equality axioms of set theory which

depend on the transitivity of implication are fundamental.
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3.7.1 Basic implication and globalization on a lattice

Let L be a lattice including 2 = {1, 0}, where 1 is the greatest element and

0 is the least element of L.
An operation → on a lattice is called the basic implication if

(a→ b) =
∨
{c∈2 | c ∧ a ≤ b} =

{
1 if a ⩽ b

0 otherwise.

→ is an implication (cf. Definition 3.7.1), and the corresponding negation ¬
is defined by

¬a def
= (a→ 0).

Then we have

THEOREM 3.7.3. For all elements a, b of a complete lattice L,

I1 : (a→ b) = 1 iff a ⩽ b

I2 : a ∧ (a→ b) ⩽ b.

N1 : ¬0 = 1, ¬1 = 0

N2 : a ∧ ¬a = 0

N3 : a ⩽ ¬¬a

N4 : ¬(a ∨ b) = ¬a ∧ ¬b

DEFINITION 3.7.3. The formula (1 → a) for a∈L is denoted by 2a, that

is,

2a
def
= (1→ a) =

{
1 if a = 1

0 if a 6= 1.

This operator 2 is called globalization.

THEOREM 3.7.4. For all elements a, b, ak, bk, ck (k∈K) of L,

G1 : 2a ⩽ a

G2 : ¬a = 2¬a
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G3 :
∧

k 2ak ⩽ 2
∧

k ak

G4 : If 2a ⩽ b, then 2a ⩽ 2b

G5 : 2a∧
∨

k bk =
∨

k(2a∧ bk); a∧
∨

k 2bk =
∨

k(a∧2bk), if
∨

k bk exists ;

2a ∨
∧

k bk =
∧

k(2a ∨ bk) ; a ∨
∧

k 2bk =
∧

k(a ∨2bk), if
∧

k bk exists

G6 : 2a ∨ ¬2a = 1

G7 : If a ∧2c ⩽ b, then ¬b ∧2c ⩽ ¬a.

G8 : (a→ b) =
∨
{c∈L | c = 2c, a ∧ c ⩽ b}

The following theorem follows from I1–I2, N1–N4 and G1–G8.

THEOREM 3.7.5. Let a, b ∈ L and {ak}k∈K, {bk}k∈K ⊂ L. Then

(1) If a ⩽ b then 2a ⩽ 2b

(2) 2(
∧

k ak) =
∧

k 2ak

(3) 2a = 22a

(4)
∧

k 2ak = 2
∧

k 2ak

(5)
∨

k 2ak = 2
∨

k 2ak

(6) 2(a→ b) = (a→ b).

(7) (a→ b) ⩽ (¬b→ ¬a)

(8) If 2a ∧ b ⩽ c then 2a ⩽ (b→ c)

We denote ¬2¬ by ♢. Then we have

THEOREM 3.7.6. Let a, b ∈ L and {ak}k∈K⊂L.

(1) a ⩽ ♢a

(2) If a ⩽ 2b then ♢a ⩽ 2b

(3) ♢
∨

k ak =
∨

k ♢ak
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(4) ♢(2a ∧ b) ⩽ 2a ∧ ♢b

THEOREM 3.7.7. If an implication ⊃ is defined on a lattice, then the basic

implication → is defined by

(a→ b)
def
= □(a⊃b).

Conversely, the globalization □ is defined in terms of the basic implication

→:

□a def
=

(
(a→ a)→ a

)
.

Furthermore, ♢ is defined by ♢a def
= (□a⊥)⊥.

Clearly we have:

THEOREM 3.7.8. If a, b, ai, bi are elements of an orthomodular lattice L,
then

(1) (
∨

i ai)
⊥ =

∧
i a

⊥
i ;

(2) (
∧

i ai)
⊥ =

∨
i a

⊥
i ;

(3)
∨

i(□ai) = □
∨

i □ai ;

(4)
∧

i □ai = □
∧

i □ai ;

(5) (□a)⊥ = □
(
(□a)⊥

)
;

(6) a |◦□b.

For any complete lattice, basic implication → is defined by

(a→ b)
def
=

∨
{x∈2 | a ∧ x ≤ b } =

1, if a ≤ b,

0, otherwise,

and ¬, □, ♢ are defined by

¬a def
= (a→ 0) =

∨
{x∈2 | a ∧ x ≤ 0} =

1, if a = 0,

0, otherwise.
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□a def
= ((a→ a)→ a) = (1→ a) =

1 if a = 1

0 otherwise.

♢a def
= ¬□¬a =

1 if a 6= 0

0 otherwise.

Obviously we have

THEOREM 3.7.9. □ is a modal operator on a lattice, satisfying

(1) □a ≤ a;

(2) □□a = □a;

(3) a ≤ b⇒ □a ≤ □b.

(4)
∨

i(□ai) = □
∨

i □ai ;

(5)
∧

i □ai = □
∧

i □ai ;

THEOREM 3.7.10. If a lattice L is an ortholattice, then

(1) □a ∨ (□a)⊥ = 1, □a ∧ (□a)⊥ = 0;

(2) (□a)⊥ = □
(
(□a)⊥

)
;

(3) a |◦□b, where a |◦ c
def⇐⇒ a = (a ∧ c) ∨ (a ∧ c⊥).

DEFINITION 3.7.4. An element a of a lattice is said to be global if

a = □a.

Example 3.7.1. If L is a complete Heyting algebra, and operation →I is

defined by

a→I b
def
=

∨
{c ∈ L | c ∧ a ≤ b},

then →I is an implication and the basic implication → is defined using □ :

a→ b
def
= □(a→I b).
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Example 3.7.2. If L is a complete orthomodular lattice, then the opera-

tion →T defined by a→T b = a⊥ ∨ (a ∧ b) is an implication. Thus, a basic

implication → and ¬ on L are defined

(a→ b)
def
= □(a→T b), ¬a def

= (a→ 0).

As immediate consequents of the definitions, we have:

THEOREM 3.7.11. In a complete orthomodular lattice,

(1) ¬0 = 1 ; ¬1 = 0

(2) a ∧ ¬a = 0 ; a ≤ ¬¬a

(3) (a→ b) ⩽ (¬b→ ¬a)

(4) ¬(a ∨ b) = ¬a ∧ ¬b ; ¬a ∨ ¬b ≤ ¬(a ∧ b)

(5) □□a = □a

(6) If 2a ⩽ b, then 2a ⩽ 2b

(7) a ⩽ ♢a

(8) If a ∧2c ⩽ b, then ¬b ∧2c ⩽ ¬a.

(9) (a→ b) = 2(a→T b).

Especially, on an orthomodular lattice Q,

(1) (a→ b) =
∨
{c∈Q | c = 2c, a ∧ c ⩽ b}

(2) (a ∨ b)⊥ = a⊥ ∧ b⊥ ; (a ∧ b)⊥ = a⊥ ∨ b⊥

(3) (□a)⊥ = ¬(□a)

(4) If 2a ∧ b ⩽ c then 2a ⩽ (b→T c)

(5) ((□a ∧ b)→T c) = (□a→T(b→T c))

(6) ♢
∨

k ak =
∨

k ♢ak

(7) ♢(2a ∧ b) = 2a ∧ ♢b
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3.7.2 Sheaf of complete Boolean algebra

DEFINITION 3.7.5. Let X be a topological space and O(X) be the set of

all open sets of X. Let each U ∈ O(X) associate with a complete Boolean

algebra F (U), and for U, V ∈O(X) such that U ⊂ V ,

rU,V : F (V )→ F (U) be an homomorphism.

Then the pair 〈F, r〉 is called a pre-sheaf of complete Boolean algebra

over X, if

(1) F (∅) = 0, rU,U = 1 (identity),

(2) If U, V,W ∈O(X) and U⊂V ⊂W , then rU,W = rU,V ◦ rV,W .

Pre-sheaf 〈F, r〉 is called a sheaf of complete Boolean algebra over

X, if the following condition is satisfied.

(3) If U ∈O(X) , {Ui}i∈I ⊂ O(X) and U =
⋃

i Ui and further if

∀i
(
fi∈F (Ui)

)
∧ ∀i, j∈I

(
rUi∩Uj ,Ui

(fi) = rUi∩Uj ,Uj
(fj)

)
,

then there exists a unique f ∈F (U) such that ∀i∈I
(
rUi,U(f) = fi

)
.

DEFINITION 3.7.6. Let

• 〈F, r〉 be a sheaf of complete Boolean algebra over X

• {Ui : i ∈ I} ⊂ O(X) be a directed system of neighbourhood of x, such

that

i ≤ j =⇒ Uj ⊂ Ui and rUj ,Ui

(
f(Ui)

)
= f(Uj)

• f(x) be the direct limit:

f(x)
def
= lim−→ f(Ui).

Bx
def
= {f(x) | ∃U ∈ O(X)(f ∈ F (U) ∧ x∈U)}.

Then Bx is a complete Boolean algebra called a stalk at x.
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Example 3.7.3 (Sheaf representation of Q(H)). Q(H) is the complete or-

thomodular lattice consisting of closed subspaces (or projections) of a Hilbert

space H ( cf. Example 3.6.1), where the inner product is denoted by ( , ).

Let

{e⃗j}j∈J where J = {1, 2, · · · }

be a countable orthonormal basis and ej be the subspace of H spanned by e⃗j:

ej = {ae⃗j | a ∈ C}.

For each K⊂J , the supremum
∨

j∈K ej of {ej}j∈K in Q(H) is the subspace
of H spanned by {e⃗j}j∈K:∨

j∈K ej := {
∑

j∈K aj e⃗j | {aj}j∈K ⊂ C}.

A subset B of Q(H) defined by

B = {
∨

j∈K ej | K ⊂ J}

is a sublattice of Q(H), which is a complete Boolean sub-algebra isomorphic

to the power set P(J) of J .

〈B,
∧
,
∨
, ⊥〉 ∼= 〈P(J),

⋂
,
⋃
, c 〉

A linear operator σ : H → H is said to be unitary if

(σ(x⃗), σ(y⃗)) = (x⃗, y⃗), for all x⃗, y⃗ ∈ H.

Unitary operator induces an isomorphism σ :Q(H)→Q(H) preserving
∧
,
∨

and ⊥. Let U be a topological space consisting of all unitary operators on H:

U = {σ :H→H | unitary },

and let O(U) be the set of open sets.

For each σ ∈ U , {σ(ej})j∈J , where σ(ej) = {σ(x⃗) | x⃗ ∈ ej}, is a basis

of Q(H), and
∨

j∈K σ(ej) with K ⊂ J is an element of Q(H) spanned by

{σ(e⃗j)}j∈K. Let
σ(B)

def
= {

∨
j∈K σ(ej) | K⊂J}.
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σ(B) is a complete Boolean algebra isomorphic to B.

σ(B) is a (
∨
, ⊥)-sublattice of Q(H) and

Q(H) =
⋃

σ∈U σ(B).

For each U ∈ O(U),

F (U) = {
∨
j∈K

σ(ej) | K⊂J, σ ∈ U}

Then F (U) is a Boolean algebra.

For U, V ∈O(X) such that U⊂V , let rU,V (F (V )) be the set of restriction of

elements of F (V ) on U .

rU,V (F (V )) = F (U) = {
∨
j∈K

σ(ej) | K ⊂ J, σ ∈ U}.

Then 〈F, r〉 is a sheaf of complete Boolean algebra over U .

UNDER PEER REVIEW



Chapter 4

Classical set theory

4.1 Formal system of set theory

Set theory ZFC is an axiomatic set theory known as Zelmelo-Freankel axioms

with axiom of choice, based on the first-ordered logic.

We first introduce Gentzen’s first-order logic, known as classical logic LK,

and intuitionistic logic LJ.

4.1.1 Gentzen’s formal system of logic

Alphabet of LK and LJ

(1) Individual constants : c, c0, c1, c2, · · · ,

(2) Individual free variables : a, a0, a1, a2, · · · ,

(3) Individual bound variables : x, x0, x1, x2, · · · ,

(4) Predicate constants with n arguments : pn, pn0 , p
n
1 , p

n
2 , · · · , (n ≥ 0),

(5) Logical symbols : ⊃ (implies), ∧ (and), ∨ (or), ¬ (not), ∀ (for all), ∃ (exists),

(6) Auxiliary symbols : (, ) and commas.

50
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Terms

Individual constants and free variables are called terms, and they are de-

noted by t1, t2, · · · .

Formulas

If pni is a predicate constant with n argument places and t1, · · · , tn are terms,

then pni (ti1 , · · · , tin) is called an atomic formula. Formulas are constructed

from the atomic formulas using logical symbols:

(1) The atomic formulas are formulas.

(2) If φ and ψ are formulas, then (φ ∧ ψ), (φ ∧ ψ) are formulas.

(3) If φ(a) is a formula with free variable a, and x is a bound variable

which does not occur in φ(a), then ∀xφ(x) and ∃xφ(x) are formulas,

where φ(x) is obtained from φ(a) by substituting x for all a in φ(a).

A formula without any occurrence of free variables is called a sentence. A

formula which appears in the construction of a formula is called a subfor-

mula:

(1) A formula φ is a subformula of φ itself.

(2) formulas φ and ψ are subformulas of (φ ∧ ψ) and (φ ∧ ψ).

(3) φ(a) is a subformula of ∀xφ(x) and ∃xφ(x).

(4) If φ is a subformula of ψ, then a subformula of φ is a subformula of ψ.

Formulas are denoted by φ, ψ, · · · ; φ(a), ψ(a), · · · .

Sequents

A formal expressions of the form

φ1, · · · , φm ⇒ ψ1, · · · , ψn,

where φ1, · · · , φm;ψ1, · · · , ψn are formulas, is called a sequent. The se-

quence φ1, · · · , φm is called the antecedent, and the sequence ψ1, · · · , ψn

the succedent of the sequent.
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Finite sequences of formulas are denoted by Γ, ∆, · · · . So sequents are

written as the form Γ⇒ ∆.

An inference is an expression of the form

S1

S
or

S1 S2

S
,

where S1, S2 and S are sequents. S1 and S2 are called the upper sequents

and S is called the lower sequent of the inference.

4.1.2 Inference rules of LK and LJ

The difference between the classical logic LK and intuitionistic logic LJ,

is secured by the intuitionistic restriction stated for two of the postulates:

introduction of thinning and negation ¬.
A proof is constructed according to the following rules, which regulate

the logical symboles ⊃, ∧, ∨, ∀ and ∃.

Begining sequents: Logical axiom is a sequent of the form φ ⇒ φ .

Every proof in LK and LJ starts with logical axiom(s).

Structural rules :

Thinning :
Γ⇒ ∆

Γ⇒ ∆, φ

where ∆ is empty for

the intuitionistic logic

Γ⇒ ∆

φ,Γ⇒ ∆

Contraction :
φ, φ,Γ⇒ ∆

φ,Γ⇒ ∆

Γ⇒ ∆, φ, φ

Γ⇒ ∆, φ

Interchange :
Γ, φ, ψ,Π⇒ ∆

Γ, ψ, φ,Π⇒ ∆

Γ⇒ ∆, φ, ψ,Λ

Γ⇒ ∆, ψ, φ,Λ

Cut :
Γ⇒ ∆, φ φ,Π⇒ Λ

Γ,Π⇒ ∆,Λ
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Logical rules:

⊃ :
Γ⇒ ∆, φ ψ,Π⇒ Λ

φ ⊃ ψ,Γ,Π⇒ ∆,Λ

φ,Γ⇒ ∆, ψ

Γ⇒ ∆, φ ⊃ ψ

∧ :
φ,Γ⇒ ∆

φ ∧ ψ,Γ⇒ ∆

Γ⇒ ∆, φ Γ⇒ ∆, ψ

Γ⇒ ∆, φ ∧ ψ

ψ,Γ⇒ ∆

φ ∧ ψ,Γ⇒ ∆

∨ :
φ,Γ⇒ ∆ ψ,Γ⇒ ∆

φ ∨ ψ,Γ⇒ ∆

Γ⇒ ∆, ψ

Γ⇒ ∆, φ ∨ ψ

Γ⇒ ∆, ψ

Γ⇒ ∆, φ ∨ ψ

¬ :
Γ⇒ ∆, φ

¬φ,Γ⇒ ∆

φ,Γ⇒ ∆

Γ⇒ ∆,¬φ
where ∆ is empty for

the intuitionistic logic

∀ : φ(t),Γ⇒ ∆

∀xφ(x),Γ⇒ ∆

where t is any term

Γ⇒ ∆, φ(a)

Γ⇒ ∆, ∀xφ(x)

where a is a free variable which does

not occur in the lower sequent.

∃ : φ(a),Γ⇒ ∆

∃xφ(x),Γ⇒ ∆

where a is a free variable which does

not occur in the lower sequent.

Γ⇒ ∆, φ(t)

Γ⇒ ∆, ∃xφ(x)

where t is any term

DEFINITION 4.1.1. We denote “a sequent Γ⇒ ∆ is provable in LK ” by

LK ` Γ⇒ ∆,
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and denote “a sequent Γ⇒ ∆ is provable in LJ ” by

LJ ` Γ⇒ ∆,

Note that if LJ ` Γ⇒ ∆ then LK ` Γ⇒ ∆.

LJ ` φ ⇔ ψ is an abbreviation of “( LJ ` φ ⇒ ψ) and (LJ ` ψ ⇒ φ )”.

For example, we have following theorems.

THEOREM 4.1.1. For arbitrary formulas φ, ψ, θ,

(1) LJ ` φ ∧ (ψ ∨ ξ) ⇔ (φ ∧ ψ) ∨ (φ ∧ ξ)

(2) LJ ` φ ∨ (ψ ∧ ξ) ⇔ (φ ∨ ψ) ∧ (φ ∨ ξ)

(3) LJ ` φ ∧ ∃xψ(x) ⇔ ∃x(φ ∧ ψ(x))

(4) LJ ` φ ∨ ∀xψ(x) ⇔ ∀x(φ ∨ ψ(x))

Proof. (1)

φ, ψ ⇒ φ ∧ ψ
φ, ψ ⇒ (φ ∧ ψ) ∨ (φ ∧ ξ)

φ, ξ ⇒ φ ∧ ξ
φ, ξ ⇒ (φ ∧ ψ) ∨ (φ ∧ ξ)

φ, (ψ ∨ ξ)⇒ (φ ∧ ψ) ∨ (φ ∧ ξ)
(∨-left)

...

φ ∧ ψ ⇒ φ ∧ (ψ ∨ ξ)

...

φ ∧ ξ ⇒ φ ∧ (ψ ∨ ξ)
(φ ∧ ψ) ∨ (φ ∧ ξ)⇒ φ ∧ (ψ ∨ ξ)

(2) Similar to (1).

(3)
...

φ, ψ(a)⇒ φ ∧ ψ(a)
φ, ψ(a)⇒ ∃x(φ ∧ ψ(x))
φ, ∃xψ(x)⇒ ∃x(φ ∧ ψ(x))
φ ∧ ∃xψ(x)⇒ ∃x(φ ∧ ψ(x))

φ⇒ φ

φ ∧ ψ(a)⇒ φ

...

φ ∧ ψ(a)⇒ ∃xψ(x)
φ ∧ ψ(a)⇒ φ ∧ ∃xψ(x)

∃x(φ ∧ ψ(x))⇒ φ ∧ ∃xψ(x)
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(4)
...

φ ∨ ψ(a)⇒ φ, ψ(a)

∀x(φ ∨ ψ(x))⇒ φ, ψ(a)

∀x(φ ∨ ψ(x))⇒ φ, ∀xψ(x)
∀x(φ ∨ ψ(x))⇒ φ ∨ ∀xψ(x)

φ⇒ φ

φ⇒ φ ∨ ψ(a)

...

∀xψ(x)⇒ φ ∨ ψ(a)
φ ∨ ∀xψ(x)⇒ φ ∨ ψ(a)

φ ∨ ∀xψ(x)⇒ ∀x(φ ∨ ψ(x))

Also we have:

THEOREM 4.1.2. For arbitrary formulas φ, ψ, θ,

(1) LJ ` (φ ∧ ¬φ)⇒ θ,

(2) LK ` θ ⇒ (φ ∨ ¬φ),

(3) LK ` φ⇔ ¬¬φ,

(4) LK ` ¬(φ ∨ ψ)⇔ (¬φ ∧ ¬ψ),

(5) LK ` (¬φ ∨ ¬ψ)⇔ ¬(φ ∧ ψ).

(6) LK ` (φ ⊃ ψ)⇔ ¬φ ∨ ψ

G.Gentzen proved in [3], the following ‘Hauptsatz’ (Cut Elimination The-

orem) for LK, and it follows that LK is consistent.

THEOREM 4.1.3 (Hauptsatz). If a sequent Γ⇒ ∆ is provable in LK, then

Γ⇒ ∆ is provable without using Cut, in LK.

Hauptsatz also holds for LJ.

COROLLARY 4.1.4 (Consistency). Formulas of the form φ ∧ ¬φ, which

represents a contradiction, is not provable in LK.
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4.1.3 Axioms of set theory

Set theory ZFC means the logical system LK with predicate constants ∈
and =, and the following axioms A1-A9,AC by Zermelo and Freankel, where

φ ≡ ψ is an abbreviation of (φ ⊃ ψ) ∧ (ψ ⊃ φ).

A1. Equality ∀u∀v
(
(u=v ∧ φ(u))⊃φ(v)

)
.

A2. Extensionality ∀u, v
(
∀x(x∈u ≡ x∈v)⊃(u=v)

)
.

A3. Pairing ∀u, v∃z
(
∀x(x∈z ≡ (x=u ∨ x=v))

)
.

The set z satisfying ∀x(x∈z ≡ (x=u ∨ x=v)) is denoted by {u, v}.

A4. Union ∀u∃z (∀x(x∈z ≡ ∃y∈u(x∈y))) .

The set z satisfying ∀x(x∈z ≡ ∃y∈u(x∈y)) is denoted by
⋃
u.

A5. Power set ∀u∃z
(
∀x

(
(x∈z) ≡ (x ⊂ u)

))
, where

x⊂u def⇐⇒ ∀y
(
(y∈x)⊃(y∈u)

)
.

The set z satisfying ∀x
(
(x∈z) ≡ (x⊂u)

)
is denoted by P(u).

A6. Infinity ∃u
(
∃x(x∈u) ∧ ∀x∈u∃y∈u(x∈y)

)
.

A7. Separation ∀u∃v∀x
(
(x∈v) ≡ (x∈u ∧ φ(x))

)
.

The set v satisfying ∀x
(
(x∈v) ≡ (x∈u ∧ φ(x))

)
is denoted by

{x∈u | φ(x)}.

A8. Collection ∀u∃v
(
(∀x∈u∃yφ(x, y)) ⊃ ∀x∈u∃y∈vφ(x, y)

)
.

A9. ∈-induction ∀x
(
∀y∈xφ(y))⊃φ(x)

)
⊃∀xφ(x).

AC (Axiom of choice) If u is a set of nonempty sets, there exists a func-

tion f such that for every x ∈ u, f(x) ∈ x.

∀u
((
u 6= ∅ ∧ ∀x∈u(x 6= ∅)

)
⊃∃f⊂(u×

⋃
u)
(
∀x ∈ u(f(x) ∈ x)

))
The Axiom of choice is known to be equivalent to the following Axiom of

Zorn，under the classical logic.
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Zorn (Zorn’s lemma) ∀v
(
Chain(v, u)⊃(

⋃
v ∈ u)

)
⊃∃zMax(z, u), where

Chain(v, u)
def⇐⇒ (v⊂u) ∧ ∀x, y∈v

(
(x⊂y) ∨ (y⊂x)

)
,

Max(z, u)
def⇐⇒ (z ∈ u) ∧ ∀x

((
(x∈u) ∧ (z⊂x)

)
⊃(z = x)

)
.

The entire sets form a universe of set theory. Since axioms A1, · · · , A9, AC

are true in the universe V (p.78), every formula induced from these axioms

by LK is also true. Note that ∀x
(
(x∈u)⊃φ(x)

)
and ∃x

(
(x∈u) ∧ φ(x)

)
are

shorten as ∀x∈uφ(x) and ∃x∈uφ(x), respectively.
LK with the system of axioms {A1, · · · , A9,AC} is called the formal

system of classical set theory and denoted by ZFC; LJ with the axiom

system {A1, · · · , A9,Zorn} is called the formal system of intuitionistic set

theory and denoted by IZFZ.

A sequent Γ⇒ ∆ is said to be provable in ZFC, in symbles

ZFC ` Γ⇒ ∆

if

LK ` (A1, · · · ,A9,AC,Γ)⇒ ∆.

ZFC ` ⇒ φ is shorten as ZFC ` φ. If ZFC is trivial in the context, shorten

as ` φ.
A sequent Γ⇒ ∆ is said to be provable in IZFZ, in symbles

IZFZ ` Γ⇒ ∆

if

LJ ` (A1, · · · ,A9,Zorn,Γ)⇒ ∆.

IZFZ ` ⇒ φ is shorten as IZFZ ` φ.
ZFC is said to be inconsistent if the empty sequent ⇒ is provable

in ZFC, otherwise consistent.

4.2 Construction of mathematics in ZFC

4.2.1 Definition of sets

If φ(x) is a predicate with 1-argument and

ZFC ` ∃! xφ(x) ∧ φ(u), where
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∃! xφ(x) def⇐⇒ ∃xφ(x) ∧ ∀x, y
(
φ(x) ∧ φ(y) ⊃ (x = y)

)
,

then the set of x satisfying φ(x) is defined and denoted by {x | φ(x)}. For

example, pair {u, v} is a set defined by Axiom A3 (Pairing).

{u, v} = {x | x = u ∨ x = v}

4.2.2 Ordered pairs

Let

〈x, y〉 def= {{x}, {x, y}}, where {x} is an abbreviation of {x, x}

．
LEMMA 4.2.1. 〈x, y〉 satisfies

∀u, v
((
〈x, y〉 = 〈u, v〉

)
≡

(
(x = u) ∧ (y = v)

))
(4.2.1)

Proof. 　` (
(x = u)∧ (y = v)

)
⇒

(
〈x, y〉 = 〈u, v〉

)
is obvious. The converse

is proved as follows.

` 〈x, y〉 = 〈u, v〉 ⇒ {x}∈〈u, v〉
⇒ ({x} = {u}) ∨ ({x} = {u, v})
⇒ (x = u) ∨ (x = u = v)

⇒ (x = u)

∴ ` 〈x, y〉 = 〈u, v〉 ⇒ (x = u) ∧
(
{x, y}∈〈u, v〉

)
⇒ (x = u) ∧

(
(y∈{u}) ∨ (y∈{u, v}

)
⇒

(
(x = u) ∧ (y = u)

)
∨

(
(x = u) ∧ (y∈{u, v})

)
⇒ (x = u = y) ∨

(
(x = u) ∧

(
(y = u) ∨ (y = v)

))
⇒ (x = u = y) ∨

(
(x = u) ∧ (y = v)

)
⇒ (x = u = y = v) ∨

(
(x = u) ∧ (y = v)

)
⇒ (x = u) ∧ (y = v)

〈x, y〉 is called an ordered pair and also denoted by (x, y).
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4.2.3 Relations

The set of all ordered pairs of elements of X and Y is denoted by X × Y .

X × Y def
= {〈x, y〉 | x∈X, y∈Y }

A subset of X × Y is called a relation. Especially a subset of X ×X is said

to be a relation on X.

If F ⊂ X × Y , then 〈x, y〉 ∈ F is denoted by F (x, y) or xFy.

Order relation

A relation ≤ on an set X is said to be an order relation on X, if

(1) ∀x ∈ X(x ≤ x) (reflexive)

(2) ∀x, y ∈ X
(
(x ≤ y ∧ y ≤ x) ⊃ (x = y)

)
(antisymmetic)

(3) ∀x, y, z ∈ X
(
(x ≤ y ∧ y ≤ z) ⊃ (x ≤ z)

)
(transitive)

4.2.4 Functions

A relation f ⊂ X×Y is called a function from X to Y , in symbols f : X →
Y , if for each x∈X there exists a unique y such that 〈x, y〉∈f .

(f : X → Y )
def⇐⇒ (f ⊂ X × Y ) ∧ ∀x∈X ∃!y (〈x, y〉∈f), where

∃!y (〈x, y〉∈f) def⇐⇒ ∃y(〈x, y〉∈f)∧∀y, z∈Y
((
〈x, y〉∈f ∧ 〈x, z〉∈f

)
⊃ y = z

)
.

If f is a function, then 〈x, y〉 ∈ f is also denoted by

f(x) = y or f : x 7→ y

4.2.5 Equivalence relation

DEFINITION 4.2.1. A relation ≡ on a set X is called an equivalence

relation if the following conditions are satisfied for x, y, z ∈ X.

(1) ` x ≡ x,

(2) ` x ≡ y ⇒ y ≡ x,
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(3) ` x ≡ y ∧ y ≡ z ⇒ x ≡ z.

The set of elements equivalent to a ∈ X is called an equivalence class

and denoted by |a|.
|a| def= {x ∈ X | x ≡ a}

The set of all equivalence classes is called the quotient and denoted by X/≡.

X/≡ def
= {|x| ⊂ X | x ∈ X}

If A relation R(x1, · · · , xn) on X satisfies

` R(x1, · · · , xn) ∧ ∀i(xi ≡ x′i)⇒ R(x′1, · · · , x′n)

then the relation R(x1, · · · , xn) on X induces a relation on X/≡:

` R(x1, · · · , xn)⇔ R(|x1|, · · · , |xn|).

Similarly, if

` f is a function and

` ∀i(xi ≡ x′i) ⇒ f(x1, · · · , xn) ≡ f(x′1, · · · , x′n),

then a function f on X induces a function on X/ ≡.

4.2.6 Natural numbers

LEMMA 4.2.2. (1) There exists a unique empty set denoted by ∅.

` ∀x(x 6∈ ∅) ∧ ∀y
(
∀x(x 6∈ y)⊃(y = ∅)

)
.

Proof. Existence : By Axiom 6 (Infinity), there exists at least one

set. Say u. By Axiom 7 (Separation), there exists set {x ∈ u | x 6= x},
which has no element. Let

∅ def
= {x ∈ u | x 6= x}.

Uniqueness : ∀v
(
∀x(x 6∈ v)⊃(v = ∅)

)
is obvious.

(2) For a set u, the singleton {u} consisting of only u is defined by

{u} def
= {u, u}.
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(3) The set {u1, · · · , un} consisting of u1, · · · , un is defined by using Axom

4 (Union).

{u1, · · · , un}
def
= {u1} ∪ · · · ∪ {un}.

DEFINITION 4.2.2.

0
def
= ∅

1
def
= {0}

2
def
= 1 ∪ {1} = {0, 1}
...

S(n)
def
= n ∪ {n}

0, 1, 2, · · · , n, · · · are called natural numbers.

THEOREM 4.2.3. The set of all natural numbers, N, is defined so that

` ∀n
(
(n ∈ N) ≡

(
n | n = 0 ∨ ∃m ∈ n(n = S(m))

))
.

Proof. By using A6 (Infinity) , there exists u and x0 such that

(x0∈u) ∧ ∀x(x∈u ⊃ ∃y∈u(x∈y)).

By Axiom 10 (Axiom of choice), there exists a function f : u →
⋃
u such

that

∀x ∈ u(f(x) ∈ x).

Hence, there exist a sequence f(x0), f(f(x0)), f(f(f(x0))), · · · in u. Let

f 1(x0)
def
= f(x0) ∈ u

f 2(x0)
def
= f(f(x0)) ∈ u
...

fn(x0)
def
= f(fn−1(x0)) ∈ u
...

Σ
def
= {x0, f 1(x0), f

2(x0), · · · , fn(x0), · · · },

where Σ is constructed in ZFC as follows.
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By A5 (Power set), there exists the power set P(u) of u, and

{x0, f 1(x0), f
2(x0), · · · , fn(x0)} ∈ P(u).

Using A7 (Separation), let

S(X)
def
= {x0} ∪ {f(t) | t ∈ X},

Σ
def
= {x ∈ P(u) |

(
∃y ∈ x(x = S(y))

)
}.

Now let

φ(x, y)
def
=

(
x = {x0} ∧ y = 0

)
∨
(
x ∈ Σ ∧ y = S

(
φ(x)

))
.

By A8 (Collection), there exists v such that

∀t∈Σ ∃x∈v(x = φ(t)).

Hence, there exists {x ∈ v | ∃t ∈ Σ(x = φ(t))}, and

`
(
(t ∈ Σ) ∧ (x = φ(t))

)
⇔

(
(x ∈ v) ∧

(
x = 0 ∨

(
∃y ∈ x(x = S(y))

))
.

Let

N def
= {x ∈ v | ∃t ∈ Σ(x = φ(t))}.

Then

` n ∈ N ⇔
(
(n = 0) ∨ (∃m ∈ n(n = S(m))

)
.

Also,

` ∀x∈z
(
(0 ∈ z) ∨ ∃y∈z(x = S(y))

)
⇒ (z = N).

DEFINITION 4.2.3. The following P1, · · · , P5 are called Peano’s axioms.

P1 ⇒ 0∈N.

P2 x∈N ⇒ S(x)∈N.

P3 S(x) = S(y) ⇒ x = y.

P4 x∈N ⇒ ¬(S(x) = 0).
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P5
(
0 ∈M ∧ ∀x∈M(S(x)∈M)

)
⇒ N ⊆M .

Peano arithmetics, denoted by PA , is the theory based on LK with Peano’s

axioms.

A theory S is called an extension of PA if every theorem of PA is

provable in S.

THEOREM 4.2.4. ZFC is an extension of PA , i.e.

ZFC ` P1 ∧ · · · ∧ P5

Proof. (1) ZFC ` P1 :

⇒ a∈0 ≡ a∈0

⇒ ∀x(x∈0 ≡ x∈0) i.e. ⇒ 0 = 0

⇒ 0 = 0 ∨ ∃m∈0 (0 = S(m))

⇒ 0 ∈ N

Therefore, ZFC ` 0 ∈ N.

(2) ZFC ` P2 :

If n∈N, then n∈(n ∪ {n}) = S(n).

∴ ∃m∈S(n)(S(m) = S(n)). ∴ S(n)∈N.

LEMMA 4.2.5. ZFC ` (n∈N) ∧ (m∈N) ∧ (m∈n)⇒ (m⊂n).

Proof. Let φ(n) be (n ∈ N) ⊃ ∀m ∈ N(m ∈ n ⊃ m ⊂ n) and use

A9(∈-induction).

(n∈N) ∧ (m∈N) ∧ ∀m∈nφ(m) ∧ (m∈n) ∧ (t∈m)

⇒ ∃x∈n
(
φ(x) ∧ (n = S(x)) ∧ (m∈n) ∧ (t∈m)

)
⇒ ∃x

(
φ(x) ∧ (x∈n) ∧ (m∈x ∨m = x) ∧ (t∈m)

)
⇒ ∃x

(
(x⊂n) ∧ (m∈x ∨m = x) ∧ (t∈m)

)
⇒ t∈n

∴ (n∈N) ∧ (m∈N) ∧ ∀t∈nφ(t) ∧m∈n ⇒ m⊂n
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∴ (n∈N) ∧ ∀m∈nφ(m)⇒ φ(n).

By A9, ∀nφ(n), i.e.

ZFC ` (n,m∈N) ∧ (m∈n)⇒ m⊂n (4.2.2)

(3) ZFC ` P3 :

Proof. If S(m) = S(n) and t∈n, since n∈S(n) = S(m), then n∈m or

n = m.

If n∈m, then n ⊂ m by (4.2.2). Therefore,

(S(n) = S(m)) ∧ (t∈n)⇒ (t∈m).

Similarly,

(S(n) = S(m)) ∧ (t∈m)⇒ (t∈n).

(4) ZFC ` P4 :

Proof.

(n = 0) ∨ ∃m
(
n = S(m)

)
. ∴ ∃x(x∈S(n)).

∴ (n∈N) ∧ (S(n) = 0)⇒ ⊥.

∴ (n∈N)⇒ ¬(S(n) = 0).

(5) ZFC ` P5 :

Proof. Let φ(n) be (n∈N)⊃(n∈M).

(n∈N) ∧ ∀m∈nφ(m) ⇒ ∃x∈M
(
n = S(x)

)
(n∈N) ∧ ∀m∈nφ(m) ⇒ n∈M

∴ ∀m∈nφ(m) ⇒ φ(n)

∴ ZFC `
(
(0 ∈M) ∧ ∀x

(
(x∈M)⊃(S(x)∈M)

))
⊃ (N ⊂M).

By A9, ZFC ` ∀nφ(n).
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COROLLARY 4.2.6. The following inference is valid.

[P5′]
φ(a),Γ⇒ ∆, φ(S(a))

φ(0),Γ⇒ ∆, ∀x∈Nφ(x)
.

4.2.7 Operations on the natural numbers

Sum + and product · are defined as functions on N× N to N, where
+(〈x, y〉) is denoted by x+ y, and ·(〈x, y〉) is denoted by x · y.

+ is defined by　 0 + b = b

S(a) + b = S(a+ b)
(4.2.3)

· is defined by 　 0 · b = 0

S(a) · b = a · b+ b
(4.2.4)

The definability of + and · on N are provable in ZFC, using Peano’s axioms.

The following theorems are provable in ZFC.

THEOREM 4.2.7 (Properties of +).

(1) (a+ b) + c = a+ (b+ c) 　 [associative]

(2) S(a+ b) = a+ S(b)

(3) a+ b = b+ a　 [commutative]

(4) S(a) = a+ 1

(5) a+ b = a+ c ⇒ b = c

(6) a+ b = a ⇒ b = 0

(7) a+ b = 0 ⇒ a = 0 ∧ b = 0

(8) a+ b = 1 ⇒ a = 1 ∨ b = 1
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(9) a 6= b ⇒ ∃x(a = b+ x) ∨ ∃y(b = a+ y)

Proof. (1) Let P (x) be the formula (x+ b)+ c = x+(b+ c), and prove, by

induction,

ZFC ` ⇒ ∀x
(
(x+ b) + c = x+ (b+ c)

)
.

(a) ZFC ` ⇒ P (0), because, (0 + b) + c = b+ c = 0 + (b+ c).

(b) ZFC ` P (x)⇒ P
(
S(x)

)
.

∵)
(
S(x) + b

)
+ c = S(x+ b) + c [definition of +]

= S
(
(x+ b) + c

)
[definition of +]

= S
(
x+ (b+ c)

)
[hypothesis of induction]

= S(x) + (b+ c) [definition of + ]

∴ ` P (x)⇒ P
(
S(x)

)
∴ ` P (0) ∧ ∀x

(
P (x)⊃P (S(x))

)
By P5(Induction), ∀xP (x), i.e.

` ∀x
(
(x+ b) + c = x+ (b+ c)

)
(2) Let P (x) be the formula x + S(b) = S(x + b), and prove ∀xP (x) by

induction.

(a) ` P (0) is obvious.

(b) ` P (x)⇒ P
(
S(x)

)
is proved as follows.

S(x) + S(b) = S
(
x+ S(b)

)
[definition of + ]

= S
(
S(x+ b)

)
[hypothesis of induction]

= S
(
S(x) + b

)
[definition of + ]

(3) Let P (x) be x+ b = b+ x, and use induction.

(a) P (0) is 0 + b = b+0. Since 0 + b = b is provable by the definition

of +, it suffices to show that b + 0 = b. Now we prove that

∀x ∈ N(x+ 0 = x) by induction.

Let P1 be the formula x+ 0 = x.
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i. P1(0) is provable by the definition of +.

ii. Assume P1(x).

S(x) + 0 = S(x+ 0) [definition of +]

= S(x) [hypothesis P1(x) of induction]

(b) Assume that P (x) and prove P
(
S(x)

)
.

S(x) + b = S(x+ b) [definition of + ]

= S(b+ x) [hypothesis of induction]

= b+ S(x) [by (2)]

(4) ∀x(S(x) = x+ 1) is provable, since

S(a) = S(a+ 0) = a+ S(0) = a+ 1 by (2).

(5) Let P(x) be (x+ b = x+ c) ⊃ (b = c) and prove ∀xP (x) by induction.

(a) P (0) is obviously provable.

(b) Proof of P (x)⇒ P
(
S(x)

)
is as follows.

S(x) + b = S(x) + c ⇒ S(x+ b) = S(x+ c) [definition of + ]

⇒ x+ b = x+ c [Peano’s axiom P3]

⇒ b = c [hypothesis of induction]

(6) If x ∈ N and x 6= 0, then x = S(y) for some y ∈ N. Let P (x) be

¬(x+ S(a) = x), and prove ∀x∈N¬P (x) by induction.

(a) P (0) : ¬(0 + S(a) = 0) is provable by Peanp’s axiom P (4).

(b) P (x)⇒ P (S(x)) is provable as follows.

S(x) + S(a) = S(x) ⇒ S
(
x+ S(a)

)
= S(x)

⇒ x+ S(a) = x [ by Peano’s axiom P3]

∴ ¬
(
x+ S(a) = x

)
⇒ ¬

(
S(x) + S(a) = S(x)

)
∴ P (x) ⇒ P

(
S(x)

)
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(7) We prove the contraposition of (a+ b = 0) ⇒ (a = 0 ∧ b = 0), i.e.

¬(a = 0 ∧ b = 0) ⇒ ¬(a+ b = 0).

¬(a = 0 ∧ b = 0) ⇒ ¬(a = 0) ∨ ¬(b = 0)

⇒ ∃c, d
(
a = S(c) ∨ b = S(d)

)
a = S(c) ⇒ a+ b = S(c) + b

⇒ a+ b = S(c+ b)

⇒ ¬(a+ b = 0) [Peano’s axiom P4]

b = S(d) ⇒ a+ b = b+ a [commutative law of +]

⇒ a+ b = S(d) + a = S(d+ a)

⇒ ¬(a+ b = 0)

∴ ¬(a = 0 ∧ b = 0) ⇒ ¬(a+ b = 0)

(8) If a = 0, then b = 0 + b = a+ b = 1. Hence

(a+ b = 1) ∧ (a = 0) ⇒ (b = 1)

If ¬(a = 0), then a = S(c) for some c ∈ N.

a+ b = 1 ∧ a = S(c) ⇒ S(c) + b = 1

⇒ S(c+ b) = S(0)

⇒ c+ b = 0 [Peano’s axiom P4]

⇒ c = 0 ∧ b = 0 [(7)]

⇒ a = S(c) = S(0) = 1

∴ (a+ b = 1) ∧ ¬(a = 0) ⇒ (a = 1)

By ` (a = 0) ∨ ¬(a = 0) and distributive law,

a+ b = 1 ⇒ a+ b = 1 ∧
(
a = 0 ∨ ¬(a = 0)

)
⇒

(
a+ b = 1 ∧ a = 0

)
∨
(
a+ b = 1 ∧ ¬(a = 0)

)
⇒ a = 1 ∨ b = 1

(9) (a) If b = 0, a = b+ a. ∴ ∃x(a = b+ x).

If b 6= 0, then b = S(c) = c+1 for some c ∈ N. Since a 6= b = c+1,

a = c or a 6= c.
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i. If a = c, then a+ 1 = c+ 1 = b, hence ∃y(b = a+ y).

ii. If a 6= c, By the hypothesis of induction

` a 6= c ⇒ ∃x(a = c+ x) ∨ ∃y(c = a+ y).

∴ ∃x(a = c+ x) ∨ ∃y(c = a+ y)

Let ∃x(a = c+ x).

If x = 0, then a = c ∴ a+ 1 = c+ 1 = b

If x 6= 0, then x = S(z) = z + 1, hence

a = c+ x = c+ (z + 1) = (c+ 1) + z = b+ z

∴ ∃x(a = b+ x) ∨ ∃y(b = a+ y).

Similar for the case ∃y(c = a+ y).

The operation · is defined by0 · b = 0

S(a) · b = a · b+ b.
(4.2.5)

THEOREM 4.2.8 (Properties of · ).

(1) 0 · a = a · 0 = 0.

(2) 1 · a = a · 1 = a.

(3) a · (b+ c) = (a · b) + (a · c).

(4) a · b = b · a.

(5) (a · b) · c = a · (b · c).

(6) a · b = 0 ⇒ (a = 0 ∨ b = 0).

(7) a · b = 1 ⇒ (a = 1 ∧ b = 1).

(8) a 6= 0 ∧ (a · b = a · c) ⇒ b = c.
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(9) a 6= 0 ∧ (a · b = a) ⇒ b = 1.

Proof.

(1) Let P (x) be the formula x · 0 = 0, and we prove ∀xP (x) by induction .

(a) P (0), i.e. 0 · 0 = 0 by definition.

(b) ` P (x)⇒ P (S(x)), because

S(x) · 0 = x · 0 + 0 = 0 + 0 = 0.

∴ a · 0 = 0. 0 · a = 0 by the definition of ·.

(2) 1 · a = S(0) · a = 0 · a+ a = a. ∴ 1 · a = a.

∀x(x · 1 = x) is proved by induction.

Let P (x) be the formula x · 1 = x.

(a) P (0) is obvious from the definition.

(b) ` P (x)⇒ P (S(x)), because

S(x) · 1 = x · 1 + 1 = x+ 1 = S(x)

(3) Let P (X) be x ·(b+c) = (x ·b)+(x ·c), and prove ∀xP (x) by induction.

(a) P (0), i.e. 0 · (b+ c) = (0 · b) + (0 · c) = 0 is obvious.

(b) ` P (x)⇒ P (S(x)), because

S(x) · (b+ c) =
(
x · (b+ c)

)
+ (b+ c)

= (x · b+ x · c) + (b+ c) [hypothesis of induction]

= (x · b+ b) + (x · c+ c) [property of +]

= (S(x) · b) + (S(x) · c)

(4) Let P (x) be x · b = b · x and prove ∀xP (x) by induction.

(a) P (0), i.e. 0 · b = b · 0 is obvious by (1).
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(b) ` P (x)⇒ P (S(x)), because

S(x) · b = x · b+ b

b · S(x) = b · (x+ 1) = b · x+ b · 1 law of distribution

= x · b+ b [hypothesis P (x) ]

= S(x) · b

∴ b · S(x) = S(x) · b.

(5) Let P (x) be (x · b) · c = x · (b · c), and prove ∀xP (x) by induction.

(a) P (0), i.e. (0 · b) · c = 0 · (b · c) is obvious by (1).

(b) ` P (x)⇒ P (S(x)), because(
S(x) · b

)
· c =

(
(x · b) + b

)
· c

=
(
(x · b) · c

)
+ (b · c) [Distributive law]

=
(
x · (b · c)) + (b · c

)
[Hypothesis]

= S(x) · (b · c) [Definition of ·]

(6) Assume ¬(a = 0 ∨ b = 0), i.e.

a 6= 0 ∧ b 6= 0.

Since a = S(c) = c+ 1 and b = S(d) = d+ 1 for some c, d ∈ N,

a · b = (c+ 1) · (d+ 1)

= c · (d+ 1) + (d+ 1)

= (c · (d+ 1) + d) + 1

= S(c · (d+ 1) + d) 6= 0 [公理 P4]

¬(a = 0 ∨ b = 0) ⊃ ¬(a · b = 0).

Therefore, ` (a · b = 0) ⊃ (a = 0 ∨ b = 0).

(7) If a · b = 1, then a 6= 0．Assume a 6= 1.

a = S(c) = c+ 1 for some c such that c 6= 0.
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Then

a · b = (c+ 1) · b = c · b+ 1 · b = c · b+ b = 1

∴ c · b = 1 or b = 1 by (8) .

(a) If c · b = 1, then 1 + b = 1

∴ b = 0 by (6)

∴ a · b = a · 0 = 0 This contradicts to the assumption．
(b) If b = 1, then a · b = a · 1 = a = 1, which contradicts to the

assumption.

Therefore a = 1. Similarly, b = 1.

(8) Assume b 6= c. By (9) there exist c, d such that

b = c+ d or c = b+ d′.

If b = c+ d, a · (c+ d) = a · c
∴ a · c+ a · d = a · c
∴ a · d = 0 by (6)

∴ a = 0 or d = 0 by (6)

Since a 6= 0 by assumption，d = 0

∴ b = c, which contradicts to b 6= c. Similarly, if c = b + d′ then

b = c.

(9)

a · b = a ⇒ a · b = a · 1
⇒ b = 1 by (8).

4.2.8 Ordinals

DEFINITION 4.2.4. Ordered set 〈α, ≤〉 is totally ordered if

∀x, y ∈ α(x ≤ y ∨ y ≤ x).
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DEFINITION 4.2.5. A totally ordered set 〈α, ≤〉 is well-ordered if

∀β ⊂ α∃x∈β∀y ∈ β(x ≤ y).

DEFINITION 4.2.6. 〈α, ≤〉 is an ordinal if

(1) α is well-ordered with respect to ≤, where

x ≤ y
def⇐⇒ (x ∈ y) ∨ (x = y) for x, y ∈ α.

(2) β ∈ α =⇒ β ⊂ α.

“α is an ordinal” is denoted by “α∈On ”. “On” is not a set, but the proper

class of ordinals.

THEOREM 4.2.9. The set N of natural numbers is an ordinal, which is

denoted by ω.

LEMMA 4.2.10. (1) α, β ∈ On =⇒ α ∪ β, α ∩ β ∈ On.

(2) If X is a non-empty set of ordinals, then
⋃
X,

⋂
X ∈ On.

(3) If α ∈ On, then S(α) ∈ On, where S(α) = α ∪ {α}.

(4) If α ∈ On, then ∀λ ∈ On
(
λ ∈ S(α) ≡ λ ≤ α

)
.

Proved straightforward.

THEOREM 4.2.11 (Transfinite recursion on On). If ∀x, s∃!yφ(x, s, y), de-
fine G(x, s) to be the unique y such that φ(x, s, y). Then we can write a

formula ψ for which the following are provable:

(1) ∀x∃!yψ(x, y), so ψ defines a function F , where F (x) is the y such that

ψ(x, y).

(2) ∀α ∈ On
(
F(α) = G(α,F(α))

)
.

The proof is omitted.
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4.2.9 Integer

A relation ≡ on the set N× N(= {〈a, b〉 | a, b ∈ N}) defined by

〈a, b〉 ≡ 〈c, d〉 def⇐⇒ a+ c = b+ d

is an equivalence relation on N× N.

Proof.

` a+ b = a+ b ∴ ` 〈a, b〉 ≡ 〈a, b〉
` 〈a, b〉 ≡ 〈c, d〉 ⇒ a+ d = b+ c

⇒ c+ b = d+ a

⇒ 〈c, d〉 = 〈a, b〉
` 〈a, b〉 ≡ 〈c, d〉 ∧ 〈c, d〉 ≡ 〈e, f〉

⇒ a+ d = b+ c ∧ c+ f = d+ e

⇒ ` a+ f = b+ e

⇒ ` 〈a, b〉 ≡ 〈e, f〉

DEFINITION 4.2.7. The quotient of N×N/≡ is the set of integers denoted

by Z:
Z def

= (N× N)/≡ (= {|a| | a ∈ N× N}).

Operations + and · on Z are defined by

〈a, b〉+ 〈c, d〉 def= 〈a+ c, b+ d〉,

〈a, b〉 · 〈c, d〉 def= 〈a · c+ b · d, a · d+ b · c〉.

+ and · are definable on Z, i.e.

` 〈a, b〉 ≡ 〈a′, b′〉 ∧ 〈c, d〉 ≡ 〈c′, d′〉 ⇒ 〈a, b〉+ 〈c, d〉 ≡ 〈a′, b′〉+ 〈c′, d′〉
` 〈a, b〉 ≡ 〈a′, b′〉 ∧ 〈c, d〉 ≡ 〈c′, d′〉 ⇒ 〈a, b〉 · 〈c, d〉 ≡ 〈a′, b′〉 · 〈c′, d′〉

The proof is omitted. In the following, we write ab instead of a · b omitting

·.
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4.2.10 Rational number

A relation ≡ on the set of pairs of integers, Z× Z,

〈a, b〉 ≡ 〈c, d〉 def⇐⇒ ad = bc

is an equivalence relation.

Proof. ` 〈a, b〉 ≡ 〈a, b〉 is obvious.

If ` 〈a, b〉 ≡ 〈c, d〉, then ` ad = bc.

∴ ` cb = ad ∴ ` 〈c, d〉 ≡ 〈a, b〉.

If ` 〈a, b〉 ≡ 〈c, d〉 ∧ 〈c, d〉 ≡ 〈e, f〉, then

` ad = bc ∧ cf = de, ∴ ` af = be.

∴ ` 〈a, e〉 ≡ 〈b, f〉.

The quotient of Z×Z by ≡ is the set of rational numbers, denoted by Q.

Q def
= Z× Z/≡

DEFINITION 4.2.8. Operations + and · on Q are defined by

〈a, b〉+ 〈c, d〉 def= 〈ad+ bc, bd〉,

〈a, b〉 · 〈c, d〉 def= 〈ac, bd〉.

+ and · are definable, i.e.

` 〈a, b〉 ≡ 〈a′, b′〉 ∧ 〈c, d〉 ≡ 〈c′, d′〉 ⇒ 〈a, b〉+ 〈c, d〉 ≡ 〈a′, b′〉+ 〈c′, d′〉
` 〈a, b〉 ≡ 〈a′, b′〉 ∧ 〈c, d〉 ≡ 〈c′, d′〉 ⇒ 〈a, b〉 · 〈c, d〉 ≡ 〈a′, b′〉 · 〈c′, d′〉

The proof is omitted.
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4.2.11 Real number

A real number is defined as a Dedekind cut of rational numbers, that is, a

real number u is the pair of subsets of Q, lower part Lu and upper part Uu:

u = 〈Lu, Uu〉 is a real number
def⇐⇒ (D1)u ∧ · · · ∧ (D4)u where

(D1)u (Uu ⊂ Q)∧ (Lu ⊂ Q), (Uu is the upper part and Lu is the lower part)

(D2)u ∃x(x ∈ Uu) ∧ ∃x(x ∈ Q ∧ ¬(x ∈ Uu)),

(D3)u ∀x
(
x ∈ Uu ⊃ ∀y(y ∈ Q ∧ x ⪇ y ⊃ y ∈ Uu)

)
,

(D4)u Lu = {x ∈ Q | ¬(x ∈ Uu)}.

The set of all real numbers is denoted by R:

R def
= {〈Lu, Uu〉 ∈ Q×Q | (D1)u ∧ · · · ∧ (D4)u}.

If u = 〈Lu, Uu〉 and v = 〈Lv, Uv〉 are real numbers, then

u+ v
def
= 〈Lu+v, Uu+v〉, where

Uu+v
def
= {Q | ∀s ∈ Q(x ⪇ s ⊃ ∃s1, s2∈Q(s = s1 + s2 ∧ s1∈Uu ∧ s2∈Uv))},

Lu+v
def
= {x ∈ Q | ¬(x ∈ Uu+v)}.

u ≤ v
def⇐⇒ Lu ⊂ Lv.

If u, v ≥ 0,

uv
def
= 〈Luv, Uuv〉, where

Uuv
def
= {Q | ∀s ∈ Q(x ⪇ s ⊃ ∃s1, s2∈Q(s = s1s2 ∧ s1∈Uu ∧ s2∈Uv))},

Luv = {x ∈ Q | ¬(x ∈ Uuv)}.

Then 〈Lu+v, Uu+v〉 and 〈Luv, Uuv〉 satisfy the conditions of real number, i.e.

u + v, uv ∈ R. The definition of uv can be extended to all real numbers

u, v ∈ R.
Real number u = 〈Lu, Ur〉 is determined by the lower part Lu or upper

part Uu. So we sometimes use the lower part Lu or upper part Uu to denote

u.
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4.2.12 Complex number

Complex number is defined as a pair of real numbers. The set of all complex

numbers is denoted by C:
C def

= R× R

For 〈a, b〉, 〈c, d〉 ∈ C,

〈a, b〉 = 〈c, d〉 def⇐⇒ (a = c) ∧ (b = d).

〈a, b〉+ 〈c, d〉 def⇐⇒ 〈a+ c, b+ d〉,

〈a, b〉 · 〈c, d〉 def⇐⇒ 〈ac− bd, ad+ bc〉.

We identify 〈a, 0〉 with real number a, and denote 〈0, 1〉 by i.

4.2.13 Universe of ZFC

We have defined the class On of ordinals in ZFC. A universe V of ZFC will

be defined in ZFC using transfinite recursion on On.

First we define a function α 7→ Vα that assigns the set Vα to ordinal α,

as follows:

(1) V0 = ∅

(2) Vα+1 = P(Vα)

(3) Vα =
⋃

β∈α Vβ, whenever α is a limit ordinal

V =
⋃

α∈On Vα.

The Power Set axiom is used to obtain Vα+1 from Vα. Replacement and

Union allow one to form Vα for a limit ordinal α. The axiom of Infinity is

necessary to prove the existence of ω and transfinite sequence of ordinals.

Finally, ZFC proves that every set belongs to some Vα. For u, v ∈ V ,

truth value of u = v is

1, u = v

0, u 6= v

The proper class V , together with the relations ∈ and =, satisfies all axioms

of ZFC. Thus, V is a universe of ZFC.
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This is rephrased as follows.

In ZFC, a subset u of v is represented as the characteristic function χu :

v → 2. Thus, the universe V of ZFC is defined inductively, as follows.

Vα = {u | ∃β<α ∃Du⊂Vβ(u : Du→ 2)},
V =

⋃
α∈On Vα.

The least α such that u∈Vα is called the rank of u.

Truth values of atomic formulas on the universe V are given as

[[u=v]] =
∧

x∈Du(u(x) ⊃ [[x∈v]]) ∧
∧

x∈Dv(v(x)⊃ [[x∈u]]),
[[u∈v]] =

∨
x∈Dv(v(x) ∧ [[u=x]]),

where ∧, ∨, ¬, ∀, ∃ and ⊃ are operators on the Boolean algebra 2.

Logical operators ∧, ∨, ¬, ∀, ∃ and ⊃ represent algebraic operators on

the Boolean algebra.

[[φ ∧ ψ]] = [[φ]] ∧ [[ψ]]

[[φ ∨ ψ]] = [[φ]] ∨ [[ψ]]

[[¬φ]] = ¬[[φ]]
[[∀xφ(x)]] =

∧
x∈V

[[φ(x)]]

[[∃xφ(x)]] =
∨
x∈V

[[φ(x)]]

[[φ ⊃ ψ]] = ¬[[φ]] ∨ [[ψ]]

Then every formula has truth value 1 or 0 on V .

If a formula φ is true in V , that is, [[φ]] = 1 in V , then we say φ is valid

in V , and write

V |= φ.

THEOREM 4.2.12. The set-theoretical axioms of ZFC, A1-A9 and AC, are

all true in the universe V , i.e. each axiom is valid in V . Hence

if ZFC ` φ, then V |= φ.
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Various global logics

5.1 Global logic

Sentence “· · · is true ” is a metalogical statement for classical logical.

Global logic is obtained by introducing formulas of the form:

φ→ ψ(“φ implies ψ”) or □φ(“φ is true ” ).

Logical operation →, which corresponds to lattice operation →, was in-

troduced in Titani [13], and called basic implication.

Corresponding lattice operation → is defined by

(a→ b) =

1 if a ≤ b,

0 otherwise.

Globalization □ corresponds to lattice operation defined by

□a =

1 if a = 1,

0 otherwise.

The globalization □ is defined by using the basic implication:

□φ def⇐⇒ (φ→ φ)→ φ.

If a logical system has an implication ⊃, then the basic implication → is

defined by using globalization:

φ→ ψ
def⇐⇒ □(φ ⊃ ψ).

79
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DEFINITION 5.1.1. A logic with logical operation→ or □ is called a global

logic.

Logical system obtained from LK by adding → or □ is global classical

logic denoted by GLK , and logical system obtained from LJ by adding →
or □ is global intuitionistic logic denote by GLJ.

Formulas of the form φ→ ψ or □φ are interpreted as either true or false,

where truth value of φ is denoted by [[φ]].

[[φ→ ψ]] =

1, if [[φ]] ≤ [[ψ]]

0, otherwise
[[□φ]] =

1, φ is true

0, φ is not true

That is, the formulas of the form □φ or φ → ψ follow the rules of classical

logic LK.

5.2 Logical system of global logic

Logical systems consist of alphabet and inference rules.

Alphabet of logical systems

(1) Constants : c, c0, c1, c2, · · · ,

(2) Free variables : a, a0, a1, a2, · · · ,

(3) Bound variables : x, x0, x1, x2, · · · ,

(4) Predicate constants with n arguments : pn, pn0 , p
n
1 , p

n
2 , · · · , (n ≥ 0),

(5) Logical symbols : ∧, ∨, ∀, ∃,→ and some proper symbols for each

system.

(6) Auxiliary symbols : ( ), and commas.

Terms

Individual constants and free variables are called terms, and they are de-

noted by t1, t2, · · · .
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Formulas

If pni is a predicate constant with n arguments and t1, · · · , tn are terms, then

pni (ti1 , · · · , tin) is called a primitive formula. Formulas are constructed

from the primitive formulas using logical symbols, as follows.

(1) The primitive formulas are formulas.

(2) If φ and ψ are formulas, then (φ ∧ ψ), (φ ∧ ψ) are formulas.

(3) If φ(a) is a formula with free variable a, and x is a bound variable

which does not occur in φ(a), then ∀xφ(x) and ∃xφ(x) are formulas,

where φ(x) is obtained from φ(a) by substituting x for all a in φ(a).

(4) For a global logic, if φ and ψ are formulas then φ→ ψ is a formula.

A formula without any occurrence of free variables is called a sentence. A

formula which appears in the construction of a formula is called a subfor-

mula of the formula.

Formulas are denoted by φ, ψ, · · · ; φ(a), ψ(a), · · · .

DEFINITION 5.2.1. A sequent is a formal expression of the form

φ1, · · · , φm ⇒ ψ1, · · · , ψn.

The part “φ1, · · · , φm” is the antecedent, and “ψ1, · · · , ψn” the succedent

of the sequent.

Finite sequences of formulas are denoted by Γ, ∆, · · · . So sequents are

written as the form Γ⇒ ∆.

An inference is an expression of the form

S1

S
or

S1 S2

S
,

where S1, S2 and S are sequents. S1 and S2 are called the upper sequents

and S is called the lower sequent of the inference.
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5.3 Interpretation of logical systems

A model M of a logic is a triple M = 〈L, D, I〉, where

• L is a lattice of truth values of the logic, on which logical operations

are interpreted as algebraic operations on L.

• D is a domain of variables, and

• I is an interpretation of predicate symbols

I(pn) : Dn → L.

A D-assignment v is a mapping

v : FV → D,

where FV is the set of all individual free variables.

For a D-assignment v and d ∈ D, v(d/a) denotes the D-assignment :

FV → D such that for x ∈ FV

v′(d/a)(x) =

v(x) x 6= a

v(d) x = a

Let M = 〈L, D, I〉 be a model and v be a D-assignment. The truth value of

formula φ with respect to M and v is denoted by φ[M, v] ∈ L. If M and v

are omissible, then we denote φ[M, v] by [[φ]].
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The logic are interpreted on the model:

[[φ ∧ ψ]] = [[φ]] ∧ [[ψ]]

[[φ ∨ ψ]] = [[φ]] ∨ [[ψ]]

[[∀xφ(x)]] =
∧

x∈D[[φ(x)]]

[[∃xφ(x)]] =
∨

x∈D[[φ(x)]]

[[φ→ ψ]] =

1, [[φ]] ≤ [[ψ]]

0, otherwise

[[□φ]] = □[[φ]] =

1, [[φ]] = 1

0, otherwise

[[Φ(φ1, · · · , φn)]] = [[Φ]]
(
[[φ1]], · · · , [[φn]]

)
for other logical operator Φ

and corresponding operator [[Φ]] on L.

If Φ and Ψ are not necessarily finite set of formulas, then Φ ⇒ Ψ is called

a generalized sequent. Φ⇒ Ψ is said to be valid in modelM = 〈L, D, I〉
and D-assignment v, in symbols,

[M, v] ⊨ Φ⇒ Ψ,

if ∧
{φ[M, v] | φ ∈ Φ} ≤

∨
{ψ[M, v] | ψ ∈ Ψ}.

Or ∧
{[[φ]] | φ ∈ Φ} ≤

∨
{[[ψ]] | ψ ∈ Ψ} on model M and v .

If [M, v] ⊨ Φ⇒ Ψ for every D-assignment v, then we write as

M ⊨ Φ⇒ Ψ.

If the generalized sequent Φ ⇒ Ψ is valid in every model M = 〈L, D, I〉
and every D-assignment v, then we say that Φ⇒ Ψ is valid, and write as

⊨ Φ⇒ Ψ.

“⇒” in sequents of LK is not a logical operation, but a relation.

UNDER PEER REVIEW



84

We will adopt the classical 2-valued logic as the meta-logic, which is

the underlying basic logic. The classical 2-valued logic is represented by

the Boolean algebra 2 consisting of 1 and 0, which is a sub-algebra of every

complete lattice. Thus, the lattice order ≤ can be considered as an operation:

L × · · · × L → 2 on a lattice L.

We introduced in Titani [13] a basic implication → on the lattice order:

(a→ b) =

1 a ≤ b

0 a ≰ b.

5.4 Lattice valued logic LL

Lattice valued logic LL is a logical system which is a counterpar of com-

plete lattice. LL is a global logic with basic implication →, which was intro-

duced in Titani [13].

5.4.1 Formal system of lattice valued logic LL

The primitive symbols of oprations of LL are

∧, ∨, ¬, →, ∀, ∃.

The following symbols are defined from the primitive symbols.

> def⇐⇒ (φ→ φ)

⊥ def⇐⇒ ¬>
¬φ def⇐⇒ (φ→ ⊥)

φ↔ ψ
def⇐⇒ (φ→ ψ) ∧ (ψ → φ)

□φ def⇐⇒ (φ→ φ)→ φ

♢φ def⇐⇒ ¬(¬□φ)
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5.4.2 Inference rules of LL

First of all, we define □-closed formulas inductively, as follows :

(1) Formulas of the form (φ→ ψ) are □-closed ;

(2) If formulas φ and ψ are □-closed, then φ ∧ ψ and φ ∨ ψ are also

□-closed ;

(3) If a formula φ(a) is a □-closed formula with free variable a, then ∀xφ(x)
and ∃xφ(x) are also □-closed;

(4) □-closed formulas of LL are only those obtained by (1)–(3).

Γ,∆,Π,Λ, · · · will be used to denote finite sequences of formulas ; φ, ψ, · · ·
to denote □-closed formulas ; and Γ,∆,Π,Λ, · · · to denote finite sequences

of □-closed formulas.

Begining sequents: Every proof of LL starts with logical axioms which

are sequents of the form φ⇒ φ .

Structural rules :

Thinning :
Γ⇒ ∆

φ,Γ⇒ ∆

Γ⇒ ∆

Γ⇒ ∆, φ

Contraction :
φ, φ,Γ⇒ ∆

φ,Γ⇒ ∆

Γ⇒ ∆, φ, φ

Γ⇒ ∆, φ

Interchange :
Γ, φ, ψ,Π⇒ ∆

Γ, ψ, φ,Π⇒ ∆

Γ⇒ ∆, φ, ψ,Λ

Γ⇒ ∆, ψ, φ,Λ

Cut :
Γ⇒ ∆, φ φ,Π⇒ Λ

Γ,Π⇒ ∆,Λ

Γ⇒ ∆, φ φ,Π⇒ Λ

Γ,Π⇒ ∆,Λ

Γ⇒ ∆, φ φ,Π⇒ Λ

Γ,Π⇒ ∆,Λ
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Logical rules:

¬ :
Γ⇒ ∆, A

¬A,Γ⇒ ∆

Γ⇒ ∆, A

¬A,Γ⇒ ∆

A,Γ⇒ ∆

Γ⇒ ∆,¬A
A,Γ⇒ ∆

Γ⇒ ∆,¬A
,

∧ :
φ,Γ⇒ ∆

φ ∧ ψ,Γ⇒ ∆

Γ⇒ ∆, φ Γ⇒ ∆, ψ

Γ⇒ ∆, φ ∧ ψ

ψ,Γ⇒ ∆

φ ∧ ψ,Γ⇒ ∆

Γ⇒ ∆, φ Γ⇒ ∆, ψ

Γ⇒ ∆, φ ∧ ψ

∨ :
φ,Γ⇒ ∆ ψ,Γ⇒ ∆

φ ∨ ψ,Γ⇒ ∆

Γ⇒ ∆, ψ

Γ⇒ ∆, φ ∨ ψ

φ,Γ⇒ ∆ ψ,Γ⇒ ∆

φ ∨ ψ,Γ⇒ ∆

Γ⇒ ∆, ψ

Γ⇒ ∆, φ ∨ ψ

→ :
Γ⇒ ∆, φ ψ,Π⇒ Λ

(φ→ ψ),Γ,Π⇒ ∆,Λ

φ,Γ⇒ ∆, ψ

Γ⇒ ∆, (φ→ ψ)

φ,Γ⇒ ∆, ψ

Γ⇒ ∆, (φ→ ψ)

∀ : φ(t),Γ⇒ ∆

∀xφ(x),Γ⇒ ∆

where t is any term

Γ⇒ ∆, φ(a)

Γ⇒ ∆, ∀xφ(x)
Γ⇒ ∆, φ(a)

Γ⇒ ∆, ∀xφ(x)

where a is a free variable which does

not occur in the lower sequent.

∃ : φ(a),Γ⇒ ∆

∃xφ(x),Γ⇒ ∆

φ(a),Γ⇒ ∆

∃xφ(x),Γ⇒ ∆

where a is a free variable which does

not occur in the lower sequent.

Γ⇒ ∆, φ(t)

Γ⇒ ∆, ∃xφ(x)

where t is any term

5.4.3 LL-provability

DEFINITION 5.4.1. Each logical axiom φ⇒ φ is provable in LL, and if up-

persequent(s) of inference rules are provable in LL, then the lower sequent is
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provable in LL. A tree of provable formulas is called a proof of the lowermost

sequent.

“A sequent Γ⇒ ∆ is provable in LL ” is expressed by

LL ` Γ⇒ ∆.

DEFINITION 5.4.2. Generalized sequent Φ⇒ Ψ is said to be LL-provable,

if there exist finite subsequences Γ ⊂ Φ and ∆ ⊂ Ψ such that

LL ` Γ⇒ ∆.

DEFINITION 5.4.3. Formulas φ∧ψ in the rule (∧), φ∨ψ in the rule (∨),
∀xφ(x) in the rule (∀) and ∃xφ(x) in the rule (∃) are called the principal

formulas.

THEOREM 5.4.1.

(1) LL ` φ ∧ ψ,Γ⇒ ∆ if and only if LL ` φ, ψ,Γ⇒ ∆

(2) LL ` Γ⇒ ∆, φ ∨ ψ if and only if LL ` Γ⇒ ∆, φ, ψ

(3) LL ` (φ1 ∧ · · · ∧ φn)⇒ φi (i = 1, · · · , n)

(4) LL ` ψj ⇒ (ψ1 ∨ · · · ∨ ψn) (j = 1, · · · , n)

(5) LL ` (φ ∧ ψ) ∨ (φ ∧ ψ′)⇒ φ ∧ (ψ ∨ ψ′)

(6) LL ` φ ∨ (ψ ∧ ψ′)⇒ (φ ∨ ψ) ∧ (φ ∨ ψ′)

(7) LL ` ∃x(φ ∧ ψ(x))⇒ (φ ∧ ∃xψ(x))

(8) LL ` (φ ∨ ∀xψ(x))⇒ ∀x(φ ∨ ψ(x))

(9) If A(φ) is a formula with subformula φ and LL ` φ⇔ ψ, then

LL ` A(φ)⇔ A(ψ).

Proof. (1) LL ` φ, ψ ⇒ φ ∧ ψ by ∧-right :

φ⇒ φ

ψ, φ⇒ φ
(Thinning )

φ, ψ ⇒ φ
(Interchange)

ψ ⇒ ψ

φ, ψ ⇒ ψ
(Thinning )

φ, ψ ⇒ φ ∧ ψ
(∧-right)
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and
φ, ψ ⇒ φ ∧ ψ φ ∧ ψ,Γ⇒ ∆

φ, ψ,Γ⇒ ∆
(Cut)

Hence, LL ` φ ∧ ψ,Γ⇒ ∆ implies LL ` φ, ψ,Γ⇒ ∆.

The converse follows from ∧-left :

φ, ψ,Γ⇒ ∆

φ ∧ ψ, ψ,Γ⇒ ∆
(∧-left )

ψ, φ ∧ ψ,Γ⇒ ∆
(Interchange)

φ ∧ ψ, φ ∧ ψ,Γ⇒ ∆
(∧-left )

φ ∧ ψ,Γ⇒ ∆
(Contraction)

(2) LL ` φ ⇒ φ, ψ and LL ` ψ ⇒ φ, ψ by Thinning and Interchange.

Hence, by using ∨-left,

LL ` φ ∨ ψ ⇒ φ, ψ.

Then by using Cut,

LL ` Γ⇒ ∆, φ ∨ ψ implies LL ` Γ⇒ ∆, φ, ψ

The converse follows from ∨-right, in the similar way to (1).

(3)

φi ⇒ φi

φ1, · · · , φm ⇒ φi

(Thinning)

φ1 ∧ · · · ∧ φm ⇒ φi by (1)

(4) Similarly, by Thinning and Rule (2),

LL ` ψj ⇒ (ψ1 ∨ · · · ∨ ψn) (j = 1, · · · , n).

(5)
...

φ ∧ ψ ⇒ φ ∧ (ψ ∨ ψ′)

...

φ ∧ ψ′ ⇒ φ ∧ (ψ ∨ ψ′)

(φ ∧ ψ) ∨ (φ ∧ ψ)⇒ φ ∧ (ψ ∨ ψ′)

(6) Similar to (5).
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(7)

φ⇒ φ

φ ∧ ψ(a)⇒ φ

...

φ ∧ ψ(a)⇒ ∃xψ(x)
φ ∧ ψ(a)⇒ φ ∧ ∃xψ(x)

∃x(φ ∧ ψ(x))⇒ φ ∧ ∃xψ(x)

(8)

φ⇒ φ

φ⇒ φ ∨ ψ(a)

...

∀xψ(x)⇒ φ ∨ ψ(a)
φ ∨ ∀xψ(x)⇒ φ ∨ ψ(a)

φ ∨ ∀xψ(x)⇒ ∀x(φ ∨ ψ(x))

(9)

φ⇒ φ

φ ∧ ψ ⇒ φ

φ ∧ ψ ⇒ ψ ψ ⇒ ψ′

φ ∧ ψ ⇒ ψ′

φ ∧ ψ ⇒ φ ∧ ψ′

Hence, if LL ` ψ ⇔ ψ′, then LL ` φ ∧ ψ ⇔ φ ∧ ψ′.

ψ′ ⇒ ψ′

φ ∧ ψ′ ⇒ ψ′

φ ∧ ψ′ ⇒ φ φ⇒ φ′

φ ∧ ψ′ ⇒ φ′

φ ∧ ψ′ ⇒ φ′ ∧ ψ′

Hence, if LL ` φ⇔ φ′, and LL ` ψ ⇔ ψ′ then LL ` φ∧ψ′ ⇔ φ′∧ψ′

and LL ` φ ∧ ψ ⇔ φ ∧ ψ′.

Simiraly,

LL ` φ⇔ φ′ and LL ` ψ ⇔ ψ′ implies LL ` φ ∨ ψ ⇔ φ′ ∨ ψ′,

LL ` φ(a)⇔ φ′(a) implies

LL ` ∀xφ(x)⇔ ∀xφ′(x) and LL ` ∃xφ(x)⇔ ∃xφ′(x).

Since A(φ) is constructed from φ by ∧, ∨, ∀ and ∃,

L ` φ⇔ φ′ implies LL ` A(φ)⇔ A(φ′)

by induction on the complexity of A(φ).
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THEOREM 5.4.2. 　

(1) LL ` φ⇒ ψ if and only if LL ` ⇒ (φ→ ψ)

(2) LL ` φ, (φ→ ψ) ⇒ ψ

(3) LL ` (φ→ ψ), (ψ → θ) ⇒ (φ→ θ)

(4) LL ` ⇒
(
(φ1 ∧ · · · ∧ φm)→ φi

)
(i = 1, · · · ,m)

(5) LL ` ⇒
(
ψj → (ψ1 ∨ · · · ∨ ψn)

)
(j = 1, · · · , n)

(6) LL ` (θ → φ), (θ → ψ)⇒
(
θ → (φ ∧ ψ)

)
(7) LL ` (φ→ θ), (ψ → θ) ⇒

(
(φ ∨ ψ)→ θ

)
(8) LL ` φ ∧ ¬φ⇒ θ.

(9) LL ` φ,Γ⇒ ∆, ψ implies LL ` ¬ψ,Γ⇒ ∆,¬φ

(10) LL ` φ⇒ ¬¬φ ; LL ` □φ⇔ ¬¬□φ ;

(11) LL ` ¬(φ ∨ ψ)⇔ (¬φ ∧ ¬ψ)

(12) LL ` (¬φ ∨ ¬ψ)⇒ ¬(φ ∧ ψ)

(13) LL ` □φ⇒ φ

(14) LL ` φ⇒ ♢φ

(15) LL ` Γ⇒ ∆, φ if and only if LL ` Γ⇒ ∆,□φ

(16) If φ is □-closed, then LL ` φ⇔ □φ

(17) LL ` □φ⇔ □□φ

(18) LL ` φ,Γ⇒ ∆ if and only if LL ` ♢φ,Γ⇒ ∆

(19) LL ` 2φ ∧ ∃xψ(x)⇔ ∃x(2φ ∧ ψ(x));
LL ` φ ∧ ∃x2ψ(x)⇔ ∃x(φ ∧2ψ(x))

(20) LL ` ∀x2φ(x)⇔ 2∀xφ(x)
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(21) LL ` (2φ→ ψ)⇔ (2φ→ 2ψ)⇔ (¬2φ ∨2ψ)

(22) LL ` ⇒ 2φ ∨ ¬2φ

(23) LL `
(
(φ ∧ 2ξ)→ ψ

)
⇒

(
(¬ψ ∧ 2ξ)→ ¬φ

)
(24) LL ` ¬φ⇔ □¬φ

(25) LL ` (φ→ □ψ)⇒ (♢φ→ □ψ)

(26) LL ` ♢(□φ ∧ ψ)⇒ □φ ∧ ♢ψ

(27) LL ` ∃x♢φ(x)⇔ ♢∃xφ(x)

Proof. (1) By the inference rule (→).

(2)

φ⇒ φ ψ ⇒ ψ (axioms)

(φ→ ψ), φ⇒ ψ
→ -left

It follows that

LL ` φ, (φ→ ψ)⇒ ψ.

(3) Since (ψ → θ) is □-closed, by → -right ,

LL ` φ, (φ→ ψ), (ψ → θ)⇒ ψ, (ψ → θ)

and

LL ` ψ, (ψ → θ)⇒ θ.

Hence, by rule Cut,

LL ` φ, (φ→ ψ), (ψ → θ)⇒ θ.

(4)

φi ⇒ φi

φ1, · · · , φm ⇒ φi

(Thinning)

φ1 ∧ · · · ∧ φm ⇒ φi

(by Rule (1) )

⇒
(
(φ1 ∧ · · · ∧ φm)→ φi

) →-right

Hence,

LL ` ⇒
(
(φ1 ∧ · · · ∧ φm) → φi

)
.
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(5) By Thinning and Rule (2),

LL ` ⇒
(
ψj → (ψ1 ∨ · · · ∨ ψn)

)
(j = 1, · · · , n)

in the similar way as (6).

(6) By using (4) and Rules ∧-right, → -right,

θ, (θ → φ), (θ → ψ)⇒ φ θ, (θ → φ), (θ → ψ)⇒ ψ

θ, (θ → φ), (θ → ψ) ⇒ φ ∧ ψ
(θ → φ), (θ → ψ)⇒

(
θ → (φ ∧ ψ)

)
Therefore, LL ` (θ → φ), (θ → ψ) ⇒

(
θ → (φ ∧ ψ)

)
(7) By using (4) and Rules ∨-left, → -right,

φ, (φ→ θ), (ψ → θ) ⇒ θ ψ, (φ→ θ), (ψ → θ) ⇒ θ

(φ ∨ ψ), (φ→ θ), (ψ → θ) ⇒ θ

(φ→ θ), (ψ → θ) ⇒
(
(φ ∨ ψ)→ θ

)
(8) By ¬ -left and (1), LL ` φ ∧ ¬φ⇒.

(9) By ¬ -left and then ¬ -right. We also use the □-closedness of ¬φ and

Γ.

(10) Since ¬φ is □-closed, by ¬-right,

φ⇒ φ

¬φ, φ⇒
φ⇒ ¬¬φ

Therefore,

LL ` φ⇒ ¬¬φ.

By the □-closedness of □φ, ` ¬¬□φ⇒ □φ. Therefore,

LL ` □φ⇔ ¬¬□φ.

(11) Since ¬(φ ∨ ψ) is □-closed,

φ⇒ φ

φ⇒ φ ∨ ψ
¬(φ ∨ ψ), φ⇒
¬(φ ∨ ψ)⇒ ¬φ
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Therefore, LL ` ¬(φ ∨ ψ) ⇒ ¬φ. Similarly, LL ` ¬(φ ∨ ψ) ⇒ ¬ψ.
Hence, LL ` ¬(φ ∨ ψ)⇒ (¬φ ∧ ¬ψ). The converse is proved, by using

the fact that ¬φ ∧ ¬ψ is □-closed, i.e.

...

¬φ ∧ ¬ψ, φ⇒

...

¬φ ∧ ¬ψ, ψ ⇒
¬φ ∧ ¬ψ, φ ∨ ψ ⇒
¬φ ∧ ¬ψ ⇒ ¬(φ ∨ ψ)

∴ LL ` ¬(φ ∨ ψ)⇔ (¬φ ∧ ¬ψ).

(12) Similarly to the first part of (13),

LL ` ¬φ ∨ ¬ψ ⇒ ¬(φ ∧ ψ).

(13)

φ⇒ φ

⇒ (φ→ φ)
φ⇒ φ(

(φ→ φ)→ φ
)
⇒ φ

∴ LL ` □φ⇒ φ.

(14)
...

□¬φ⇒ ¬φ

...

¬φ, φ⇒
□¬φ, φ⇒
φ⇒ ¬□¬φ

∴ LL ` φ⇒ ♢φ.

(15) If-part is obvious by (3). The converse follows from the fact:

Γ⇒ ∆, φ

(φ→ φ),Γ⇒ ∆, φ

Γ⇒ ∆,
(
(φ→ φ)→ φ

)
(16) If φ is □-closed, then, by (17), LL ` φ⇒ □φ. The converse is (15).

(17) Since □φ is □-closed, LL ` □□φ⇔ □φ, by (18).

(18) LL ` φ,Γ⇒ ∆ if and only if LL ` ♢φ,Γ⇒ ∆
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Proof. If-part is obvious by (16). The converse follows from:

φ,Γ⇒ ∆

Γ⇒ ∆,¬φ
Γ⇒ ∆,□¬φ
¬□¬φ,Γ⇒ ∆

(19) LL ` 2φ ∧ ∃xψ(x) ⇔ ∃x(2φ ∧ ψ(x)) ; LL ` φ ∧ ∃x2ψ(x) ⇔ ∃x(φ ∧
2ψ(x))

Proof.
...

□φ, ψ(a)⇒ □φ ∧ ψ(a)
□φ, ψ(a)⇒ ∃x(□φ ∧ ψ(x))

□φ, ∃xψ(x)⇒ ∃x(□φ ∧ ψ(x))
□φ ∧ ∃xψ(x)⇒ ∃x(□φ ∧ ψ(x))

□φ⇒ □φ
□φ ∧ ψ(a)⇒ □φ

...

□φ ∧ ψ(a)⇒ ∃xψ(x)
□φ ∧ ψ(a)⇒ □φ ∧ ∃xψ(x)

∃x(□φ ∧ ψ(x))⇒ □φ ∧ ∃xψ(x)

Similarly, LL ` (φ ∧ ∃x2ψ(x))⇔ ∃x(φ ∧2ψ(x)).

(20) LL ` ∀x2φ(x)⇔ 2∀xφ(x)

Proof. (⇒) is obvious. Proof of (⇐) is:

...

□∀xφ(x)⇒ □φ(a)
□∀xφ(x)⇒ ∀x□φ(x)

(21) LL ` (2φ→ ψ)⇔ (2φ→ 2ψ)⇔ (¬2φ ∨2ψ)
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Proof. Since the first (⇔) is obvious from (5), we prove only the second

(⇔).
...

(□φ→ □ψ),□φ⇒ □ψ
(□φ→ □ψ)⇒ □ψ,¬□φ
(□φ→ □ψ)⇒ ¬□φ ∨□ψ

□ψ ⇒ □ψ
□φ,□ψ ⇒ □ψ

...

¬□φ,□φ⇒ □ψ
¬□φ ∨□ψ,□φ⇒ □ψ
¬□φ ∨□ψ ⇒ (□φ→ □ψ)

(22) LL ` ⇒ 2φ ∨ ¬2φ

Proof. Obvious.

(23) LL `
(
(φ ∧ 2ξ)→ ψ

)
⇒

(
(¬ψ ∧ 2ξ)→ ¬φ

)
Proof.

...

φ,□ξ ⇒ φ ∧□ξ

...

ψ,¬ψ ⇒
(φ ∧□ξ → ψ),¬ψ, φ,□ξ ⇒

...
(φ ∧□ξ → ψ),¬ψ ∧□ξ ⇒ ¬φ

(φ ∧□ξ → ψ)⇒ (¬ψ ∧□ξ → ¬φ)

(24) Since ¬φ is □-closed,

LL ` ¬φ⇔ □¬φ.

(25) LL ` (φ→ □ψ)⇒ (♢φ→ □ψ)

Proof. By (7).

(26) LL ` ♢(□φ ∧ ψ)⇒ □φ ∧ ♢ψ
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Proof. By (4) and (7).

(27) LL ` ∃x♢φ(x)⇔ ♢∃xφ(x)

Proof. Similar to (20).

5.4.4 Interpretation of LL

Let L be a complete lattice and M = 〈L, D, I〉 be a model of LL, where

D is a domain of variables, and I is an interpretation of predicate symbols

I(pn) : Dn → L.

→ and ¬ are interpreted as

(φ→ ψ)[M, v] = (φ[M, v]→ ψ[M, v]) =

1, if φ[M, v] ≤ ψ[M, v]

0, otherwise

(¬φ)[M, v] = ¬φ[M, v] =

1, if φ[M, v] = 0

0, otherwise.

That is,

[[φ→ ψ]] = ([[φ]]→ [[ψ]]) =

1, [[φ]] ≤ [[ψ]]

0, otherwise,

[[¬φ]] = ¬[[φ]] =

1, [[φ]] = 0

0, otherwise.

THEOREM 5.4.3 (Soundness). If a sequent Γ ⇒ ∆ is LL-provable, then it

is valid in every lattice valued model.

i.e. If ` Γ⇒ ∆ then ⊨ Γ⇒ ∆
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Proof. Let an arbitrary lattice valued modelM = 〈L, D, I〉 and D-assignment

v be fixed. Axiom φ ⇒ φ is valid, since [[φ]] ≤ [[φ]]. So it suffices to show

that, for each inference rule
P1, · · · , Pm

Q

if M ⊨ Pi for i = 1, · · · , n, then M ⊨ Q.
We prove the case of Cut, as an example. Since the truth value [[φ]] of

□-closed formula is either 1 or 0, it suffices to show for the cases

Γ⇒ φ φ,Π⇒ Λ

Γ,Π⇒ Λ
,

Γ⇒ ∆, φ φ⇒ Λ

Γ⇒ ∆,Λ
,

Γ⇒ ∆, φ φ,Π⇒ Λ

Γ,Π⇒ ∆,Λ
.

Let Γ⇒ φ and φ,Π⇒ Λ are valid. If Γ = {φ1, · · · , φm}, Π = {ψ1, · · · , ψn},
Λ = {ξ1, · · · , ξl},

[[φ1 ∧ · · · ∧ φm]] ≤ [[φ]],

and

[[φ]] ∧ [[ψ1 ∧ · · · ∧ ψn]] ≤ [[ξ1 ∨ · · · ∨ ξl]].

Then

[[φ1 ∧ · · · ∧ φm]] ∧ [[ψ1 ∧ · · · ∧ ψn]] ≤ [[ξ1 ∨ · · · ∨ ξl]].

That is, the lower sequent is also valid.

Other cases are proved similarly.

COROLLARY 5.4.4. If a generalized sequent is LL-provable, then it is valid

in every lattice valued model.

Proof. It follows from the fact that a generalized sequent Φ ⇒ Ψ is LL-

provable, if there exist finite subsequences Γ ⊂ Φ and ∆ ⊂ Ψ such that

LL ` Γ⇒ ∆.

Now we review the proof of the strong completeness of LL by M.Takano.

THEOREM 5.4.5 (Strong completeness, Takano [10]). If a generalized se-

quent is valid in lattice valued model, then it is LL-provable:

i.e. If ⊨ Φ⇒ Ψ then ` Φ⇒ Ψ
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Proof. To prove the theorem, a generalized sequent Φ ⇒ Ψ is supposed to

be LL-unprovable, and construct a lattice valued model M = 〈L, D, I〉 and
D-assignment v which falsifies∧

{[[φ]] | φ ∈ Φ} ≤
∨
{[[ψ]] | ψ ∈ Ψ}.

We assume without loss of generality, that p and q are mutually distinct

proposition symbols (namely, 0-ary predicate symbols) which do not occur

in Φ∪Ψ and that there are infinitely many free variables which do not occur

in Φ ∪Ψ.

A formula of the form (φ → ψ) is called an implication formula. Let

θ0, θ1, θ2, · · · be an enumeration of all implication formulas. The sets Φk

and Ψk (k = 0, 1, 2, · · · ) of implication formulas are defined recursively as

follows, so as to have infinitely many free variables which do not occur in

Φk ∪Ψk.

Basis. Define Φ0 and Ψ0 as follows:

Φ0 = {(p→ φ) | φ ∈ Φ} ∪ {(ψ → q) | ψ ∈ Ψ} and Ψ0 = {(p→ q)}.

Induction Step. Suppose that Φk and Ψk have been defined. Let a be

any free variable which does not occur in Φk ∪Ψk ∪ {θk}.

Case 1: Φk ⇒ Ψk ∪ {θk} is LL-provable. Define

Φk+1 = Φk ∪ {θk}, Ψk+1 = Ψk.

Case 2 : Φk ⇒ Ψk ∪ {θk} is LL-unprovable.

(1) If θk is of the form
(
ψ → ∀xφ(x)

)
, define

Φk+1 = Φk Ψk+1 = Ψk ∪ {θk,
(
ψ → φ(a)

)
}

(2) If θk is of the form
(
∃xφ(x)→ ψ

)
, define

Φk+1 = Φk Ψk+1 = Ψk ∪ {θk,
(
φ(a)→ ψ

)
}.

(3) Otherwise, define

Φk+1 = Φk Ψk+1 = Ψk ∪ {θk}.
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Having defined all Φk’s and Ψk’s, let

Φ∞ =
⋃
{Φk | k = 0, 1, · · · } and Ψ∞ =

⋃
{Ψk | k = 0, 1, · · · }.

PROPOSITION 5.4.6. The following properties hold for the set Φ of impli-

cation formulas.

(1) Suppose that φ1, · · · , φm, ψ1, · · · , ψn are implication formulas, and

LL ` φ1, · · · , φm ⇒ ψ1, · · · , ψn.

If φ1, · · · , φm∈Φ∞, then either ψ1∈Φ∞ or · · · or ψn∈Φ∞.

(2) If
(
ψ → φ(a)

)
∈ Φ∞ for every a∈FV , then

(
ψ → ∀xφ(x)

)
∈ Φ∞

(3) If
(
φ(a)→ ψ

)
∈ Φ∞ for every a∈FV , then

(
∃xφ(x)→ ψ

)
∈ Φ∞

(4) (p→ φ) ∈ Φ∞ for every φ ∈ Φ, while (p→ q) 6∈ Φ.

Proof. (1) If φ1, · · · , φm ∈ Φ∞ but ψ1, · · · , ψn 6∈ Φ∞, then

LL 6` φ1, · · · , φm ⇒ ψ1, · · · , ψn,

which contradicts to the assumption.

(2) Suppose that
(
ψ → ∀xφ(x)

)
= θk, and θk 6∈ Φ∞. If LL ` Φk ⇒

Ψk ∪ {θk}, then θk ∈ Φk+1 contradicting θk 6∈ Φ∞; hence LL 6` Φk ⇒
Ψk ∪ {θk}. It follows that for some a ∈ FV ,

(
ψ → φ(a)

)
∈ Ψk+1, and

so
(
ψ → φ(a)

)
∈ Φ∞.

(3) Similar to (2).

(4) (p→ φ) ∈ Φ0 for every φ ∈ Φ, and (ψ → q) ∈ Φ0 for every ψ ∈ Ψ. On

the other hand, (p→ q) 6∈ Φ∞, since (p→ q) ∈ Ψ0.

PROPOSITION 5.4.7. Every implication formula belongs to exactly one of

Φ∞ and Ψ∞, and the generalized sequent Φ∞ ⇒ Ψ∞ is LL-unprovable.
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Proof. Since θk ∈ Φk+1 ∪Ψk+1, every implication formula belongs to at least

one of Φ∞ and Ψ∞. So it suffices to show that Φk ⇒ Ψk is LL-unprovable

for every natural number k. We prove this by induction on k.

Basis. Suppose that Φ0 ⇒ Ψ0 were LL-provable. then the sequent

(p→ φ1), · · · , (p→ φm), (ψ1 → q), · · · , (ψn → q) ⇒ (p→ q)

is LL-provable for some φ1, · · · , φm ∈ Φ and some ψ1, · · · , ψn ∈ Ψ. Replacing

p and q by φ1 ∧ · · · ∧ φm (p→ p, if m=0) and ψ1 ∧ · · · ∧ ψn (q → q, if n=0),

respectively, the sequent

φ′
1, · · · , φ′

m, ψ
′
1, · · ·ψ′

n ⇒
(
(φ1 ∧ · · · ∧ φm)→ (ψ1 ∧ · · · ∧ ψn)

)
is LL-provable, where φ′

i and ψ
′
j denote

(
(φ1 ∧ · · · ∧ φm) → φi

)
and

(
ψj →

(ψ1∨· · ·∨ψn)
)
, respectively (i = 1, · · · ,m ; j = 1, · · · , n). Then by Theorem

5.4.2(6),(7),

LL ` φ1, · · · , φm ⇒ ψ1, · · · , ψn

which contradicts the assumption that Φ ⇒ Ψ is LL-unprovable. Hence

Φ0 ⇒ Ψ0 is LL-unprovable.

Induction Step Suppose that Φk ⇒ Ψk is LL-unprovable. We will show

that Φk+1 ⇒ Ψk+1 is LL-unprovable, along the definition of Φk+1 and Ψk+1.

Case 1 : Φk ⇒ Ψk ∪ {θk} is LL-provable. If Φk+1 and Ψk+1 were LL-

provable, then Φk and Ψk is also LL-provable by Cut, contradicting the

assumption. Hence, Φk+1 and Ψk+1 were LL-unprovable.

Case 2 : Φk ⇒ Ψk ∪ {θk} is LL-unprovable.
If θk is of the form ψ⊃∀xφ(x), then

Φk+1 = Φk Ψk+1 = Ψk ∪ {θk, (ψ → φ(a))}

If θk is of the form ∃xφ(x)⊃ψ, then

Φk+1 = Φk Ψk+1 = Ψk ∪ {θk, (φ(a)→ ψ)}.

Since Φk+1 and Ψk+1 are sets of closed formulas, Φk+1 and Ψk+1 were LL-

unprovable by the inference rules ∀-right , ∃-right and →-right.

Otherwise : ⊬ Φk+1 ⇒ Ψk+1 is obvious.
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Let

φ ≡ ψ
def⇐⇒ (φ→ ψ) ∧ (ψ → φ) ∈ Φ∞

≡ is an equivalence relation by Proposition 5.4.6. Let |φ| be the equivalence
class under the equivalence relation to which φ belongs :

|φ| def= {ξ : formula | ξ ≡ φ}.

Set P of all the equivalence classes under ≡ :

P
def
= {|φ| | φ : formula}

is an ordered set under ≤ such that

|φ| ≤ |ψ| ⇔ (φ→ ψ) ∈ Φ∞ for formulas φ, ψ.

PROPOSITION 5.4.8. 〈P,≤〉 has the following properties.

(1) P has both the greatest element 1 and the least element 0, and 1 6= 0.

(2) |φ ∧ ψ| = |φ| ∧ |ψ|.

(3) |φ ∨ ψ| = |φ| ∨ |ψ|.

(4) |φ→ ψ| = (|φ| → |ψ|).

(5) |¬φ| =

1, |φ| = 1,

0, otherwise.

(6) |∀xφ(x)| =
∧
{|φ(a)| | a∈FV }.

(7) |∃xφ(x)| =
∨
{|φ(a)| | a∈FV }.

Proof. (1) Since LL ` ⇒ (p→ p),

LL ` θ ⇒ (p→ p)

for every θ. Hence, |p→ p| is the greatest. Similarly

LL ` ⇒
(
¬(p→ p)→ θ

)
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for every θ. Hence, |¬(p→ p)| is the least.

|p→ p| = 1 and |¬(p→ p)| = 0.

By Proposition 5.4.6 (4), (p → q) 6∈ Φ∞. Hence |p| 6= |q|. Therefore,

1 6= 0.

(2) By Theorem5.4.2 (6) and (8), |φ ∧ ψ| ≤ |φ| ∧ |ψ|, and if |ξ| ≤ |φ| and
|ξ| ≤ |ψ| then |ξ| ≤ |φ ∧ ψ|.

(3) Similar to (3) by Theorem5.4.2 (7) and (9).

(4) Since φ→ ψ is □-closed,

(φ→ ψ)⇒ (φ→ ψ)

(φ→ ψ)⇒ (φ→ ψ), θ

⇒ (φ→ ψ),
(
(φ→ ψ)→ θ

)
is a proof for every θ. By Proposition 5.4.6 (1),

either (φ→ ψ) ∈ Φ∞, or
(
(φ→ ψ)→ θ

)
∈ Φ∞

Hence, for every θ,

either
(
θ → (φ→ ψ)

)
∈ Φ∞, or

(
(φ→ ψ)→ θ

)
∈ Φ∞

It follows that

either |φ→ ψ| = 1 or |φ→ ψ| = 0.

Since LL ` θ ⇒ (p→ p) for every θ, p→ p is in Φ∞. and Theorem5.4.2

(10) and (11).

(5) If |φ| = 0, then |φ| ≤ |¬φ| in particular, i.e. (φ→ ¬φ) ∈ Φ∞.

For every ψ, we have

φ⇒ φ ¬φ⇒ ¬φ
φ, (φ→ ¬φ)⇒ ¬φ
(φ→ ¬φ)⇒ ¬φ

(φ→ ¬φ)⇒ (ψ → ¬φ),

UNDER PEER REVIEW



103

∴ LL ` (φ→ ¬φ)⇒ (ψ → ¬φ).

Hence, If |φ| = 0, then |ψ| ≤ |¬φ| for every ψ. That is,

if |φ| = 0, then |¬φ| = 1.

If |φ| 6= 0, then |φ| 6≤ |ψ| for some ψ. That is, (φ→ ψ) 6∈ Φ∞ for some

ψ. But we have LL ` ⇒ (φ → ψ), (¬φ → θ), for every ψ and θ.

Because,

φ, ¬φ⇒
φ, ¬φ⇒ ψ, θ

⇒ (φ→ ψ), (¬φ→ θ).

Since (φ → ψ) 6∈ Φ∞, (¬φ → θ) ∈ Φ∞ for every θ. It follows that

|¬φ| = 0

(6) Since LL ` ∀xφ(x)⇒ φ(a), hence

|∀xφ(x)| ≤ |φ(a)| for every a ∈ FV .

On the other hand, by Proposition 5.4.6 (3),

|ψ| ≤ |φ(a)| for every a ∈ FV implies |ψ| ≤ |∀xφ(x)| .

∴ |∀xφ(x)| =
∧
{|φ(a)| | a ∈ FV }.

(7) Similar to (6).

LEMMA 5.4.9. [ McNeille’s theorem ([5], [2])] Any poset P can be embedded

in a complete lattice L, so that order is preserved, together with the suprema

and infima existing in P , where for each X ⊂ P ,

X∗ denotes the set of upper bounds in P , i.e. X∗ = {x∈P | ∀t∈X(t ≤ x)},
X† denotes the set of lower bounds in P , i.e. X† = {x∈P | ∀t∈X(x ≤ t)}
and

L is defined to be the set of all X⊂P such that X = (X∗)† :

L def
= {X⊂P | X = (X∗)†}.
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Then ∧
{Xi}i =

⋂
iXi and

∨
{Xi}i = ((

⋃
iXi)

∗)† for {Xi}i ⊂ L.

The embedding i : P → L is defined by i(a) = {t∈P | t ≤ a} for a∈P .

Now, consider the lattice valued model M = 〈L, D, f〉, where L is the

complete lattice in which P is embedded, D is FV , and for every predicate

sysmbol R, f(R) is the mapping from Dn to L such that

f(R)(a1, · · · , an) = i(|R(a1, · · · , an)|) for every a1, · · · , an ∈ D.

PROPOSITION 5.4.10. For every formula φ and every D-assignment v :

FV → D,

φ[M, v] = i(|φv|),

where φv designates the formula obtained from φ by substituting every occur-

rence of each free variable a by free variable v(a).

Proof. The proof is by induction on the construction of φ.

Case 1: φ is R(a1, · · · , an), where R is an n-ary predicate symbol. Then

φv is R(v(a1), · · · , v(an)). So

φ[M, v] = f(R)((v(a1), · · · , v(an)) = i(|φv|).

Case 2: φ is ψ ∧ θ. By the hypothesis of induction, ψ[M, v] = i(|ψv|) and
θ[M, v] = i(|θv|). On the other hand, by Proposition 5.4.8(2), and by the

fact that i preserves the infimums, i(|φv|) = i(|ψv|) ∧ i(|θv|). So

φ[M, v] = ψ[M, v] ∧ θ[M, v] = i(|ψv|) ∧ i(|θv|) = i(|φv|).

Case 3-5: φ is (ψ ∨ θ), (ψ → θ) or ¬ψ. Similar to Case 2.

Case 6: φ is ∀xψ(x). Then φv is ∀xψv(x). By hypothesis of induction,

ψ(a)[M.v(d/a)] = i(|ψv(d)|) for every d ∈ D.

On the other hand, by Proposition 5.4.8(6) ,

|φv| =
∧
{|ψv(d)| | d ∈ D} ∴ i(|φv|) =

∧
{i(|ψv(d))| | d ∈ D},
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since i preserves the infimums. Hence,

φ[M, v] =
∧
{ψ(a)[M.v(d/a)] | d ∈ D} =

∧
{i(|ψv(d)|) | d ∈ D} = i(|φv|)

Case 7: φ is ∃xψ(x). Similar to Case 6.

Let w be the D-assignment which is the identity mapping on D. It follows

from the previous proposition that φ[M,w] = i(|φ|) for every φ.

PROPOSITION 5.4.11.
∧
{φ[M,w] : φ ∈ Φ} 6≤

∨
{Ψ[M,w] : ψ ∈ Ψ}.

Proof. It suffices to show that

|p| ∈
∧
{φ[M,w] : φ ∈ Φ} but |p| 6∈

∨
{Ψ[M,w] : ψ ∈ Ψ}.

If φ ∈ Φ, then (p → φ) ∈ Φ∞ by Proposition 5.4.6(4), so |p| ≤ |φ| and so

|p ∈ i(|φ|) = φ[M,w]. Hence

|p| ∈
⋂
{φ[M.w] : φ ∈ Φ} =

∧
{φ[M,w] : φ ∈ Φ}.

If ψ ∈ Ψ, in the meantime, (ψ → q) ∈ Φ∞ by Proposition 5.4.6(4), so |ψ| ≤
|q| and so |q| ∈ (i(|ψ|))∗ = (ψ[M,w])∗. Hence |q| ∈

⋂
{(ψ[M,w])∗ | ψ ∈ Ψ}.

But, since (p → q) 6∈ Φ∞ by Proposition 5.4.6(4) again, it is not the case

that |p| ≤ |q|. So

|p| 6∈ (
⋂
{(ψ[M,w])∗ | ψ ∈ Ψ})† =

∨
{ψ[M,w] | ψ ∈ Ψ}.

Hence, ∧
{φ[M, v] | φ ∈ Φ} ≰

∨
{ψ[M, v] | ψ ∈ Ψ},

That is , Φ⇒ Ψ is not valid. this ends the proof of Theorem 5.4.5.
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5.5 Basic implication and globalization

Lattice valued logic and lattice valued set theory are formulated in Titani

[13] by introducing basic implication →, which represents lattice order on

the truth value set L:

(a→ b) =

1 a ≤ b

0 a ≰ b,

where 1 and 0 represents ‘true’ and ‘false’, respectively.

We assume that the truth values of the meta-logic are ‘true’ and ‘false’,

that is, the sublattice 2 = {1, 0}, which is a Boolean algebra, represents the

truth value set of the meta-logic. Thus, the meta-logic is a classical logic.

Logical operation is represented as an algebraic operation on L:

L × · · · × L → L,

whereas relation is represented by an algebraic relation,

L × · · · × L → 2 (⊂ L).

Since 2 is a sub-lattice of every complete lattice, the basic implication →
can be considered as an algebraic operation on the complete lattice L. So we

could introduce → into logic as a logical operation.

Globalization □

□a =

1 a = 1

0 a 6= 1

is a modal operator on the lattice, satisfying

(1) □a ≤ a;

(2) □□a = □a;

(3) □a ∨ (□a)⊥ = 1, □a ∧ (□a)⊥ = 0; and

(4) a ≤ b⇒ □a ≤ □b.
The corresponding logical operation □ is also called a globalization.

Thus, if ⊃ is an implication, then

(φ→ ψ)
def⇐⇒ □(φ⊃ψ).

Furthermore, ♢ is defined by ♢φ def
= (□φ⊥)⊥.
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5.5.1 Global classical logic and global intuitionistic logic

Global classical logic GLK and global intuitionistic logic GLJ are obtained

from LK and LJ by introducing globalization.

Formula of the form □φ is said to be □-closed. sequence of □-closed

formulas {□φi}i is written as □({φi}i).

5.5.2 Inference rules

Structural rules :

Thinning :
Γ⇒ ∆

Γ⇒ ∆, φ

where ∆ is □-closed for

the intuitionistic logic

Γ⇒ ∆

φ,Γ⇒ ∆

Contraction :
φ, φ,Γ⇒ ∆

φ,Γ⇒ ∆

Γ⇒ ∆, φ, φ

Γ⇒ ∆, φ

Interchange :
Γ, φ, ψ,Π⇒ ∆

Γ, ψ, φ,Π⇒ ∆

Γ⇒ ∆, φ, ψ,Λ

Γ⇒ ∆, ψ, φ,Λ

Cut :
Γ⇒ ∆, φ φ,Π⇒ Λ

Γ,Π⇒ ∆,Λ

Logical rules:

⊃ :
Γ⇒ ∆, φ ψ,Π⇒ Λ

φ ⊃ ψ,Γ,Π⇒ ∆,Λ

φ,Γ⇒ ∆, ψ

Γ⇒ ∆, φ ⊃ ψ

∧ :
φ,Γ⇒ ∆

φ ∧ ψ,Γ⇒ ∆

Γ⇒ ∆, φ Γ⇒ ∆, ψ

Γ⇒ ∆, φ ∧ ψ

ψ,Γ⇒ ∆

φ ∧ ψ,Γ⇒ ∆
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∨ :
φ,Γ⇒ ∆ ψ,Γ⇒ ∆

φ ∨ ψ,Γ⇒ ∆

Γ⇒ ∆, ψ

Γ⇒ ∆, φ ∨ ψ

Γ⇒ ∆, ψ

Γ⇒ ∆, φ ∨ ψ

¬ :
φ,Γ⇒ ∆

Γ⇒ ∆,¬φ
where ∆ is □-closed for

the intuitionistic logic

Γ⇒ ∆, φ

¬φ,Γ⇒ ∆

∀ : φ(t),Γ⇒ ∆

∀xφ(x),Γ⇒ ∆

where t is any term

Γ⇒ ∆, φ(a)

Γ⇒ ∆, ∀xφ(x)

where a is a free variable which does

not occur in the lower sequent.

∃ : φ(a),Γ⇒ ∆

∃xφ(x),Γ⇒ ∆

where a is a free variable which does

not occur in the lower sequent.

Γ⇒ ∆, φ(t)

Γ⇒ ∆, ∃xφ(x)

where t is any term

(□) :
φ,Γ⇒ ∆

□φ,Γ⇒ ∆

□Γ⇒ □∆, φ

□Γ⇒ □∆,□φ [Globalization].

Of course it can be formulated using the basic operation → instead of □.

DEFINITION 5.5.1.

GLK ` Γ⇒ ∆ denote “a sequent Γ⇒ ∆ is provable in GLK ”

GLJ ` Γ⇒ ∆ denote “a sequent Γ⇒ ∆ is provable in GLJ ”

If GLK, GLJ are obvious, we write just

` Γ⇒ ∆.
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Obviously we have

THEOREM 5.5.1. (1) If LK ` Γ⇒ ∆, then GLK ` Γ⇒ ∆

(2) If LJ ` Γ⇒ ∆, then GLJ ` Γ⇒ ∆

(3) (Soundness) If ` Γ⇒ ∆ then ⊨ Γ⇒ ∆

5.5.3 Lindenbaum algebra

　 Let F be the set of formulas, and for φ, ψ ∈ F let

φ ≡ ψ
def⇐⇒ ` φ⇔ ψ.

≡ is an equivalence relation on the set F of formulas. The equivalence class

of φ is denoted by |φ|, and let F/≡ be the quotient space of F by ≡.

F/≡ def
= {|φ| ⊂ F | φ ∈ F}

The order relation ≤ on F/≡ is definable by

|φ| ≤ |ψ| def⇐⇒ ` φ⇒ ψ.

LEMMA 5.5.2. For φ, ψ ∈ F ,

(1) |φ| ∧ |ψ| = |φ ∧ ψ|,

(2) |φ| ∨ |ψ| = |φ ∨ ψ|,

(3) ¬|φ| = |¬φ|,

(4) |∀xφ(x)| =
∧
{|φ(t)| | t ∈ T},

(5) |∃xφ(x)| =
∨
{|φ(t)| | t ∈ T}, where T is the set of all terms, i.e.

individual free variables and constants.

Proof. We prove only (1) and (4). Other equations are proved similarly.
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(1) Since we have ` φ ∧ ψ ⇒ φ and ` ψ ∧ ψ ⇒ ψ,

|φ ∧ ψ| ≤ |φ| and |φ ∧ ψ| ≤ |ψ|.

If |ξ| ≤ |φ| and |ξ| ≤ |ψ| for ξ ∈ F , then

` ξ ⇒ φ and ` ξ ⇒ ψ, ∴ ` ξ ⇒ φ ∧ ψ.

It follows that |ξ| ≤ |φ ∧ ψ|. Therefore,

|φ| ∧ |ψ| = |φ ∧ ψ|.

(4) Since ` ∀xφ(x)⇒ φ(t) for all term t ∈ T ,

|∀xφ(x)| ≤ |φ(t)| for all t ∈ T.

Assume |ξ| ≤ |φ(t)| for all term t∈T . That is, ` ξ ⇒ φ(t) for all t∈T .
Choose a free variable a ∈ FV which does not occur in ξ ⇒ ∀xφ(x).
Then by inference rule ∀-right,

` ξ ⇒ ∀xφ(x), i.e. |ξ| ≤ |∀xφ(x)|.

Therefore,

|∀xφ(x)| =
∧
{|φ(a)| | a ∈ FV }.

Thus, ∧, ∨ and ¬ are defined on F/≡.
F/≡ is a Boolean algebra or Heyting algebra, according as GLK or GLJ,

which is called a Lindenbaum algebra .

5.5.4 Completeness

THEOREM 5.5.3 (Completeness of GLK). If a sequent Γ ⇒ ∆ is valid in

every Boolean valued model, then it is provable in GLK.

Proof. Lindenbaum algebra F/≡ of GLK is a Boolean algebra, which is

extended to a complete Boolean algebra by Theorem 3.3.6,
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Let B be the minimal extension (cf. Theorem 3.3.6, p.30) of the Boolean

algebra F/≡, and the canonical isomorphism h∗ : F/≡→ B preserves all

infinite joins and meets, i.e.

if a =
∨F/≡

t∈T at, then h∗(a) =
∨B

t∈T h
∗(at), (5.5.1)

if a =
∧F/≡

t∈T at, then h∗(a) =
∧B

t∈T h
∗(at). (5.5.2)

For a formula φ ∈ F , let

[[φ]]
def
= h∗(|φ|) ∈ B.

if GLK 6` φ, then |φ| 6= 1. therefore, [[φ]] 6= 1, i.e. 〈B,D, I〉 forms a model

of GLK such that

〈B,D, I〉 6⊨ φ,

where

D is a domain of individual variables, which contains the individual con-

stants,

I is an interpretation I of predicate symbols

I(pn) : Dn → B,

and D-assignment

v : FV → D.

THEOREM 5.5.4 (Completeness of GLJ). If a sequent Γ ⇒ ∆ is valid in

every Heyting valued model, then it is provable in GLJ.

Proof. Similar to the case of GLK, where we use Theorem 3.4.7 instead of

Theorem 3.3.6. That is, order of truth values is defined by

[[φ]] ≤ [[ψ]]
def⇐⇒ GLJ ` φ⇒ ψ,

then the set of truth values is a Heyting algebra, and ⊃ corresponds to an

implication on the Heyting algebra.

Heyting algebra is extended to a complete Heyting algebra by Theorem

3.4.7.
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Let (F/≡)∗ is the complete extension of F/≡.
〈(F/≡)∗, D, I〉 forms a model of GLJ according to F/≡, where
D is a domain of individual variables, which contains the individual con-

stants,

I is an interpretation I of predicate symbols

I(pn) : Dn → (F/≡)∗,

and D-assignment

v : FV → D.

5.6 Predicate orthologic

Ortholattice( cf. Definition 3.5.1) is a lattice provided with ortho-comlementation
⊥ which satisfies the following conditions.

(C1) a⊥⊥ = a,

(C2) a ∨ a⊥ = 1, a ∧ a⊥ = 0,

(C3) a ≤ b =⇒ b⊥ ≤ a⊥.

The structure of a complete ortholattice is represented by a global logic,

which is called a predicate orthologic.

5.6.1 Formal system of predicate orthologic OL

The formal system of predicate orthologic, denoted by OL, is obtained from

the lattice-valued logic in Titani [13], by adding a primitive logical symbol
⊥ together with rules for ortho-complementation. That is, primitive logical

symbols of OL are

∧, ∨, ⊥, →, ∀, ∃.
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Defined formulas are:

> def⇐⇒ (φ ∨ φ⊥)

⊥ def⇐⇒ (>)⊥

¬φ def⇐⇒ φ→ ⊥
φ↔ ψ

def⇐⇒ (φ→ ψ) ∧ (ψ → φ)

□φ def⇐⇒ (φ→ φ)→ φ

♢φ def⇐⇒ (□φ⊥)⊥

The inference rules of predicate orthologic OL are those of lattice valued

logic LL plus the following inference rules (C1), (C2), (C3):

(C1) :
φ,Γ⇒ ∆

φ⊥⊥,Γ⇒ ∆

Γ⇒ ∆, φ

Γ⇒ ∆, φ⊥⊥

(C2) :
Γ⇒ ∆, φ

φ⊥,Γ⇒ ∆

Γ⇒ ∆, φ

φ⊥,Γ⇒ ∆

φ,Γ⇒ ∆

Γ⇒ ∆, φ⊥

φ,Γ⇒ ∆

Γ⇒ ∆, φ⊥

(C3) :
φ,Γ⇒ ∆, ψ

ψ⊥,Γ⇒ ∆, φ⊥

If Γ ⇒ ∆ is provable in OL, then we write “OL ` Γ ⇒ ∆”. “OL `
φ ⇒ ψ and OL` ψ ⇒ φ ” can be shortened as “OL` φ ⇔ ψ” and also

“OL` ⇒ φ” as “OL` φ”.
A formula of the form □φ is called a □-closed formula. φ expresses that

φ is □-closed.

THEOREM 5.6.1. For any formula φ of OL :

(1) OL` □φ⇒ φ , OL` φ⇔ □φ ;

(2) OL` > ⇔ □> , OL` ⊥ ⇔ □⊥.

Proof. (1) (φ→ φ) is □-closed, and OL` (φ→ φ). Hence, by (→):

⇒ (φ→ φ) φ⇒ φ(
(φ→ φ)→ φ

)
⇒ φ

(φ→ φ), φ⇒ φ

φ⇒
(
(φ→ φ)→ φ

) .
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(2) By Rule (C2), OL` φ ∨ φ⊥ for any formula φ. Hence,

OL` (ψ∨ψ⊥
)⇔ (φ∨φ⊥)⇔ > and OL` (ψ∧ψ⊥

)⇔ (φ∧φ⊥)⇔ ⊥.

THEOREM 5.6.2. For formulas φ, ψ, ξ of OL, we have

(1) OL` φ ∧ ¬φ⇒ ; OL` ⇒ φ ∨ ¬φ ;

(2) OL` φ⊥ ⇔ ¬φ ;

(3) OL` φ⇒ ψ if and only if OL` (φ→ ψ) ;

(4) If φ(ψ) is a formula with sub-formula ψ and OL ` ψ ⇔ ξ, then

OL` φ(ψ)⇔ φ(ξ).

Proof. (1) OL` ⇒ > and OL` ⊥ ⇒ by Rule (C2). Hence, by Rule (⊃):

φ⇒ φ ⊥ ⇒
φ, (φ→ ⊥)⇒

φ, φ⊥ ⇒ ⊥
φ⊥ ⇒ (φ→ ⊥)

where ¬φ is an abbreviation of (φ→ ⊥).

(2) By (1) and (C2).

(3) By Rule (→).

(4) If OL ` φ ⇔ ψ, then OL ` φ⊥ ⇔ ψ⊥ by (C3). Hence, (4) holds by

5.4.2.

Immediately from (C1), (C2), (C3), we have:

THEOREM 5.6.3. For formulas φ, ψ of OL,

(1) OL` φ⇔ φ⊥⊥ ;

(2) OL` ⇒ φ ∨ φ⊥, OL ` φ ∧ φ⊥ ⇒ ;

(3) OL` (φ→ ψ)⇔ (ψ⊥ → φ⊥).

UNDER PEER REVIEW



115

THEOREM 5.6.4. A theorem of lattice-valued logic LL is a theorem of OL.

That is,

LL ` φ implies OL ` φ.

Proof. The inference rules of LL are (∧), (∨), (→), (∀), and (∃) of OL to-

gether with the following four rules of (¬). Hence, it suffices to show that if

the upper sequent of each rule of (¬) is provable in OL, then so is the lower

sequent.

¬ :
Γ⇒ ∆, φ

¬φ,Γ⇒ ∆

Γ⇒ ∆, φ

¬φ,Γ⇒ ∆

φ,Γ⇒ ∆

Γ⇒ ∆,¬φ
φ,Γ⇒ ∆

Γ⇒ ∆,¬φ
,

where ¬φ is an abbreviation of (φ⊃⊥).

THEOREM 5.6.5.

(1) OL` (φ ∨ ψ)⊥ ⇔ (φ⊥ ∧ ψ⊥) , OL` (φ⊥ ∨ ψ⊥)⇔ (φ ∧ ψ)⊥ ;

(2) OL` (∀xφ(x))⊥ ⇔ ∃xφ⊥(x) , OL` (∃xφ(x))⊥ ⇔ ∀xφ⊥(x).

Proof. Straightforward.

5.6.2 Interpretation of OL

Let L be a complete ortholattice and M = 〈L, D, I〉, where
D is a domain of variables, and

I is an interpretation of predicate symbols

I(pn) : Dn → L.

M = 〈L, D, I〉 is called a ortholattice valued model of OL, where →,

¬ and ⊥ are interpreted as

[[□φ)]] = □[[φ]] =

1, if [[φ]] = 1

0, otherwise

[[¬φ]] = ¬[[φ]] =

1, if [[φ]] = 0

0, otherwise.

[[φ⊥]] = ([[φ]])⊥.
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An ortholattice valued model M of OL, shortly OL-valued model, is a

lattice valued model. So obviously we have

THEOREM 5.6.6 (Soundness). If a sequent Φ⇒ Ψ is provable in OL, then

it is valid.

5.6.3 Strong completeness of OL

Only difference between LL and OL is that OL has the logical operator ⊥.

THEOREM 5.6.7 (Strong completeness). If a generalized sequent Φ⇒ Ψ of

OL is valid, where Φ and Ψ are not necessarily finite, then it is provable in

OL :

⊨ Φ⇒ Ψ ⇒ OL` Φ⇒ Ψ.

Proof. The proof of strong completeness of OL is in Titani-Kodera-Aoyama[14],

which is similar to the proof for lattice valued logic LL by Takano [10].

Supposing that OL⊬ Φ⇒ Ψ, we will construct Φ∞ in the same way as

the case of LL, and define a binary relation ≡ between formulas by

A ≡ B
def⇐⇒

(
(A→ B) ∈ Φ∞ and (B → A) ∈ Φ∞

)
≡ is an equivalence relation on the set of formulas. Let |A| denote the

equivalence class to which A belongs: |A| def= {B | A ≡ B}, and let

P
def
= {|A| | A is a formula}

|A| ≤ |B| def⇐⇒ (A→ B) ∈ Φ∞

1
def
= |>|

0
def
= |⊥|

A ≡ B if and only if A⊥ ≡ B⊥, hence |A|⊥ is defined by

|A|⊥ def
= |A⊥|.

P is a lattice, where

(1) |A ∧B| = |A| ∧ |B| ;

(2) |A ∨B| = |A| ∨ |B| ;
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(3) |A→ B| =

1 if |A| ≤ |B|,

0 otherwise ;

(4) |A⊥| = |A|⊥

(5) |∀xA(x)| =
∧
{|A(a)| | a ∈ FV } ;

(6) |∃xA(x)| =
∨
{|A(a)| | a ∈ FV }.

(7)
∧

and
∨

above denote the infimum and the supremum, respectively,

in P .

(8) For formulas A , B of OL :

(a) |A|⊥⊥ = |A| ;

(b) |A| ∧ |A|⊥ = 0, |A| ∨ |A|⊥ = 1 ;

(c) |A| ≤ |B| ⇐⇒ |B|⊥ ≤ |A|⊥.

Thus, P = 〈P,≤,
∧
,
∨
, ⊥〉 is an ortholattice.

By Mcneille’s theorem( cf. Lemma 5.4.9), any poset P can be embedded

in a complete lattice L, so that order is preserved, together with the suprema

and infima existing in P , where for each X ⊂ P ,

X∗ denotes the set of upper bounds in P , i.e. X∗ = {x∈P | ∀t∈X(t ≤ x)},
X† denotes the set of lower bounds in P , i.e. X† = {x∈P | ∀t∈X(x ≤ t)}
and

L is defined to be the set of all X⊂P such that X = (X∗)† :

L def
= {X⊂P | X = (X∗)†}.

Then ∧
{Xi}i =

⋂
iXi and

∨
{Xi}i = ((

⋃
iXi)

∗)† for {Xi}i ⊂ L.

The embedding i : P → L is defined by i(a) = {t∈P | t ≤ a} for a∈P .

We denote the infimum of {Xi}i in L by
∧

iXi and the supremum of

{Xi}i in L by
∨

iXi, i.e.,

i(
∧

n tn) =
∧

n i(tn) and i(
∨

n tn) = ((
⋃

n i(tn))
∗)† =

∨
n i(tn).
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DEFINITION 5.6.1. For X⊂P , let

X⊥ def
= {a∈P | x ≤ a⊥ for all x∈X}.

We have

(1) If X⊂P , then 0 ∈ X⊥ ;

(2) If X,Y ⊂P and X⊂Y , then Y ⊥⊂X⊥ ;

(3) If X⊂P , then X⊂X⊥⊥ and X⊥ = X⊥⊥⊥ ;

(4) X ∩X⊥ = {0} ;

(5) (X ∪X⊥)⊥⊥ = P .

Proof. (1) ∀x∈X(0 ≤ x⊥), hence 0 ∈ X⊥.

(2) Obvious.

(3) If x∈X then ∀t∈X⊥(x ≤ t⊥). Therefore, X⊂X⊥⊥.

By (2), X⊥ ⊂ X⊥⊥⊥ and X⊥⊥⊥ ⊂ X⊥.

(4) If x ∈ X ∩X⊥, then x ≤ x⊥, hence x = 0.

(5) (X ∪X⊥)⊥ ⊂ X⊥ ∩X⊥⊥ = {0}. Therefore, (X ∪X⊥)⊥⊥ = P .

If X⊂P , then (X∗)† = X⊥⊥.

Proof.

z ∈ (X∗)† ⇐⇒ ∀y
(
∀x∈X(x ≤ y)⇒ z ≤ y

)
⇐⇒ ∀y

(
y⊥∈X⊥ ⇒ y⊥ ≤ z⊥

)
⇐⇒ ∀y

(
y⊥∈X⊥ ⇒ z ≤ (y⊥)⊥

)
⇐⇒ z∈X⊥⊥
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Thus, P is embedded in the complete ortholattice

L = {X⊂P | X = X⊥⊥} by i : a 7→ i(a) = {t∈P | t ≤ a} for a ∈ P,

where

i(
∧

n tn) =
∧

n i(tn) =
⋂

n i(tn), i(
∨

n tn) =
∨

n i(tn) = (
⋃

n i(tn))
⊥⊥,

i(a⊥) = i(a)⊥.

Let D = FV and I(p) : Dn → L for n-ary predicate constant p be defined

by

I(p)(a1, · · · , an) = i(|p(a1, · · · , an)|) for every a1, · · · , an ∈ D.

Then M = 〈L, D, I〉 is an OL-valued model and For every formula A,

A[M, v] = i(|Av|), where Av is the formula obtained from A by replacing

every occurence of each a∈FV by the free variable v(a).

Let u be the D-assignment which is the identity map on D.

A[M, u] = i(|A|) for every A.

The proof of completeness of OL is completed with the following proposition.∧
{A[M, u] | A ∈ Φ} ≰

∨
{B[M, u] | B ∈ Ψ}. (5.6.1)

Proof. It suffices to show that

|p| ∈
⋂
{i(|A|) | A ∈ Φ}; (5.6.2)

|p| 6∈ (
⋃
{i(|B|) | B ∈ Ψ})⊥⊥. (5.6.3)

Since |p| ≤ |A| for every A∈Φ, we have (5.6.2).

Now we assume |p| ∈ (
⋃
{i(|B|) | B ∈ Ψ})⊥⊥. Then

|p| ≤ |X|⊥ for all |X| ∈ (
⋃
B∈Ψ

(i(|B|))⊥ =
⋂
B∈Ψ

(i(|B|))⊥.

Since |B| ≤ |q| for all B ∈ Ψ, we have

|X| ≤ |q| , whenever |X| ≤ |B|.
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∴ |q|⊥ ∈
⋂
B∈Ψ

{|X| | |X| ≤ |B|}⊥ =
⋂
B∈Ψ

(i(|B|))⊥.

∴ |p| ≤ |q|⊥⊥ = |q|. ∴ (p→ q) ∈ Φ∞,

which is a contradiction. Hence we have equation (5.6.1).

5.7 Quantum Logic

The mathematical language of lattice was introduced into quantum physics

by Birkhoff and von Neumann [2].

The truth value set of the standard quantum theory is expressed by the

lattice Q(H) with automorphisms, where H is a Hilbert spaceH, and Q(H) is
a complete orthomodular lattice 3.6.2 consisting of all projections (or equiva-

lently all colsed subspaces) of H. Thus, the logic of standard quantum theory

is represented by the complete orthomodular lattice Q(H).

Orthomodular lattice 3.6.2 is an ortholattice 3.5.1 satisfying ortho-

modularity (P), i.e. a lattice provided with an operator ⊥ satisfying

(C1) a⊥⊥ = a;

(C2) a ∨ a⊥ = 1, a ∧ a⊥ = 0;

(C3) a ≤ b =⇒ b⊥ ≤ a⊥;

(P) a ≤ b =⇒ b = a ∨ (b ∧ a⊥) (orthomodularity).

The complete orthomodular lattice is represented by a sheaf of complete

Boolean algebra. That is, each formula of quantum logic is interpreted as a

cross-section of a sheaf whose stalks are complete Boolean algebras.

The quantum logic represents the structure of the complete orthomod-

ular lattices.

G.Takeuti adopted an implication defined in terms of ∧, ∨, and ⊥, on

the complete orthomodular lattice Q(H), in order to develop a quantum set

theory. We denote his implication by →T:

(a→T b)
def
= a⊥ ∨ (a ∧ b).
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→T is considered as a local implication, in the sense that

c ≤ (a→T b) if and only if (c ∧ a) ≤ (c ∧ b).

However, this implication is not enough to develop a global set theory, be-

cause it is not transitive. That is,

(a→T b) ∧ (b→T c) ≰ (a→T c).

The transitivity of the corresponding logical implication is indispensable for

the development of set theory, since equality axioms of set theory which

depend on the transitivity of implication are fundamental.

Quantum logic QL is obtained from OL by adding inference rule

(P ) :
φ,Γ⇒ ∆, ψ

ψ,Γ⇒ ∆, φ ∨ (ψ ∧ φ⊥)
[Orthomodularity]

i.e.

QL = OL + (P).

QL is a global logic as well as lattice-valued logic LL (Titani [13]) and

ortho-lattice OL (Titani [15]) introducing the basic implication →.

Since orthomodular lattice has Takeuti’s implication defined by

(a→T b)
def⇐⇒ a⊥ ∨ (a ∧ b),

the basic implication → is express in terms of the implication →T and the

modal operator □ :

(a→ b) = □(a→T b).

The logical system provided with the globalization □ instead of the basic

implication is denoted by QL□. QL□, which is equivalent to QL, had been

introduced in Titani-Kodera-Aoyama [14].

Primitive logical symbols of QL□ are:

∧, ∨, ⊥, ∃, ∀, □.
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□ is interpreted on a orthomodular lattice as

□a =

1 a = 1

0 otherwise

Finite sequences of formulas are denoted by Γ, ∆, · · · . If Γ is a sequence

“φ1, · · · , φn” of formulas, then the sequence “□φ1, · · · ,□φn” is denoted by

□Γ.

Logical axioms of QL□ are sequents of the form φ⇒ φ .

Structural rules :

Thinning :
Γ⇒ ∆

φ,Γ⇒ ∆

Γ⇒ ∆

Γ⇒ ∆, φ

Contraction :
φ, φ,Γ⇒ ∆

φ,Γ⇒ ∆

Γ⇒ ∆, φ, φ

Γ⇒ ∆, φ

Interchange :
Γ, φ, ψ,Π⇒ ∆

Γ, ψ, φ,Π⇒ ∆

Γ⇒ ∆, φ, ψ,Λ

Γ⇒ ∆, ψ, φ,Λ

Cut :
Γ⇒ □∆, φ φ,Π⇒ Λ

Γ,Π⇒ □∆,Λ

Γ⇒ ∆, φ φ,□Π⇒ Λ

Γ,□Π⇒ ∆,Λ

Γ⇒ ∆,□φ □φ,Π⇒ Λ

Γ,Π⇒ ∆,Λ

Logical rules:

∧ :
φ,Γ⇒ ∆

φ ∧ ψ,Γ⇒ ∆

Γ⇒ □∆, φ Γ⇒ □∆, ψ

Γ⇒ □∆, φ ∧ ψ

ψ,Γ⇒ ∆

φ ∧ ψ,Γ⇒ ∆

Γ⇒ ∆,□φ Γ⇒ ∆,□ψ
Γ⇒ ∆,□φ ∧□ψ
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∨ :
φ,□Γ⇒ ∆ ψ,□Γ⇒ ∆

φ ∨ ψ,□Γ⇒ ∆

Γ⇒ ∆, φ

Γ⇒ ∆, φ ∨ ψ

□φ,Γ⇒ ∆ □ψ,Γ⇒ ∆

□φ ∨□ψ,Γ⇒ ∆

Γ⇒ ∆, ψ

Γ⇒ ∆, φ ∨ ψ

∀ : φ(t),Γ⇒ ∆

∀xφ(x),Γ⇒ ∆

where t is any term

Γ⇒ □∆, φ(a)

Γ⇒ □∆, ∀xφ(x)
Γ⇒ ∆,□φ(a)

Γ⇒ ∆,□∀x□φ(x)
where a is a free variable which does

not occur in the lower sequent.

∃ : φ(a),□Γ⇒ ∆

∃xφ(x),□Γ⇒ ∆

□φ(a),Γ⇒ ∆

♢∃x□φ(x),Γ⇒ ∆

where a is a free variable which does

not occur in the lower sequent.

Γ⇒ ∆, φ(t)

Γ⇒ ∆, ∃xφ(x)

where t is any term

(C1) :
φ,Γ⇒ ∆

φ⊥⊥,Γ⇒ ∆

Γ⇒ ∆, φ

Γ⇒ ∆, φ⊥⊥

(C2) :
Γ⇒ □∆, φ

φ⊥,Γ⇒ □∆

Γ⇒ ∆,□φ
(□φ)⊥,Γ⇒ ∆

φ,□Γ⇒ ∆

□Γ⇒ ∆, φ⊥
□φ,Γ⇒ ∆

Γ⇒ ∆, (□φ)⊥

(C3) :
φ,□Γ⇒ □∆, ψ

ψ⊥,□Γ⇒ □∆, φ⊥

(P ) :
φ,□Γ⇒ □∆, ψ

ψ,□Γ⇒ □∆, φ ∨ (ψ ∧ φ⊥)
[Orthomodularity]

(□) :
φ,Γ⇒ ∆

□φ,Γ⇒ ∆

□Γ⇒ □∆, φ

□Γ⇒ □∆,□φ [Globalization].

Remark

Our formal systems LL, OL, GLK, GLJ, QL, QL□ are all Gentzen-type

sequent calculi, provided with the basic implication→ or the modal operator

□, where cut rules are not eliminable. To have the basic implication → or

the modal operator □ means that the logical system has a dual structure,

consisting of a logic and its meta-logic. The meta-logic is classical.
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Defined formulas are :

> def⇐⇒ (φ ∨ φ⊥)

⊥ def⇐⇒ (>)⊥

φ→T ψ
def⇐⇒ φ⊥ ∨ (φ ∧ ψ) (cf.Takeuti[11],[12])

φ→ ψ
def⇐⇒ □(φ→T ψ)

¬φ def⇐⇒ φ→ ⊥
φ↔ ψ

def⇐⇒ (φ→ ψ) ∧ (ψ → φ)

♢φ def⇐⇒ (□φ⊥)⊥

φ |◦ ψ
def⇐⇒ □

(
(φ ∧ ψ) ∨ (φ ∧ ψ⊥) ∨ (φ⊥ ∧ ψ) ∨ (φ⊥ ∧ ψ⊥)

)
THEOREM 5.7.1. For formulas φ, ψ, ξ of QL□, we have

(1) QL□ ` □φ⇒ φ , QL□ ` φ⇒ ♢φ ;

(2) QL□ ` □Γ⇒ □∆, φ if and only if QL□` □Γ⇒ □∆,□φ ;

(3) QL□ ` φ,□Γ⇒ □∆ if and only if QL□` ♢φ,□Γ⇒ □∆ ;

(4) QL□` □φ⇔ □□φ , QL□` ♢φ⇔ □♢φ ;

(5) QL□` (□φ ∧□ψ)⇔ □(□φ ∧□ψ) ;

(6) QL□` (□φ ∨□ψ)⇔ □(□φ ∨□ψ) ;

(7) QL□` (□φ)⊥ ⇔ □
(
(□φ)⊥

)
;

(8) QL□ ` ∀x□φ(x)⇔ □∀x□φ(x)⇔ □∀xφ(x) ;

(9) QL□ ` ∃x□φ(x)⇔ □∃x□φ(x) ;

(10) QL□ ` ∃x♢φ(x)⇔ □∃x♢φ(x)⇔ ♢∃xφ(x).

Proof. Straightforward.

COROLLARY 5.7.2. If φ is a □-closed formula of QL, then QL□` φ⇔ □φ.

Proof. For a formula of the form (φ → ψ), QL□ ` (φ → ψ) ⇔ □(φ → ψ),

since φ → ψ is the abbreviation of □(φ⊥ ∨ (φ ∧ ψ)). □-closed formulas of

QL are constructed from formulas of the form φ → ψ by ∧, ∨, ⊥, ∀, and ∃.
Hence, by Theorem 4.1, we have QL□` φ⇔ □φ.

UNDER PEER REVIEW



125

THEOREM 5.7.3.

(1) QL□` φ |◦ ψ, QL□` ψ |◦ φ and QL□` φ |◦ ψ
⊥ are all equivalent ;

(2) If QL□` φ |◦ ψ, then QL□` φ⇔ (φ ∧ ψ) ∨ (φ ∧ ψ⊥) ;

(3) If QL□` φ⇒ ψ, then QL□` φ⇒ ψ ∧ (φ ∨ ψ⊥) ;

(4) If QL□` φ |◦ ψ, then QL□` φ ∨ ψ⊥ ⇔ (φ ∧ ψ) ∨ ψ⊥.

Proof.

(1) Immediate from the definition of |◦ .

(2) We have

QL□` (φ∧ψ)∨ (φ∧ψ⊥)⇒ φ and QL□` φ⇒ (φ∨ψ)∧ (φ∨ψ⊥).

(5.7.1)

∴ QL□` (φ ∧ ψ) ∨ (φ ∧ ψ⊥)⇒ (φ ∨ ψ) ∧ (φ ∨ ψ⊥). (5.7.2)

By Rule (P) of orthomodularity,

QL□` (φ ∨ ψ) ∧ (φ ∨ ψ⊥) ⇔

(φ ∧ ψ) ∨ (φ ∧ ψ⊥) ∨
(
(φ ∨ ψ) ∧ (φ ∨ ψ⊥) ∧ (φ⊥ ∨ ψ⊥) ∧ (φ⊥ ∨ ψ)

)
.

If QL□` φ |◦ ψ, then

QL□` (φ ∨ ψ) ∧ (φ ∨ ψ⊥) ∧ (φ⊥ ∨ ψ⊥) ∧ (φ⊥ ∨ ψ)⇒ ⊥.

∴ QL□` (φ ∨ ψ) ∧ (φ ∨ ψ⊥)⇔ (φ ∧ ψ) ∨ (φ ∧ ψ⊥).

∴ QL□` φ⇔ (φ ∧ ψ) ∨ (φ ∧ ψ⊥) by (5.7.1) and (5.7.2).

(3) If QL□ ` φ ⇒ ψ, then QL□ ` ψ⊥ ⇒ φ⊥. By Rule (P),

QL□` φ⊥ ⇔ ψ⊥ ∨ (φ⊥ ∧ ψ). Hence, QL□` φ⇔ ψ ∧ (φ ∨ ψ⊥).

(4) We have QL□` (φ ∧ ψ) ∨ ψ⊥ ⇒ φ ∨ ψ⊥. Hence, by (3),

QL□` (φ ∧ ψ) ∨ ψ⊥ ⇒ (φ ∨ ψ⊥) ∧
(
(φ ∧ ψ) ∨ ψ⊥) ∨ (φ ∨ ψ⊥)⊥

)
.

By QL□` φ |◦ ψ and (2),

QL□` (φ ∧ ψ) ∨ ψ⊥ ∨ (φ ∨ ψ⊥)⊥ ⇔ ψ ∨ ψ⊥ ⇔ >.

∴ QL□` (φ ∧ ψ) ∨ ψ⊥ ⇔ φ ∨ ψ⊥.
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THEOREM 5.7.4.

(1) QL□` φ |◦ ψ if and only if QL□` φ⇔ (φ ∧ ψ) ∨ (φ ∧ ψ⊥) ;

(2) QL□` φ |◦ ψ if and only if QL□` (φ ∨ ψ⊥) ∧ ψ ⇔ φ ∧ ψ ;

(3) If QL□` φ⇒ ψ, then QL□` φ |◦ ψ .

Proof. (1) Assume QL□` φ⇔ (φ ∧ ψ) ∨ (φ ∧ ψ⊥). Then

QL□` ψ ∧ φ⊥ ⇔ ψ ∧ (φ⊥ ∨ ψ⊥) ∧ (φ⊥ ∨ ψ).

∴ QL□` ψ ∧ φ⊥ ⇔ ψ ∧ (φ⊥ ∨ ψ⊥). (5.7.3)

Applying Rule (P) to QL□` φ ∧ ψ ⇒ ψ ,

QL□` ψ ⇔ (φ ∧ ψ) ∨
(
ψ ∧ (φ⊥ ∨ ψ⊥)

)
.

By (5.7.3), QL□` ψ ⇔ (φ ∧ ψ) ∨ (φ⊥ ∧ ψ). (5.7.4)

Using the assumption and (5.7.4),

QL□` φ∨ψ ∨ (φ∨ψ)⊥ ⇔ φ∨ψ ∨ (φ⊥ ∧ψ⊥)⇔

(φ ∧ ψ) ∨ (φ ∧ ψ⊥) ∨ (φ⊥ ∧ ψ) ∨ (φ⊥ ∧ ψ⊥).

∴ QL□` (φ ∧ ψ) ∨ (φ⊥ ∧ ψ) ∨ (φ ∧ ψ⊥) ∨ (φ⊥ ∧ ψ⊥).

It follows that QL□` φ⇔ (φ ∧ ψ) ∨ (φ ∧ ψ⊥) implies QL□` φ |◦ ψ.

The converse is Theorem 5.7.3(2).

(2) Assume QL□` (φ ∨ ψ⊥) ∧ ψ ⇔ φ ∧ ψ. Then

QL□` (φ ∧ ψ) ∨ (φ⊥ ∧ ψ)⇔
(
(φ ∨ ψ⊥) ∧ ψ

)
∨ (φ⊥ ∧ ψ). (5.7.5)

By QL□` (φ⊥ ∧ ψ)⇒ ψ and Rule (P),

QL□` (φ⊥ ∧ ψ) ∨
(
(φ ∨ ψ⊥) ∧ ψ

)
⇔ B.

By (5.7.5) QL□ ` (φ ∧ ψ) ∨ (φ⊥ ∧ ψ)⇔ ψ.

Therefore, QL□` φ |◦ψ by (1).
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(3) If QL□` φ⇒ ψ, then

QL□` ψ ⇒ φ ∨ (ψ ∧ φ⊥) by (P) and QL□` φ⇔ φ ∧ ψ.

Therefore, QL□ ` ψ ⇒ (φ ∧ ψ) ∨ (ψ ∧ φ⊥).

Hence, QL□` φ |◦ ψ by (1).

THEOREM 5.7.5.

(1) If QL□` (φ |◦ ψ) ∧ (φ |◦ ξ), then

QL□` (φ ∧ ψ) ∨ (φ ∧ ξ)⇔ φ ∧ (ψ ∨ ξ) and

QL□` (φ ∨ ψ) ∧ (φ ∨ ξ)⇔ φ ∨ (ψ ∧ ξ).

(2) If QL□` φ |◦ ψ(a), then

QL□` ∃x(φ ∧ ψ(x))⇔ φ ∧ ∃xψ(x) and

QL□ ` ∀x(φ ∨ ψ(x))⇔ φ ∨ ∀xψ(x).

Proof. (1) Assume QL□` (φ |◦ ψ) ∧ (φ |◦ ξ). We have

QL□` (φ ∧ ψ) ∨ (φ ∧ ξ)⇒ φ ∧ (ψ ∨ ξ).

By Rule (P),

QL□` φ ∧ (ψ ∨ ξ) ⇔ (φ ∧ ψ) ∨ (φ ∧ ξ) ∨(
φ ∧ (ψ ∨ ξ) ∧ (φ⊥ ∨ ψ⊥) ∧ (φ⊥ ∨ ξ⊥)

)
.

By Theorem 4.4(2),

QL□` φ ∧ (φ⊥ ∨ ψ⊥) ⇔ φ ∧ ψ⊥ and

QL□` φ ∧ (φ⊥ ∨ ξ⊥) ⇔ φ ∧ ξ⊥

∴ QL□` φ ∧ (ψ ∨ ξ)⇔ (φ ∧ ψ) ∨ (φ ∧ ξ) ∨
(
φ ∧ (ψ ∨ ξ) ∧ ψ⊥ ∧ ξ⊥

)
.

Since QL□` φ ∧ (ψ ∨ ξ) ∧ ψ⊥ ∧ ξ⊥ ⇒ ⊥,

QL□` φ ∧ (ψ ∨ ξ)⇔ (φ ∧ ψ) ∨ (φ ∧ ξ).

We have QL□` φ⊥ |◦ψ
⊥ and QL□` φ⊥ |◦ξ

⊥. Therefore,

QL□` (φ ∨ ψ) ∧ (φ ∨ ξ)⇔ φ ∨ (ψ ∧ ξ).
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(2) Similarly, assume QL□` φ |◦ψ(a). We have

QL□` ∃x(φ ∧ ψ(x))⇒ φ ∧ ∃xψ(x).

By Rule (P),

QL□` φ∧ ∃xψ(x)⇔ ∃x(φ∧ ψ(x))∨
(
φ∧ ∃xψ(x)∧ ∀x(φ⊥ ∨ ψ⊥(x))

)
.

Since QL□` φ |◦ ψ(a), we have

QL□` φ ∧ ∃xψ(x) ∧ ∀x(φ⊥ ∨ ψ⊥(x))

⇔ φ ∧ ∃xψ(x) ∧ ∀x
(
φ ∧ (φ⊥ ∨ ψ⊥(x)

)
⇔ φ ∧ ∃xψ(x) ∧ ∀x(φ ∧ ψ⊥(x)), by Theorem 4.4(2)

⇔ φ ∧ ∃xψ(x) ∧ ∀xψ⊥(x)⇔ ⊥

∴ QL□` φ ∧ ∃xψ(x)⇔ ∃x(φ ∧ ψ(x)).

THEOREM 5.7.6.

(1) QL□ ` φ, φ⊥ ∨ (φ ∧ ψ) ⇒ ψ. That is, QL□ ` φ, φ→T ψ ⇒ ψ. It

follows that →T represents an implication.

(2) QL□` □Γ, φ⇒ ψ if and only if QL□` □Γ⇒ □(φ→T ψ). Therefore,

the following definition of the basic implication in QL□ is justified :

φ→ ψ
def⇐⇒ □(φ→T ψ).

Proof. (1) We have QL□ ` φ |◦φ
⊥ and QL□ ` φ |◦ (φ ∧ ψ). Hence, by

Theorem 5.7.5,

QL□` φ ∧
(
φ⊥ ∨ (φ ∧ ψ)

)
⇒ (φ ∧ φ⊥) ∨ (φ ∧ ψ)
⇒ ψ.
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(2) If QL□` □Γ, φ⇒ ψ, then QL□` □Γ, φ⇒ φ ∧ ψ. Hence

QL□` □Γ, φ⊥ ∨ φ⇒ φ⊥ ∨ (φ ∧ ψ). ∴ QL□` □Γ⇒ □(φ→T ψ).

Conversely, if QL□` □Γ⇒ □(φ→T ψ), then

QL□` □Γ, φ⇒ φ ∧ (φ→T ψ).

By (1), we have QL□` □Γ, φ⇒ ψ.

THEOREM 5.7.7. QL□` □φ |◦ ψ for any formulas φ and ψ.

Proof. By using Rule (∨)-left,

QL□` □φ⇔ □φ ∧ (ψ ∨ ψ⊥)⇔ (□φ ∧ ψ) ∨ (□φ ∧ ψ⊥).

Therefore, by Theorem 5.7.4, QL□` □φ |◦ ψ.

5.7.1 Relation between LL, OL, QL and QL□

By Theorem 3.4, LL `φ implies OL `φ, and QL is OL + (P). We show

in this section that QL□ is equivalent to QL, and also GLJ□ is equivalent to

GLJ.

(φ → ψ) in QL□ is the abbreviation of □(φ⊥ ∨ (φ ∧ ψ)), and □ψ in QL

is the abbreviation of ((ψ → ψ)→ ψ).

THEOREM 5.7.8. QL` φ implies QL□` φ.

Proof. If φ is a □-closed formula of QL, then QL□` φ ⇔ □φ by Corollary

4.2. Hence, it suffices to show that if the upper sequent(s) of each of the

following rules of QL is provable in QL□, then so is the lower sequent:

→:
Γ⇒ □∆, φ ψ,□Π⇒ Λ

(φ→ ψ),Γ,□Π⇒ □∆,Λ

φ,□Γ⇒ □∆, ψ

□Γ⇒ □∆, (φ→ ψ)

□φ,Γ⇒ ∆,□ψ
Γ⇒ ∆, (□φ→ □ψ) .

(1) If QL□` Γ⇒ □∆, φ and QL□` ψ,□Π⇒ Λ, then by (Cut) together

with QL□` φ, (φ→ ψ)⇒ ψ,

QL□` (φ→ ψ),Γ,□Π⇒ □∆,Λ.
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(2) QL□ ` φ,□Γ ⇒ □∆, ψ implies QL□ ` □Γ ⇒ □∆, (φ → ψ), by

Theorem 5.7.6(2).

(3) If QL□` □φ,Γ⇒ ∆,□ψ, then QL□` □φ,Γ⇒ ∆,□φ ∧□ψ. Hence,

QL□` (□φ)⊥ ∨□φ,Γ⇒ ∆, (□φ)⊥ ∨ (□φ ∧□ψ).

Therefore, QL□` □φ,Γ⇒ ∆,□ψ implies QL□` Γ⇒ ∆, (□φ→ □ψ).

THEOREM 5.7.9. QL□` φ implies QL` φ.

Proof. □φ is an abbreviation of ((φ→ φ)→ φ), hence □φ is □-closed. □Γ,

□∆, · · · are sequences of □-closed formulas. Hence, it suffices to show that

if the upper sequent of each of the following rules of QL□ is provable in QL,

then so is the lower sequent:

(□) :
φ,Γ⇒ ∆

□φ,Γ⇒ ∆

□Γ⇒ □∆, φ

□Γ,⇒ □∆,□φ [Globalization].

(1) Since QL` (φ→ φ), if QL` φ,Γ⇒ ∆, then by (→),

QL` ((φ→ φ)→ φ),Γ⇒ ∆, i.e. QL` □φ,Γ⇒ ∆.

(2) If QL ` □Γ ⇒ □∆, φ, then QL ` (φ → φ),□Γ ⇒ □∆, φ. Therefore,

QL` □Γ⇒ □∆,□φ.
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Chapter 6

Various Global Set Theories

Formal classical set theory ZFC is the system consisting of classical logic LK

and Zermelo-Freankel axioms A1-A9 and AC.

Truth value set of LK is complete Boolean lattice, i.e. complete Boolean

lattice is a counterpart of classical logic. D.Scott and R.Solovey introduced

a Boolean valued universe. Thus, ZFC is described and interpreted in the

Boolean valued universe.

The usual mathematics can be developed in the Boolean valued universe,

wheras Boolean valued universe is constructed in ZFC.

An intuitionistic logic is represented by a complete Heyting algebra and

the intuitionistic set theory is developed in a Heyting valued universe. Boolean

algebra and Heyting algebra have the structure of sheaf of complete Boolean

algebra 2 = {1, 0}. Both of Heyting valued universe and Boolean valued

universe have the structure of sheaf of 2-valued universe.

Classical set theory ZFC is not complete as shown in Gödel’s incomplete-

ness theorem. That is, there exists a valid formula of ZFC which is not

provable in ZFC.

Von-Neumann-Bernays-Gödel set theory NBG has the notion of class,

which is a collection of sets defined by a formula whose quantifiers range

over sets. NBG is a conservative extension of ZFC, and can define classes

such as the class of all sets and the class of all ordinals.

Global Von-Neumann-Bernays-Gödel set theory (GNBG) is the global

classical logic with axioms of global set theory.
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A meta-theoretical sentence “A formula φ is true” is expressible in GNBG.

As a result, GNBG becomes complete.

6.1 Global set theory

Global set theory GNBG is based on global logic with primitive symbols

• Class constant V , which indicates ‘universe’

• Set constant ∅, which indicates ‘empty set ’

• Class variables A, B, C, · · · , X, Y , Z, · · ·

• Set variables a, b, c, · · · , x, y, z, · · ·

• membership relation ∈ and equality =

• Logical operators ∧, ∨, → ( or □), ∀ and ∃.

Atomic formulas of GNBG are of the form A = B or a∈A.

6.1.1 Axioms of global set theory

Axioms for global set theory are similar to those of ZFC set theory. Quan-

tifiers of the form ∀x ∈ V or ∃x ∈ V for set variables will shorten to ∀x or

∃x.

GA1. Universe ∀X (∃Y (X∈Y )→ ∃x∈V (x = X))

Empty set ∀x¬(x∈∅)

GA2. Extensionality ∀X,Y (X = Y ↔ ∀z(x∈X ↔ z∈Y )) .

GA3. Regularity ∀x (∃y(y∈x)→ ∃y∈x(y ∩ x = ∅)).

GA4. Infinity ∃x(∃a(a∈x) ∧ ∀y∈x∃z(y∈z ∧ z∈x))

GA5. Pairing ∀u, v∃z (∀x(x∈z ↔ (x=u ∨ x=v))).

The set z satisfying ∀x(x∈z ↔ (x=u ∨ x=v)) is denoted by {u, v}.
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GA6. Union ∀u∃z (∀x(x∈z ↔ ∃y∈u(x∈y))) .

The set z satisfying ∀x(x∈z ↔ ∃y∈u(x∈y)) is denoted by
⋃
u.

GA7. Power set ∀u∃z (∀x(x∈z ↔ x ⊂ u)), where

x⊂u def⇐⇒ ∀y(y∈x→ y∈u).

The set z satisfying ∀x(x∈z ↔ x⊂u) is denoted by P(u).

GA8. Class comprehension For any global formula φ(x) containing no

quantifiers over class variable, there is a class A such that

∀x(x
2

∈A↔ φ(x)).

The class A satisfying ∀x(x
2

∈A↔ φ(x)) is denoted by

{x | φ(x)}.

GA9 Collection ∀u
(
∀x(x∈u→ ∃yφ(x, y))→ ∃v∀x(x∈u→ ∃y

2

∈vφ(x, y))
)
,

where y
2

∈v def
= □(y∈v).

GA10. Zorn Gl(u) ∧ ∀v ∈A (Chain(v, u)→
⋃
v ∈ u) → ∃z ∈AMax(z, u),

where

Gl(u)
def⇐⇒ ∀x(x ∈ u→ x

2

∈u),
Chain(v, u)

def⇐⇒ v⊂u ∧ ∀x, y(x, y∈v → x⊂y ∨ y⊂x),
Max(z, u)

def⇐⇒ z ∈ u ∧ ∀x(x∈u ∧ z⊂x→ z = x).

GA11. Axiom of ♢ ∀U∃Z∀t(t∈Z ↔ ♢(t∈U)).

The class Z satisfying ∀t(t∈Z ↔ ♢(t∈U)) is denoted by ♢U .

6.2 Basic universe of set theory

Underlying basic universe V ( =V 2 ) (cf. p.78) is constructed inductively:

Vα = {u | ∃β<α ∃Du⊂Vβ(u : Du→ 2)},
V =

⋃
α∈On Vα.
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Truth values of atomic formulas in the basic universe are given as

[[u=v]] =
∧

x∈Du(u(x) ⊃ [[x∈v]]) ∧
∧

x∈Dv(v(x)⊃ [[x∈u]]),
[[u∈v]] =

∨
x∈Dv(v(x) ∧ [[u=x]]).

Logical operators ∧, ∨, ¬, ∀, ∃ are represented by algebraic operators on the

Boolean algebra 2.

[[φ ∧ ψ]] = [[φ]] ∧ [[ψ]]

[[φ ∨ ψ]] = [[φ]] ∨ [[ψ]]

[[φ→ ψ]] =

1 [[φ]] ≤ [[ψ]]

0 otherwise

[[□φ]] =

1 [[φ]] 6= 1

0 otherwise

[[∀xφ(x)]] =
∧
x∈V

[[φ(x)]]

[[∃xφ(x)]] =
∨
x∈V

[[φ(x)]]

Then every formula has truth value 1 or 0. We express mathematical objects

such as numbers, relations, functions and etc. in the universe.

6.3 Lattice valued universe

In general, truth value set of global set theory is an complete lattice. Let L
be a complete lattice, where L is a set. Logical operators are interpreted as

algebraic operators on the complete lattice, where → is the basic implication

and ¬ is the corresponding negation:

¬φ def⇐⇒ φ→ ⊥.

L-valued universe V L is constructed in V by induction:

V L
α = {u | ∃β<α ∃Du⊂V L

β (u : Du→ L)}
V L =

⋃
α∈On

V L
α
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The least α such that u ∈ V L
α is called the rank of u. Class A of V L is a

function DA→ L, where the domain DA is a sub-class of V L.

A : DA→ L

For classes A,B and a set a, [[A=B]] and [[a∈B]] are defined by induction

on the rank of A,B.

[[A=B]] =
∧

x∈DA

(A(x)→ [[x∈B]]) ∧
∧

x∈DB

(B(x)→ [[x∈A]])

[[a∈B]] =
∨

x∈DB

([[a=x]] ∧ B(x)).

We say an element p of L is 2-closed if p = 2p, where □p =
(
(p→ p)→

p
)
. As an immediate consequence of the definition of atomic formulas, we

have:

LEMMA 6.3.1. [[A=B]] is 2-closed for every classes A,B.

Hence we have

LEMMA 6.3.2. For every classed A,B and {bk}k⊂L,

[[A=B]] ∧
∨

k bk =
∨

k[[A=B]] ∧ bk;

and for classes A and Bk and b∈L,

(
∨

k[[A = Bk]]) ∧ b =
∨

k([[A = Bk]] ∧ b).

LEMMA 6.3.3. Let A,B are classes of V L. Then

(1) [[A=B]] = [[B=A]]

(2) [[A=A]] = 1

(3) If x ∈ DA then A(x) ≤ [[x∈A]].

Proof. (1) is obvious.

Let x ∈ DA. Since [[x=x]] = 1 by induction hypothesis,

A(x) ≤
∨

x′∈DA

[[x=x′]] ∧ A(x′) ⩽ [[x∈A]],

and hence, [[A=A]] = 1.
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THEOREM 6.3.4. For classes A,B,C, a, b of V L,

(1) [[A=B ∧ B=C]] ≤ [[A=C]]

(2) [[A=B ∧ B∈C]] ≤ [[B∈C]]

(3) [[A=B ∧ C∈B]] ≤ [[C∈A]]

Proof. (1) We proceed by induction. Assume that A,B,C are classes of V L
α .

By Theorem 3.7.5.(8),

[[A=B]] ∧ A(x) ⩽ (A(x)→ [[x∈B]]) ∧ A(x) ⩽ [[x∈B]]

for x ∈ DA. Since [[A=B ∧B=C]] is □-closed,

[[A=B ∧B=C]] ∧ A(x) ⩽ [[B=C]] ∧
∨

y∈DB

[[x=y]] ∧B(y)

⩽
∨

y∈DB

([[x=y]] ∧ [[B=C]] ∧ B(y))

⩽
∨

y∈DB

([[x=y]] ∧
∨

z∈DC

[[y=z]] ∧ C(z))

⩽
∨

y∈DB

∨
z∈DC

[[x=y ∧ y=z]] ∧ C(z).

By using induction hypothesis,

⩽
∨

z∈DC

[[x=z]] ∧ C(z)

⩽ [[x∈C]].

Since [[A=B ∧ B=C]] is 2-closed again,

[[A=B ∧ B=C]] ⩽
∧

x∈DA

(A(x)→ [[x∈C]]).

Similarly, we have

[[A=B ∧ B=C]] ⩽
∧
z∈D

(C(z)→ [[z∈A]]).

Hence, [[A=B ∧ B=C]] ⩽ [[A=C]].

(2) and (3) follows from (1).
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6.4 Lattice valued set theory

A global set theory on VL whose primitive formulas are of the form A = B or

a∈B and logical operations are ∧, ∨, ¬, →, ∀x, ∃x is called lattice valued

set theory LNBG . We extend the definition of [[φ]] in natural way:

[[¬φ]] = ¬[[φ]]

[[φ1 ∧ φ2]] = [[φ1]] ∧ [[φ2]]

[[φ1 ∨ φ2]] = [[φ1]] ∨ [[φ2]]

[[φ1 → φ2]] = [[φ1]]→ [[φ2]] =

1 [[φ1]] ≤ [[φ2]]

0 [[φ1]] 6≤ [[φ2]]

[[∀xφ(x)]] =
∧

u∈V L [[φ(u)]]

[[∃xφ(x)]] =
∨

u∈V L [[φ(u)]]

[[2φ]] = 2[[φ]], where 2φ denotes (φ→ φ)→ φ.

The equality axioms are valid on V L :
THEOREM 6.4.1. For any formula φ(X) and classes A,B of V L,

[[A=B ∧ φ(A)]] ⩽ [[φ(B)]].

Proof. If φ(X) is an atomic formula, then it is immediate from Theorem

6.3.3 and 6.3.4. Other cases follows from the fact that [[A = B]] is 2-closed

and Theorem 5.4.2.

THEOREM 6.4.2. For any formula φ(x) and class A of V L,

(1) [[∀x(x∈A→ φ(x))]] =
∧

x∈DA[[x∈A→ φ(X)]]

(2) [[∃x(x∈A ∧ φ(x))]] =
∨

x∈DA[[x ∈ A ∧ φ(x)]]

Proof. (1): [[∀x(x∈A→ φ(x))]] ⩽
∧

x∈DA[[x∈A→ φ(x)]] is obvious. Now we

show (≥). By using the fact that [[x∈A]] ⩽
∨

x′∈DA[[x = x′]], we have∧
x′∈DA

[[x′∈A → φ(x′)]] ∧ [[x∈A]]

=
∧

x′∈DA

[[x′∈A→ φ(x′)]] ∧ [[x∈u]] ∧
∨

x′′∈DA

[[x = x′′]]

=
∨

x′′∈DA

( ∧
x′∈DA

[[x′∈A→ φ(x′)]] ∧ [[x∈A]] ∧ [[x=x′′]]
)

⩽ [[φ(x)]]
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Since
∧

x∈DA[[x∈A→ φ(x)]] is 2-closed, we have∧
x∈DA

[[x∈A→ φ(x)]]) ⩽ [[∀x(x ∈ A→ φ(x))]].

(2): By using [[x∈A]] ⩽
∨

x∈DA[[x = x′]] again,

[[∃x(x∈A ∧ φ(x))]] ⩽
∨

x∈V L

∨
x′∈DA

([[x=x′]] ∧ [[x∈A ∧ φ(x)]])

⩽
∨

x′∈DA

[[x′∈A ∧ φ(x′)]].

DEFINITION 6.4.1. Restriction A ↾ p of class A of V L by p∈L is defined

byD(A↾p) = {x↾p | x∈DA}
(A↾p)(x↾p) =

∨
{A(x′) ∧ p | x′∈DA, x↾p = x′ ↾p} for x∈DA.

If A⊂V L
α , so is A ↾ p, and we have

THEOREM 6.4.3. If A is a class of V L, x ∈ V L, p, q ∈ L, and p is 2-closed

(i.e, p = 2p), then

(1) p ⩽ [[A = A↾p]]

(2) [[x∈A↾p]] = [[x∈A]] ∧ p

(3) (A↾q)↾p = A↾(p ∧ q).

Proof. We proceed by induction on the rank of DA,

(1) : For x∈DA,

p ∧ A(x) ⩽ (A↾p)(x↾p) ∧ [[x=x↾p]] ⩽ [[x∈A↾p]]
(A↾p)(x↾p) =

∨
x′∈DA, x↾p=x′↾p

A(x′) ∧ p ∧ [[x=x′=x↾p]] ⩽ [[x↾p∈A]].

Therefore, p ≤ [[A=A↾p]].
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(2) : By (1) and Theorem 6.4.1,

[[x∈A]] ∧ p ⩽ [[x∈A↾p]].

(⩽) follows from the fact that x′′ ↾p = x′ ↾p implies p ⩽ [[x′′=x′]] :

[[x∈A↾p]] =
∨

x′∈DA

[[x=x′ ↾p]] ∧
∨

x′′∈DA, x′′↾p=x′↾p
A(x′′) ∧ p

⩽ [[x∈A]] ∧ p

(3) : D ((A↾q)↾p) = D (A↾(q ∧ p)), by the induction hypothesis, and

((A↾q)↾p) ((x↾q)↾p) = (u↾(q ∧ p)) (x↾(q ∧ p))

by using the fact : (
∨

x′(A(x′) ∧ q)) ∧ p =
∨

x′ (A(x′) ∧ q) ∧ p).

DEFINITION 6.4.2. If φ is valid in V L, i.e. [[φ]] = 1 in V L, then we write

V L ⊨ φ.
V L ⊨ φ def⇐⇒ (φ is valid in V L)

THEOREM 6.4.4. Axioms of global set theory are valid in the universe V L.

Proof. We prove V L ⊨ φ for each axiom φ of global set theory.

Axiom of extensionality: ∀x(x∈A↔ x∈B)→ A=B.

Proof. By Theorem 6.4.2.

Axiom of regularity: ∀x (∃y(y∈x)→ ∃y∈x(y ∩ x = ∅)).

Proof. Let y be an element of minimum rank of Dx.

Axiom of pair: ∀u, v∃z ∀x(x∈z ↔ x=u ∨ x=v).
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Proof. For u, v ∈ V L define z byDz = {u, v}z(t) = 1 for t∈Dz

Then [[x∈z]] =
∨

t∈Dz[[x= t]] ∧ z(t) = [[x=u]] ∨ [[x=v]].

Therefore, [[∀x(x∈z ↔ x=u ∨ x=v)]] = 1.

Axiom of union: ∀u∃v∀x(x∈v ↔ ∃y(y∈u ∧ x∈y)).

Proof. For u ∈ V L defined v byDv =
⋃

y∈DuDy

v(x) = [[∃y(y∈u ∧ x∈y)]].

Then, by Theorem 6.4.2,

[[∃y(y∈u ∧ x∈y)]] =
∨

y∈Du

[[y∈u]] ∧ [[x∈y]]

=
∨

y∈Du

[[y∈u]] ∧ [[x∈y]] ∧
∨

x′∈Dy

[[x = x′]]

=
∨

y∈Du, x′∈Dy

[[x=x′]] ∧ [[x′∈y ∧ y∈u]]

= [[x∈v]]

DEFINITION 6.4.3. For each set x ∈ V we define x̌∈V L by

Dx̌ = {ť | t∈x}
x̌(ť) = 1.

x̌ is called the check set associated with x. For check sets x̌, y̌, we

have

[[x̌= y̌]] =

1 if x = y

0 if x 6= y
; [[x̌∈ y̌]] =

1 if x ∈ y

0 if x 6∈ y.
(6.4.1)
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DEFINITION 6.4.4. “u is a check set ”, in symbols ck(u), is defined by

ck(u)
def⇐⇒ ∀t(t∈u → t

2

∈u ∧ ck(t)),

where t
2

∈u def
= □(t ∈ u). Then [[ck(x̌)]] = 1 for all x.

Axiom of infinity: ∃u (∃x(x∈u) ∧ ∀x(x∈u→ ∃y∈u(x∈y))) .

Proof. ω̌ associated with the set ω of all natural numbers satisfies

[[∃x(x∈ ω̌) ∧ ∀x(x∈ ω̌ → ∃y∈ ω̌(x∈y))]] = 1.

Axiom of power set: ∀u∃v∀x(x∈v ↔ x⊂u), where
x⊂u def⇐⇒ ∀t(t∈x→ t∈u).

Proof. Let u ∈ V L
α . For every x ∈ V L, define x∗ byDx∗ = Dux∗(t) = [[x⊂u ∧ t∈x]].

Since

[[x⊂u ∧ t∈x]] ⩽ [[t∈u]] ⩽
∨

t′∈Du

[[t= t′]],

we have

[[x⊂u ∧ t∈x]] ⩽
∨

t′∈Du

[[t= t′ ∧ x⊂u ∧ t′∈x]]

⩽ [[t∈x∗]].

It follows that for every x∈V L there exists x∗∈V L
α+1 such that

[[x⊂u]] ≤ [[x=x∗]]. Now we define v byDv = {x∈V L
α+1 | Dx = Du}

v(x) = [[x⊂u]].

Then

[[∀x(x∈v ↔ x⊂u)]] = 1.
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Axiom of class comprehension: For a first order formula φ(a) with free

variable a and class parameters, ∃X (x∈X ↔ φ(x)).

Proof. Define X by

X(x) = [[φ(x)]]

We denote 2(a ∈ b) by a
2

∈ b.
Axiom of collection: ∀u

(
∀x(x∈u→ ∃yφ(x, y))→ ∃v∀x(x∈u→ ∃y

2

∈vφ(x, y))
)
.

Proof. Let

p = [[∀x(x∈u→ ∃yφ(x, y))]] =
∧

x∈Du

([[x∈u]]→
∨
y

[[φ(x, y)]]).

It suffices to show that there exists v such that

p ⩽ [[∀x(x∈u→ ∃y
2

∈vφ(x, y)]].

Since L is a set, for each x∈Du there exists an ordinal α(x) such that

p ∧ [[x∈u]] ⩽
∨

y∈V L
α(x)

[[φ(x, y)]].

Hence, by using the axiom of collection externally, there exists an ordinal α

such that

p ∧ [[x∈u]] ⩽
∨

y∈V L
α

[[φ(x, y)]] for all x∈Du.

Now we defined v by Dv = V L
α

v(y) = 1

Then

p ∧ [[x∈u]] ⩽
∨

y∈Dv

[[y
2

∈v ∧ φ(x, y)]] = [[∃y
2

∈vφ(x, y)]] for all x∈Du.

Since p = 2p, we have

p ⩽ [[∀x(x∈u→ ∃y
2

∈vφ(x, y)]].
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Axiom of ∈-induction: ∀x (∀y(y∈x→ φ(y))→ φ(x))→ ∀xφ(x).

Proof. Let p = [[∀x (∀y(y∈x→ φ(y)) → φ(x)]]. We prove p ⩽ [[∀xφ(x)]] =∧
x∈V L [[φ(x)]] by induction on the rank of x. Let x∈ V L

α . Since p ≤ [[φ(y)]]

for all y∈Dx ⊂ V L
<α by induction hypothesis,

p ∧ [[y∈x]] ⩽ [[φ(y)]] for all y ∈ Dx.

Hence, by using p = 2p, we have

p ⩽ [[∀y(y∈x→ φ(y))]].

It follows that p ⩽ [[∀xφ(x)]].

Zorn’s Lemma : Gl(u) ∧ ∀v[Chain(v, u)→
⋃
v∈u]→ ∃zMax(z, u), where

Gl(u)
def⇐⇒ ∀x(x∈u→ x

2

∈u),
Chain(v, u)

def⇐⇒ v⊂u ∧ ∀x, y(x, y∈v → x⊂y ∨ y⊂x),
Max(z, u)

def⇐⇒ z∈u ∧ ∀x(x∈u ∧ z⊂x→ z=x).

Proof. For u ∈ V L
α , let

p = [[Gl(u) ∧ ∀v(Chain(v, u)→
⋃

v∈u)]],

and let U be a maximal subset of V L
α such that

∀x, y∈U([[x∈u ∧ ∃t(t∈x) ∧ y∈u ∧ ∃t(t∈y)]] ∧ p ⩽ [[x⊂y ∨ y⊂x]]).

U is not empty. Define v byDv = U

v(x) = p ∧ [[x∈u ∧ ∃t(t∈x)]].

Now we prove that p ⩽ [[Max(
⋃
v, u)]]. Since p = 2p and p ∧ v(x) ⩽ [[x∈u]]

for all x ∈ Dv, we have p ⩽ [[v ⊂ u]]. Hence, by the definition of v, p ⩽
[[Chain(v, u)]]. Therefore, p ≤ [[

⋃
v∈u]]. Now it suffices to show that

p ∧ [[x∈u ∧
⋃

v⊂x]] ⩽ [[x⊂
⋃

v]] for x ∈ Du.
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Let x∈Du and r = p ∧ [[x∈u ∧
⋃
v⊂x]]. Then r is 2-closed, and we have

r ⩽ [[x=x↾r]] by Theorem 6.4.3. Hence x↾r∈U . In fact, for each y ∈ U , we
have

[[y∈u ∧ ∃t(t∈y) ∧ (x↾r)∈u ∧ ∃t(t∈x↾r)]] ∧ p ⩽ [[y∈v]] ∧ r
⩽ [[y⊂

⋃
v⊂x]] ∧ [[x=x↾r]]

⩽ [[y⊂x↾r]]
⩽ [[y⊂x↾r ∨ x↾r⊂y]].

It follows that

r ∧ x(t) ⩽ [[x=x↾r ∧ x∈u ∧ t∈x]] ∧ p
⩽ [[x=x↾r ∧ x↾r∈u ∧ ∃t(t∈x↾r)]] ∧ p
⩽ [[x=x↾r]] ∧ v(x↾r)
⩽ [[x∈v]] ≤ [[x⊂

⋃
v]]

Therefore, r ⩽ [[x⊂
⋃
v]].

DEFINITION 6.4.5. ♢ is the logical operation defined by ♢φ def⇐⇒ ¬2¬φ.

Axiom of ♢♢♢: ∀u∃v∀x(x∈v ↔ ♢(x∈u)).

Proof. For a given u∈V L, defined v byDv = Du

v(x) = [[♢(x∈u)]].

By using Theorem 3.7.6,

[[♢(x∈u)]] = ♢
∨

x′∈Du

[[x=x′]] ∧ u(x′)

⩽
∨

x′∈Du

[[x=x′]] ∧ [[♢(x′∈u)]] = [[x∈v]].

Hence [[∀x(x∈v ↔ ♢(x∈u))]] = 1.

A set theory on V L for complete lattice L is formulated as lattice valued

set theory LNBG, which is based on the lattice valued logic.
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6.4.1 Well-Founded Relations in LNBG

Any formula with two free set variables determines a binary relation. For

a binary relation A(x, y), we use the following abbreviations:

x ∈ DomA
def⇐⇒ ∃yA(x, y), x ∈ RgeA

def⇐⇒ ∃yA(y, x),

x ∈ FldA
def⇐⇒ ∃y(A(x, y) ∨ A(y, x)).

A binary relation ≺ is said to be well-founded if the following conditions

are satisfied:

WF1 ∀x, y¬(x ≺ y ∧ y ≺ x)

WF2 ∀x[x∈Fld(≺) ∧ ∀y(y≺ x→ φ(y))→ φ(x)]→ ∀x(x∈Fld(≺)→ φ(x))

WF3 ∀x∃y∀z(z ≺ x→ z∈y)

In view of the axiom GA9 (∈-induction), it is clear that the relation ∈ is

itself a well-founded relation, and so is
2

∈.

Singlton {x} and ordered pair 〈x, y〉 are defined as usual:

{x} def= {x, x}, 〈x, y〉 def= {{x}, {x, y}}

so that x∈{y} ↔ x=y and 〈x, y〉=〈x′, y′〉 ↔ x=x′ ∧ y=y′ hold.

We say a binary relation F (x, y) is global, if ∀x, y(F (x, y)→ 2F (x, y));

and a global relation F (x, y) is functional, if

∀x, y, y′(F (x, y) ∧ F (x, y′)→ y=y′).

For a global functional relation F , we write F (x) = y instead for F (x, y).

If F is a global functional relation and ≺ is a well-founded relation, then

{〈x, y〉 | F (x, y)∧♢(x ≺ u)} is denoted by F≺u, for each set u∈Fld(≺). F≺u

is a set by WF3, GA11(♢) and GA9(Collection).

The following theorem can be proved in the usual way, by using the fact

that

(y ≺ x→ 2φ(y))⇐⇒ (♢(y ≺ x)→ 2φ(y)).
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THEOREM 6.4.5 (Recursion Principle). Let ≺ be a well founded relation

and H be a global functional relation such that ∀x∃yH(x, y). Then there

exists a unique global functional relation F such that

DomF=Fld(≺) ∧ ∀x (x ∈ Fld(≺)→ (F(x)=H(F≺x))) .

DEFINITION 6.4.6. We define the formula Ord(α) (“α is an ordinal”) in

LNBG as follows:

Tr(α)
def⇐⇒ ∀β, γ(β∈α ∧ γ∈β → γ∈α),

Ord(α)
def⇐⇒ Gl(α) ∧ Tr(α) ∧ ∀β(β∈α→ Gl(β) ∧ Tr(β)),

where Gl(α)
def⇐⇒ ∀β(β∈α→ β

2

∈α).

As an immediate consequence of the above definition, we have:

LEMMA 6.4.6.

(1) Ord(α) ∧ β∈α→ Ord(β)

(2) Gl(X) ∧ ∀x(x∈X → Ord(x))→ Ord(
⋃

X)

DEFINITION 6.4.7. A global well founded relation ≺ is called a well-

ordering on a set u if

(Fld(≺) = u) ∧ (≺ is transitive) ∧ (≺ is extensional),

where

≺ is transitive
def⇐⇒ ∀x, y, z[(x≺y) ∧ (y ≺ z)→ (x ≺ z)]

≺ is extensional
def⇐⇒ ∀x, y[x, y∈u ∧ ∀z(z≺x↔ z≺y)→ x = y].

THEOREM 6.4.7. Every global set can be well-ordered, i.e. for every global

set u, there exists a global well-ordering relation ≺ on u.

Proof. Suppose Gl(u), and let

P
def
= {〈v, w〉 | Gl(v) ∧Gl(w) ∧ v ⊂ u ∧ (w is a well-ordering on v)},
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and let 〈v, w〉≺〈v′, w′〉 mean that w = w′dv and v is an initial w′-section of

v′, i.e.

〈v, w〉≺〈v′, w′〉 def⇐⇒ (v⊂v′) ∧ (w=w′ ∩ (v×v)) ∧ (v×(v′ − v) ⊂ w′).

If 〈v, w〉∈P , since Gl(v) ∧ ¬¬(y∈v) =⇒ y∈v, we have

〈v, w〉≺〈v′, w′〉 ∧ x∈v ∧ 〈y, x〉∈w′ =⇒ y∈v.

Let

I def
= {I ⊂ P | ∀p, q(p, q∈I → p≺q∨p=q∨q≺p)∧∀p, q(p∈I∧q≺p→ q∈I)}.

Then

(I ′ ⊂ I) ∧ ∀I, I ′(I, I ′∈I ′ → I ⊂ I ′ ∨ I ′ ⊂ I) =⇒
⋃
I ′ ∈ I.

By using GA10, there exists a maximal I0 ∈ I. Let

v0 =
⋃
{v | 〈v, w〉

2

∈ I0}, w0 =
⋃
{w | 〈v, w〉

2

∈ I0}.

Then 〈v0, w0〉 ∈P . By maximality of I0 we have ∀x¬(x ∈ u − v0)). ∀x(x∈
u→ x∈v0 ∨ ¬(x∈v0)). It follows that u = v0.

THEOREM 6.4.8. If u is a global set and ≺ is a global well-ordering

relation on u, then 〈u,≺〉 is isomorphic to an ordinal 〈α,∈〉, i.e. there exists

ρ such that

(ρ :u→ α) ∧ ρ(u) = α ∧
∀x, y[x, y ∈ u→ (x ≺ y ↔ ρ(x) ∈ ρ(y)) ∧ (x = y ↔ ρ(x) = ρ(y))].

Proof. We define by recursion in ≺

ρ(x) =
⋃
{ρ(y) + 1 | y ≺ x}.

It is easy to see by WF2 (≺-induction) that ∀x(x∈u→ Ord(ρ(x)), and

∀x[x∈u→ ∀t(t∈ρ(x)→ ∃y ≺ x(t = ρ(y)))].

Set α = {ρ(x) | x∈u}. Then Ord(α), and 〈u,≺〉 is isomorphic to (α,∈).

We call ρ(x) the rank of x.
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6.4.2 Check sets

We define the notion of check set in LNBG, by
2

∈-recursion:

ck(x)
def⇐⇒ ∀t

(
t∈x ↔ t

2

∈x ∧ ck(t)
)
.

That is, set

H(u, v)
def⇐⇒ v={t | 〈t, t〉∈u}.

H is a global functional relation such that ∀u∃vH(u, v). Let ≺ be
2

∈ . ≺ is

a wf relation. Since ∀x(x∈Fld(≺)), there exists a unique global functional

relation C(x, y) such that

∀x [x∈Dom(C) ∧ C(x)=H(C≺x)] ,

by recursion principle. If a set u satisfies C(u, u) then we say u is a check

set and write ck(u). i.e.

ck(x)
def⇐⇒ x=C(x).

The class of check sets will be denoted by W , i.e.

x∈W def⇐⇒ ck(x).

THEOREM 6.4.9. The followings are provable in LNBG.

(1) y∈C(x) ↔ (y
2

∈x) ∧ ck(y)

(2) ck(x)↔ ∀t[t∈x↔ (t
2

∈x ∧ ck(t))]

(3) C(x)=CC(x)

Proof. (1) and (2) are immediate results of definition of C.

y ∈ CC(x)⇐⇒ y
2

∈C(x) ∧ ck(y) (3):

⇐⇒ y
2

∈ x ∧ ck(y)

⇐⇒ y∈C(x)
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6.4.3 The model W of ZFC in LNBG

An interpretation of ZFC in LNBG is obtained by relativizing the range of

quantifiers to the class W of check sets. Namely “the class W of check sets

is a model of ZFC ” is provable in LNBG.

We denote quantifiers relativized on check sets by ∀W , ∃W , i.e.

∀Wxφ(x) def⇐⇒ ∀x(ck(x)→ φ(x))

∃Wxφ(x) def⇐⇒ ∃x(ck(x) ∧ φ(x)).

For a formula φ of LNBG, φW is the formula obtained from φ by replacing

all quantifiers ∀x, ∃x, by ∀Wx, ∃Wx, respectively.

THEOREM 6.4.10. The following (1)–(9) are provable in LNBG, for any

formula φ.

(1) ∀Wx, y(x∈y → x
2

∈y)

(2) ∀Wx1 · · · xn
(
φW (x1, · · · , xn)→ 2φW (x1, · · · , xn)

)

(3) ∀Wx
(
∀Wy(y∈x→ φW (y))→ φW (x)

)
→ ∀WxφW (x)

(4) ∀α
(
Ord(α) ↔ ck(α) ∧OrdW(α)

)

(5) ck(∅), where ∅ is the empty set.

(6) ∀Wx, y
(
ck({x, y}) ∧ ck(

⋃
x) ∧ ck({z∈x | 2φ(z)})

)

(7)

Suc(y)
def⇐⇒ (y=∅ ∨ ∃z(y=z + 1)), where z + 1 = z ∪ {z},

HSuc(y)
def⇐⇒ (Suc(y) ∧ ∀z(z∈y→ Suc(z)), and

ω
def
= {y : HSuc(y)}.
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ω is the set of natural numbers. Ord(ω)∧∀Wn∈ω(n = ∅∨∃Wm∈n(n =

m+ 1)).

(8) If u is a global set, then there exists an ordinal α∈On with a bijection

ρ :u→α, where α∈On
def⇐⇒ Ord(α), i.e.

∃Wα∈On∃ρ
((
ρ :u→α

)
∧
(
ρ(u) = α

)
∧ ∀x, y

(
x, y∈u∧ρ(x)=ρ(y)→ x=y

))
.

Proof. (1): It follows from

ck(x) ∧ ck(y) ∧ x∈y ⇐⇒ ∃t
(
ck(x) ∧ ck(y) ∧ ck(t) ∧ x=y ∧ t

2

∈ y
)
.

(2): By induction on complexity of φ. If φ has no logical symbol, then φ is

of the form x= y or x∈ y, and hence φ → 2φ by (1). Now we prove only

the case that φ is of the form ∃xψ(x, x1, · · · , xn), since the other cases are

similar. Let ck(x1) ∧ · · · ∧ ck(xn).

ψW (x, x1, · · · , xn) ∧ ck(x) =⇒ 2
(
ck(x) ∧ ψW (x, x1, · · · , xn)

)
,

by using induction hypothesis. Hence by Theorem 1,

∃WxψW (x, x1, · · · , xn) =⇒ 2∃WxψW (x, x1, · · · , xn).

(3): Let ψ(x) be the formula ck(x) → φW (x). Then, using ∈-induction, we
have

∀Wx
(
∀Wy

(
y ∈ x→ φW (y)

)
→ φW (x)

)
=⇒ ∀x

(
∀y

(
y∈x→ ψ(y)

)
→ ψ(x)

)
=⇒ ∀xψ(x).

(4): By ∈-induction.
(5): ck(∅) follows from:

x∈∅ =⇒ ¬(x = x)

=⇒ x
2

∈ ∅ ∧ ck(x).

(6) ck({x, y}) : Assume ck(x) ∧ ck(y) . Then we have

z∈{x, y} ⇐⇒ (z=x ∨ z=y)
=⇒ ck(z) ∧ z

2

∈ {x, y}).
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z∈
⋃

x =⇒ ∃t∈x(z∈ t)

=⇒ ∃t
(
ck(t) ∧ t

2

∈ x ∧ z∈ t
)

=⇒ ck(z) ∧ z
2

∈
⋃

x.

t∈{z∈x | 2φ(z)} =⇒ ck(t) ∧ t
2

∈ x ∧2φ(t)

=⇒ ck(t) ∧ t
2

∈{z∈x | 2φ(t)}.

(7): ω is a set by GA6 (Infinity). Let ψ(x) be the formula

x∈ω → ck(x) ∧ x
2

∈ω.

Now we prove ∀y(y∈x→ ψ(y))→ ψ(x): We have x∈ω =⇒ x=∅ ∨ ∃z(x=
z + 1), x = ∅ → ψ(x) and

∀y(y∈x→ ψ(y)) ∧ x∈ω ∧ x=z + 1 =⇒ z∈x ∧ ck(z) ∧ z
2

∈ω
=⇒ ck(z + 1) ∧ (z + 1)

2

∈ω
=⇒ ck(x) ∧ x

2

∈ω.

Hence, ck(ω).

It is easy to see ∀y(y ∈ ω → Tr(y) ∧ (y ⊂ ω)), by ∈-induction, where
Tr(y)

def⇐⇒ ∀s, t(s ∈ y ∧ t ∈ s → t ∈ y). Hence Tr(ω) ∧ ∀y(y ∈ ω → Tr(y)).

Ord(ω) by ∈-induction. It is obvious that

∀Wn∈ω(n=∅ ∨ ∃Wm∈n(n=m+ 1)).

(8): By Theorem 6.4.7, there exists a global well-ordering relation ≺ on u.

Define ρ(x) =
⋃
{ρ(y) + 1 | y ≺ x}. By Theorem 6.4.8, ρ is an isomorphism

between (u,≺) and (α, ∈), where α = {ρ(x) | x∈u}.

THEOREM 6.4.11 (Interpretation of ZFC ). If φ is a theorem of ZFC, then

φW is provable in LNBG.
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Proof. For a formula φ(x1, · · · , xn) of ZFC,

∀Wx1, · · · , xn(φW → 2φW )

is provable by Theorem 6.4.5(2), hence,

∀Wx1, · · · , xn(φW ∨ ¬φW )

is provable in LNBG. Now it suffices to show that for each nonlogical axiom

A of ZFC, AW is provable in LNBG.

(Equality axiom)W and (Extensionality)W are obvious.

(Pairing)W : By Theorem 6.4.5(6),

ck(u) ∧ ck(v)→ ck({u, v}) ∧ ∀Wx(x ∈ {u, v} ↔ x = u ∨ x = v).

(Union)W : Similarly.

(Power set)W : We have ∀Wu, x
(
x ∈ C(P(u))↔ ∀Wt(t ∈ x→ t ∈ u)

)
.

(∈ -induction)W : By Theorem 6.4.10(3).

(Separation)W : If ck(u), by Theorem 6.4.10(6), ck({x ∈ u | φW (x)}) and

∀Wu, x
(
x ∈ {x ∈ u | φW (x)} ↔ x ∈ u ∧ φW (x)

)
.

(Collection)W : Suppose ck(u) ∧ ∀Wx∈u∃WyφW(x, y). By GA8(Colloction),

∃v∀x∈u∃y
2

∈v(ck(y) ∧ φW(z, y)).

Since y
2

∈v ∧ ck(y) → y∈C(v) ∧ ck(C(v)), we have

∃Wv∀Wx∈u∃Wy∈vφW(z, y).

(Infinity)W : By Theorem 6.4.10(7).

(Choice)W , i.e. ∀Wu∃Wf∀Wx∈u[x 6= ∅ → ∃!Wy∈x(〈x, y〉 ∈ f)], where x 6= ∅
stands for ∃Wy(y∈x). By Theorem 6.4.10(8). there exists an ordinal α and

a bijection ρ :
⋃
u→α. Define f :u→

⋃
u by

f(x) = ρ−1(
⋂
{ρ(t) | t∈x}).
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6.4.4 Lattice valued model WP(1) in W

The power set P(1) of 1 (= {∅}) is a global set, i.e.

∀x
(
x∈P(1)→ □(x∈P(1))

)
,

and a complete lattice with respect to the inclusion ⊂. We write ⩽ instead

of ⊂. Then (P(1),⩽) is a complete lattice. Let

(p→ q) = {x∈1 | 0∈p→ 0∈q}, ¬p = {x∈1 | ¬(0∈p)}.

→ is the basic implication and ¬ is the corresponding negation on P(1).
For a sentence φ, let

|φ| def= {t∈1 | φ}.

|φ| is an element of P(1), and φ⇐⇒ 0∈|φ|. Thus, the complete lattice P(1)
represents the truth value set of LNBG.

The relation ≺ defined by

α ≺ β
def⇐⇒ α, β∈On ∧ α∈β

is a well founded relation and Fld(≺) = On. Thus, the induction on α∈On

is justified in LNBG. Now we construct the P(1)-valued model by induction

on α∈On as follows:

WP(1)
α = {u | ∃β∈α∃Du⊂WP(1)

β (Gl(Du) ∧ u :Du→P(1))}

WP(1) =
⋃

α∈On

WP(1)
α

On WP(1), the atomic relation = and ∈ are interpreted as

[[x=y]] =
∧
t∈Dx

(x(t)→ [[t ∈ y]]) ∧
∧
t∈Dy

(y(t)→ [[t ∈ x]])

[[x ∈ y]] =
∨
t∈Dy

[[x= t]] ∧ y(t).

Logical operations ∧, ∨, →, ¬, ∀, ∃ are interpreted as the correspondent

operations on P(1). Then every sentence on WP(1) has its truth value in

P(1), and we have
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THEOREM 6.4.12. For every sentence φ, “(0 ∈ [[φ]])←→ φ” is provable

in LNBG.

Proof. We prove that there exists a global functional relation F such that:

(i) DomF=WP(1), and

(ii) for every formula φ(x1, · · · , xn) of LNBG on WP(1),

[[φ(x1, · · · , xn)]] = |φ(F (x1), · · · , F (xn))|.

For x ∈ WP(1), define F (x) by

F (x)={F (t) | t ∈ Dx ∧ 0∈ [[t ∈ x]]}.

Then we have:

(1) 0 ∈ [[x=y]]⇐⇒ F (x)=F (y),

0 ∈ [[x∈y]]⇐⇒ F (x)∈F (y).

(2) ∀u∃x(F (x)=u).
Proof: Let Ψ(u)

def⇐⇒ ∃x(x∈WP(1) ∧ u=F (x)). Then by using GA8

(Collection) we have

∀v(v∈u→ Ψ(v)) =⇒ ∃α[∀v(v∈u→ ∃y∈WP(1)
α (v = F (y))].

Let {
Dx = W

P(1)
α

x(y) = {t∈1 | F (y)∈u}

Then x∈WP(1) and F (x) = u. Hence, ∀u∃x(F (x)=u).

(3) 0∈ [[φ(x1, · · · , xn)]]⇐⇒ φ(F (x1), · · · , F (xn))
Proof: We proceed by induction on the complexity of φ. If φ is atomic,

then it is (1). If φ is of the form φ1 ∨ φ2, φ1 → φ2, ¬φ1 or 2φ1, then

it follows from induction hypothesis. If φ(x1, · · · , xn) is of the form

∀xψ(x, x1, · · · , xn), then, by using (2),

0 ∈ [[φ]] ⇐⇒ 0 ∈
∧
x

[[ψ(x, x1, · · · , xn)]]

⇐⇒ ∀x(ψ(F (x), F (x1), · · · , F (xn))
⇐⇒ ∀zψ(z, F (x1), · · · , F (xn)).
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Similarly,

0 ∈ [[∃xψ(x, x1, · · · , xn)]]⇐⇒ ∃zψ(z, F (x1), · · · , F (xn)).

6.4.5 Completeness of LNBG

Now we will prove in LNBG that P(1) is lattice-isomorphic to a com-

plete lattice H which is a check set. (Theorem 6.4.8). As mentioned in the

introduction, we mean by “a sentence φ of LNBG is valid” that

“[[φ]] = 1 on V L for all complete lattice L” is provable in ZFC.

Then the “completeness” of LNBG in the sense that every valid sentense

of LNBG is provable in LNBG :

ZFC ` “[[φ]] = 1 on V L for all complete lattice L” =⇒ LNBG ` φ

can be proved (Theorem 6.4.14).

THEOREM 6.4.13. There exists a complete lattice H which is a check set

and a lattice-isomorphism ρ :P(1)→H.

Proof. Since P(1) is a global set, there exists a check set H together with

a bijection ρ :P(1)→H, by Theorem (8). Define operations
∧
,
∨

on H as

follows: ∧
A = ρ(

⋂
a∈A

ρ−1(a)),
∨

A = ρ(
⋃
a∈A

ρ−1(a)),

a→ b =

{
1, if ρ−1(a) ⊂ ρ−1(b)

0, if ¬(ρ−1(a) ⊂ ρ−1(b))

for A ⊂ H such that ck(A), and a, b ∈ H. Then ρ is a lattice -isomorphism.

THEOREM 6.4.14 (“Completeness” of LNBG). If a sentence φ is valid

in every lattice-valued universe, then φ is provable in LNBG :

ZFC ` “ [[φ]] = 1 on V L for all complete lattice L” =⇒ LNBG ` φ
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Proof. Suppose that a sentence φ is valid in every lattice valued universe.

This means that ( [[φ]] = 1 on every lattice valued universe ) is provable in

our external universe of ZFC.

Since W is isomorphic to V ,

(φ is valid in every lattice valued universe)W

is provable in LNBG. Let H ∈ W be a complete lattice with the basic

implication which is lattice-isomorphic to P(1). That is, there exists a lattice-
isomorphism ρ :P(1)→H. Construct the H-valued universeWH inW . Then

[[φ]] = 1 onWH . It follows that [[φ]] = 1 onWP(1), and φ is provable in LNBG

by Theorem 6.4.12. ,

By Theorem 6.4.14, a sentence φ holds in LNBG iff [[φ]] = 1, on every

lattice valued universe V L. Therefore, in order to discuss LNBG, it suffices

to discuss the set theory on lattice valued universe.

6.5 Global Intuitionistic Set Theory

As seen in the Section 2.4, complete Heyting algebra is a counterpart of the

intuitionistic logic, that is a complete lattice satisfying the distributive law:

a ∧
∨

i bi =
∨

i(a ∧ bi) on a complete lattice .

Hence global intuitionistic logic GLJ is the lattice valued logic LL with

the logical distributive law:

Destributive law : φ ∧ ∃x(ψ(x))↔ ∃x(φ ∧ ψ(x)),

GLJ : LL +Distributive law

Equivalent global intuitionistic logic GLJ□ is obtained from LJ by intro-

ducing □ instead of the basic implication.

(a→ b)
def
= □(a ⊃ b) = □

(∨
{c ∈ L | c ∧ a ≤ b}

)
.
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A global intuitionistic set theory is the global intuitionistic logic with

axioms of global set theory,

GA1, · · · ,GA11

If we assume “P(1) is a cHa”, i.e.“P(1) is distributive”, in LNBG, then

we have the distributive law of the logic:

φ ∧ ∃xψ(x)←→ ∃x(φ ∧ ψ(x))

In fact, if [[φ]] be the truth value of φ in WP(1), then the following sentences

are provable in LNBG.

φ ∧ ∃xψ(x) ↔ 0 ∈ [[φ ∧ ∃xψ(x)]]
↔ (0 ∈ [[φ]]) ∧ (

∨
x∈V P(1) [[ψ(x)]])

↔ 0 ∈
∨

x∈V P(1) [[φ ∧ ψ(x)]]
↔ 0 ∈ [[∃x(φ ∧ ψ(x))]]
↔ ∃x(φ ∧ ψ(x))

It follows that the intuitionistic implication ⊃ can be defined by

(φ ⊃ ψ)
def⇐⇒ 0 ∈

⋃
{u∈P(1) |

(
φ ∧ (0∈u)

)
→ ψ}.

The corresponding logical implication is denoted by →I, and equality and

membership relation are denoted by=I and ∈I.
By the completeness of lattice valued set theory, the global intuitionistic

set theory GINBG is also complete (Titani [14]).

ZFC ` “[[φ]] = 1 on V Ω for all Heyting algebra Ω” =⇒ GINBG ` φ.

6.6 Global classical set theory

Classical logic LK is a counterpart of complete Boolean algebra. That is, LK

is an intuitionistic logic LJ with logical operation ¬ satisfying

(N1) ` ¬¬φ⇔ φ,

(N2) ` φ ∨ ¬φ, ` ¬(φ ∧ ¬φ),

UNDER PEER REVIEW



158

(N3) ψ → φ =⇒ ¬φ→ ¬ψ.

Complete Boolean algebra is a complete distributive lattice, i.e. Heyting

algebra, with complementation ¬ satisfying:

(N1) ¬¬a ≤ a,

(N2) a ∨ ¬a = 1, ¬(a ∧ b) = ¬a ∨ ¬b,

(N3) a ≤ b⇔ ¬b ≤ ¬a.

The classical logic LK has an implication ⊃ defined by:

(a ⊃ b)
def⇐⇒ ¬a ∨ b.

Thus, the basic implication can be defined by ⊃ and modal operator □.

Another global classical logic GLK□ is obtained from LK by introducing □.

instead of the basic implication.

(a→ b)
def
= □(a ⊃ b) = □

(
¬a ∨ b)

)
.

A global classical set theory is obtained from lattice valued set theory by

adding logical operations and inference rules for them.

Nonlogical axioms of global classical set theory are axioms

GA1, · · · ,GA11

of lattice set theory.

These axioms are valid on the lattice valued universe V L, hence on the

Boolean valued universe V B.

If we assume “P(1) is a complete Boolean algebra cBa” in LNBG, then

the logic satisfies the distributive law and (N1),(N2),(N3).

Hence we have:

THEOREM 6.6.1. It is provable in LNBG + “P(1) is a cBa” that the set

theory is a classical set theory. It follows that GNBG is complete.

Proof. (cf. [5]) For each axiom φ of classical set theory,

GNBG `
(
φ⇔ [[φ]] = 1 on V P(1)

)
.
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Quantum set theory

Quantum set theory QNBG is developed by the quantum logic (cf.5.7 p.120)

(QL or QL□) with axioms GA1, · · · ,GA11 of the global set theory. QNBG

is a set theory on a orthomodular-lattice valued universe.

Closed subspaces of a Hilbert space H (or equivalently projections on H)
form an orthomodular lattice, which is denoted by Q(H). Unitary operator

on H is an automorphism and induces a symmetry on Q(H).
Let U be the set of unitary operators on H. That is, Q(H) is an ortho-

modular lattice with symmetries U .

The orthomodular lattice Q(H) has a structure of sheaf of Boolean lattice

over U . Thus, Q(H)-valued universe has the structure of sheaf of Boolean

valued universe.

7.1 Complete orthomodular lattice Q(H)
Throughout this section, we assume that H is a Hilbert space with a count-

able orthonormal basis :

{e⃗j}j∈J where J = {1, 2, · · · }.

Elements of H are expressed by vectors x⃗, y⃗, · · · , and the inner product of

vectors x⃗, y⃗ is denoted by (x⃗, y⃗). For vectors x⃗ and y⃗, x⃗ is orthogonal to

y⃗, in symbols x⃗ ⊥ y⃗, if (x⃗, y⃗) = 0:

x⃗ ⊥ y⃗
def⇐⇒ (x⃗, y⃗) = 0.

159
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Let Q(H) be the complete orthomodular lattice consisting of closed sub-

spaces of H, where

α ≤ β
def⇐⇒ α ⊂ β, α⊥ def

= {ξ ∈ H | ∀ψ ∈ α(ξ ⊥ ψ)} for α, β ∈ Q(H).

If {αi}i∈I ⊂ Q(H), then
∨

i∈I αi is the supremum of {αi}i∈I in Q(H) and∧
i∈I αi is the infimum of {αi}i∈I in Q(H). Projection is a bounded operator

on H which is self-adjoint and p2 = p. Range of a projection p, denoted by

R(p), is a closed subspace of H:

R(p) def
= {p(x⃗) | x⃗ ∈ H}

The set of range of projections forms a complete orthomodular lattice, iso-

morphic to Q(H) with respect to ≤ and ⊥ defined by

p ≤ q
def⇐⇒ R(p) ≤ R(q), R(p⊥) def

= R(p)⊥ and p |◦q
def⇐⇒R(p) |◦ R(q).

Thus, we use the same notation Q(H) to denote the lattice of projections,

as the orthmodular lattice of the ranges. The identity operator I, ∀x⃗ ∈
H(I(x⃗) = x⃗), and zero operator 0, ∀x⃗∈H(0(x⃗) = 0), are members of Q(H).

If {pλ}λ∈Λ ⊂ Q(H), then∨
λ∈Λ pλ = sup{pλ | λ ∈ Λ},

∧
λ∈Λ pλ = inf{pλ | λ ∈ Λ} ∈ Q(H).

Let B be a maximal compatible subset of Q(H). Then B is a complete

Boolean lattice. If a self-adjoint operator α has its spectral decomposition

α =
∫
λdEλ, where {Eλ}λ ⊂ B, then α is said to be a self-adjoint operator

“ in (B)” .

Self-adjoint operators α =
∫
λdEλ and β =

∫
λdEλ′ are said to be

commutable if for every pair λ, λ′,

Eλ · Eλ′ = Eλ′ · Eλ,

If α and β are bounded, then the commutativity of α and β is equivalent to

compatibility:

α · β = β · α ⇐⇒ α |◦β
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LEMMA 7.1.1. If {αn}n is a set of self-adjoint, pairwise commutable oper-

ators, then there exists a complete Boolean lattice B of projections such that

for every n, αn is in (B).

Let α and β be commutable self-adjoint operators. It is usual to define

α + β as the operator satisfying the conditions

D(α + β) = Dα ∩ Dβ and

∀x∈D(α + β)
(
(α + β)x = αx+ βx

)
,

where D(α) denotes the domain of α. The operator α + β, defined in this

way has a unique closed extension. For our purposes we define α + β to be

this unique closed extension. The operator α + β is also self-adjoint. In the

same way, α · β is defined to be the unique closed extension of the operator

which maps x, with x∈D(β) and βx∈D(α), to αβx. The operator α · β is

also self-adjoint operator and α · β = β · α. Because of this definition, there

is a possibility that α+β and /or α ·β is defined on the whole Hilbert space,

and therefore bounded, even if α and β are unbounded. In general, if the

result of an operation is not closed but has a unique closed extension, we

define O(α, β) to be the unique closed extension of the result.

An operator γ is normal, if γ = α + iβ where α and β are self-adjoint

and commutable. Also γ = α− iβ and γ γ = α2+β2. Furthermore, γ is said

to be in (B), if α and β are in (B).

Let α and β be self-adjoint and commutable. Then α ≤ β if and only if

for every x ∈ D(α) ∩ D(β), (αx, x) ≤ (βx, x).

7.2 Q(H)-valued universe

Q(H)-valued universe V Q(H) is constructed by induction:

V Q(H)
α =

{
u | ∃β<α ∃Du⊂V Q(H)

β (u : Du→ Q(H))
}
,

V Q(H) =
⋃

α∈On

V Q(H)
α .
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Truth values [[u=v]] and [[u∈v]] for u, v∈V Q(H) are defined by induction

on the rank of u, v.

[[u=v]] =
∧

x∈Du

(u(x)→ [[x∈v]]) ∧
∧

x∈Dv

(v(x)→ [[x∈u]])

[[u ∈ v]] =
∨

x∈Dv

[[u=x]] ∧ v(x).

We call the set theory developed in the universe V Q(H) Hilbert quantum

set theory.

Observables in the quantum theory are represented by real numbers (i.e.

Dedekind cuts) in the Q(H)-valued universe V Q(H).

In [11] and [12], G.Takeuti developed the quantum set theory on the Q(H)-
valued universe V Q(H), where implication →T is defined by

φ→T ψ
def⇐⇒ φ⊥ ∨ (φ ∧ ψ).

The corresponding equality =T and membership relation ∈T are defined

by

[[u=T v]] =
∧

x∈Du

(u(x)→T[[x∈v]]) ∧
∧

x∈Dv

(v(x)→T[[x∈u]])

[[u∈Tv]] =
∨

x∈Dv

[[u=T x]] ∧ v(x),

G.Takeuti showed in [11] that self-adjoint operators on H, considered as

observables, are represented as real numbers in V Q(H).

The operation →T on Q(H) is an implication in the sense that

a ∧ (a→T b) ≤ b.

However,

‘a ∧ b ≤ c′ does not imply ‘a ≤ (b→T c)
′ if a, b are not compatible,

because of non-distributivity of the lattice Q(H). Consequently the transi-

tivity of =T :

(u=T v) ∧ (v=Tw)→T(u=Tw)
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is not generally valid in the universe V Q(H). That is, the implication →T

is not strong enough to develop a set theory. Thus, we need a stronger

implication → for quantum logic.

A quantum set theory is developed in the universe V Q(H), using the local

implication →T together with basic implication, i.e. logical symbols :

∨, ∧, ⊥, ∀, ∃, □ and →T .

Basic implication is defined by □ and →T:

(a→ b) = □(a→T b) =

1 if a ⩽ b

0 otherwise.
(7.2.1)

7.2.1 A sheaf structure of Q(H)

Let ej be the subspace of H spanned by singleton {e⃗j},
pj be the corresponding projection onto ej:

ej
def
= {aj e⃗j | aj ∈ C} ; H =

∨
j ej.

pk(Σj∈J aj e⃗j) = ake⃗k for {aj}j∈J ⊂ C; pk
(
H
)
= ek.

For each K ⊂ J , the supremum
∨

j∈K pj of {pj}j∈K in Q(H) is the pro-

jection of H onto the subspace spanned by {e⃗j}j∈K .

(
∨

j∈K pj)(
∑

j∈J aj e⃗j) =
∑

j∈K aj e⃗j.

Let B ⊂ Q(H) be a maximal compatible subset of Q(H) defined by

B
def
= {

∨
j∈K pj | K ⊂ J},

B is a complete Boolean algebra, which is isomorphic to the power set P(J)
of J .

〈B,
∧
,
∨
, ⊥〉 ∼= 〈P(J),

⋂
,
⋃
, c 〉

DEFINITION 7.2.1. A linear operator σ : H → H is said to be unitary if

(σx⃗, σy⃗) = (x⃗, y⃗), for all x⃗, y⃗ ∈ H.
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Let U be the set of all unitary operators on H.

U = {σ :H→H | σ is unitary }

U is a topological space. Let O(U) be the set of open sets of U .
Each unitary operator σ on H induces an isomorphism σ̃ on Q(H):

σ̃(p) = σpσ−1.

σ̃(
∨

i pi) =
∨

i σ̃(pi), σ̃(
∧

i pi) =
∧

i σ̃(pi),

σ̃(p⊥) = σ̃(p)⊥, σ̃(p→ q) = (σ̃(p)→ σ̃(q)).

In what follows we use the same notation σ instead for σ̃, i.e.

σ(p) = {σ(a) | a ∈ p} for closed subspace p ⊂ H,

σ(p) = σpσ−1 for projection p : H → H.∨
j∈K σ(pj) with K⊂J is an element of Q(H) spanned by {σ(pj)}j∈K .

Let B be a maximal compatible subset of Q(H). B is a complete Boolean

algebra isomorphic to P(J). If σ ∈ U , then σ(B) is a complete Boolean

algebra isomorphic to P(J).

For a unitary operator σ ∈U there exists a self-adjoint-operator A such

that

σ = eiA.

ei(π/2)I is a unitary operator such that ei(π/2)I(e⃗j) = i e⃗j for j ∈ J , where I
is the identity operator: Ix = x for x ∈H. ei(π/2)I is also denoted by i in

V Q(H).

ei(π/2)Ip = i p for p ∈ Q(H).

If p ∈ B, then

p |◦q ⇐⇒ (ei(π/2)Ip) |◦q for q ∈ Q(H).

Hence,

p ∈ B ⇐⇒ i p ∈ B.

Let f be the set of continuous functions f : U → Q(H) such that

f(σ) ∈ σ(B) for σ ∈ U.

UNDER PEER REVIEW



165

For each U ∈O(U),

f(U) = {f : U → Q(H) continuous | f(σ) ∈ σ(B), σ ∈ U}, where

f ≤ g
def⇐⇒ ∀σ ∈ U(f(σ) ≤ g(σ)).

Then the set F (U) of all f(U) is a Boolean algebra, where

(f ∧ g)(σ) = f(σ) ∧ g(σ), (f ∨ g)(σ) = f(σ) ∨ g(σ), f⊥(σ) = (f(σ))⊥.

For U, V ∈O(X) such that V ⊂U and f ∈F (U), let (f ↾V ) be the restriction

of f on V , i.e. (f ↾V )(σ) = f(σ) for σ ∈ V , and let

rV,U(f)
def
= f ↾V

Then

rV,U(F (U)) = F (V ) for U, V ∈ O(X) such that V ⊂ U and

〈F, r〉 is a sheaf of Boolean algebra over U , Sh UB.

7.3 Sheaf structure of V Q(H)

In the previous section, orthomodular lattice Q(H) was represented as a sheaf

〈F, r〉 of complete Boolean algebra over a topological space 〈U ,O(U)〉.
Now we extend the sheaf 〈F, r〉 to a sheaf of Boolean valued universe

〈F , r〉, where :

(1) For U ∈ O(H), F (U) is a complete Boolean algebra and V F (U) is a

Boolean valued universe, where

v ∈ V F (U)
α ⇔

Dv ⊂ V
F (U)
<α

v(x) ∈ F (U).
V F (U) def

=
⋃

α∈Ord

V F (U)
α

(2) F is a mapping which associates a Boolean valued universe V F (U) to

each U ∈O(X).

F : U 7→ V F (U) for U ∈O(X)
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(3) If U,W ∈O(X) and U⊂W , then rU,W : V F (W ) → V F (U) , where

D(rU,W (u)) = {rU,W (t) | t ∈ Du} rU,W (u)(rU,W (t)) = rU,W (u(t))

(4) rU,W : V F (W ) → V F (U) is a homomorphism.

(5) σ ∈ U is extended to σ : V Q(H) → V Q(H) by:

Dσ(u) = {σ(x) | x ∈ Du}, σ(u)(σ(x)) = σ(u(x)) for u ∈ V Q(H).

(6) σ : V Q(H) → V Q(H) is an automorphism, i.e. for a formula φ(u1, · · · , un)
of QNBG

σ[[φ(u1, · · · , un)]] = [[φ(σ(u1), · · · , σ(un))]].

Proof. (a) σ([[u=v]]) = [[σ(u)=σ(v)]], σ([[u ∈ v]]) = [[σ(u) ∈ σ(v)]].
∵) Assume that, for x, y ∈ V Q(H)

<α ,

[[σ(x)=σ(y)]] = σ([[x=y]]).

Then for and u, v ∈ V Q(H)
α ,

[[σ(x) ∈ σ(v)]] =
∨

y∈Dv

(
[[σ(x) = σ(y)]]∧

σ(v)
(
σ(y)

))
= σ

( ∨
y∈Dv

[[x = y]] ∧ v(y)
)
= σ[[x∈v]].

Similarly,

[[σ(y) ∈ σ(u)]] =
∨

x∈Du[[σ(y) = σ(x)]] ∧ σ(u)
(
σ(x)

)
= σ[[y∈u]]

∴ σ[[u = v]] =
∧

x∈Du

(
σ(u)(σ(x))→ σ[[x ∈ v]]

)
∧
∧

y∈Dv

(
σ(v)(σ(y))→ σ[[y ∈ u]]

)
= [[σ(u) = σ(v)]].

σ[[u∈v]] =
(∨

y∈Dv σ[[u = y]] ∧ σ(v(y)) =
∨

y∈Dv[[σ(u) ∈ σ(v)]].
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(b) σ preserves ∧, ∨, ⊥, →, ∀ and ∃. Therefore,

σ[[φ(u1, · · · , un)]] = [[φ(σ(u1), · · · , σ(un))]].

For U ∈ O(U), let

f(U) = {f : U → V Q(H) continuous | ∀σ ∈ U(f(σ) ∈ V σ(B))} and

let F(U) be the set of f(U).

For f(U), g(U) ∈ F(U), let

f(U) ∈ g(U) def⇐⇒ ∀σ ∈ U(f(σ) ∈ g(σ)), f(U) = g(U)
def⇐⇒ ∀σ ∈ U(f(σ) = g(σ)).

Then the set F(U) of all f(U) is a Boolean valued universe. For U, V ∈O(X)

such that V ⊂U and f ∈F(U), let (F(U)↾V ) be the set of restriction on V ,

and let

rV,U (f(U))
def
= f(U)↾V

Then

rV,U(F(U)) = F(V ) for U, V ∈ O(X) such that V ⊂ U and

〈F , r〉 is a sheaf of Boolean valued universe over U , Sh UV
B.

7.4 Quantum numbers

The set ω of all natural numbers is constructed from the empty set by the

successor function x 7→ x ∪ {x}.

n ∈ ω ⇐⇒ n = 0 ∨ ∃m∈n(n = m ∪ {m}).

The empty set is a check set which we denote by 0̌.

0̌ = ∅.
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If m is a check set then m ∪ {m} is also a check set by Theorem 6.4.10 (6).

Thus, (m+ 1)ˇ = m̌ ∪ {m̌}. Therefore, the set of natural numbers in V Q(H)

is ω̌, where Dω̌ = {ň | n ∈ ω} and ω̌(ň) = 1. For convenience we write

ω̌ = {ň | n ∈ ω}.

For m,n,m′, n′ ∈ ω, let

〈m̌, ň〉 ≡ 〈m̌′, ň′〉 def⇐⇒ m̌+ ň′ = m̌′ + ň.

≡ is an equivalence relation on the set ω̌ × ω̌ of pairs of natural numbers.

The integers are equivalence classes of pairs of natural numbers.

Since the relation ≡ is defined by □-closed formula, the equivalence class

of N by ≡ is a check set according to Theorem 6.4.10. The equivalence class

of 〈m̌, ň〉 is denoted by m̌− ň . The set of integers in V Q(H) is the check set

associated with Z.

Ž = (ω̌/≡) = {m̌− ň | m,n ∈ ω} = {(m− n)̌ | m,n ∈ ω}.

The rational numbers are constructed as equivalence classes of pairs of

integers :

〈ǎ, b̌〉 ≡ 〈ǎ′, b̌′〉 def⇐⇒ ǎ · b̌′ = ǎ′ · b̌ for a, b, a′, b′ ∈ Z.

The equivalence class, denoted by ǎ/b̌, is a rational number. The set of

rational numbers in V Q(H) is the check set of Q.

Q̌ = (Ž/≡) = {ǎ/b̌ | a, b ∈ Z}.

Real numbers, defined as Dedekind’s cuts of rational numbers, are not

check sets in contrast with integers and rational numbers. Dedekind cut of

Q̌ is a subset of Q̌, which is not necessarily a check set. The set P(Q̌) of all

subsets of Q̌ is defined by

DP(Q̌) = {α | α ⊂ Q̌}, P(Q̌)(α) = 1.
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DEFINITION 7.4.1. α∈P(Q̌) is called a quantum real if

(D1) ∃x∈Q̌(x∈α) ∧ ∃x∈Q̌(x∈α)⊥,
(D2) ∀x∈Q̌

(
(x∈α)←→ ∀y∈Q̌(x<y→T y∈α)

)
.

The set of quantum reals in V Q(H) will be denoted by RQ(H).

LEMMA 7.4.1. If [[α⊂ Q̌]] = 1 in V Q(H), where α⊂ β def⇐⇒ ∀x(x ∈ α →
x∈β), then there exists v in V Q(H) such that Dv = {ř | r∈Q}(= DQ̌) and

[[α = v]] = 1.

Proof. Note that [[x = y]] ∈ 2.

[[x = y]] ∧
∨

j aj =
∨

j[[x = y]] ∧ aj for ∀{ai} ⊂ Q.

Define v by Dv = {ř | r∈Q}, and v(ř) = [[ř∈α]] for r∈Q. If x∈Dα,

α(x) ≦ [[x∈Q̌]] ∧ [[x∈α]] =
∨

r∈Q([[x = ř]] ∧ [[x∈α]])
=

∨
r∈Q([[x = ř]] ∧ [[ř∈α]]) ≤ [[x∈v]]

Therefore, [[α = v]] = 1.

We continue to fix a basis {e⃗j}j∈J of H, and let pj be the projection onto

the subspace spanned by singleton {e⃗j}.

pj(x) = (x, e⃗j) · e⃗j for x ∈ H.

DEFINITION 7.4.2. An element p of Q(H) is called an atom if

(p 6= 0) and
(
(0 ≤ q ≤ p)↔ (0 = q or q = p)

)
.

Each pj is an atom. The maximal compatible set {pj}j∈J of atoms is a basis

of Q(H) such that

pj ⊥ pk for all j, k ∈ J and
∨

j pj = 1.

Another basis of H is {σ(e⃗j)}j∈J for some unitary operation σ, and the

corresponding basis of Q(H) is

{σpjσ−1}j∈J .
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THEOREM 7.4.2. If u is a quantum real in V Q(H), that is,

[[u satisfies D1 and D2 ]] = 1,

then {[[ř∈u]] | r ∈ Q} is compatible.

Proof. Because of

r ≤ s =⇒ [[ř∈u]] ≤ [[š∈u]].

Therefore, there exists a unitary operator σ ∈ U such that

{σ(pj)}j∈J where J = {1, 2, · · · }

is an orthonormal basis of Q(H), and each [[ř ∈ u]] (r ∈ Q) is spanned by a

subset of the basis, where σ(pj) = σpjσ
−1. That is,

THEOREM 7.4.3. If u is a quantum real, then

{[[ř∈u]] | r ∈ Q}

is a compatible subset of Q(H) such that

[[ř ∈ u]] ≤ [[š ∈ u]] if r ≤ s and
∨

r∈Q[[ř ∈ u]] = 1.

Hence, there exists a basis {σ(ej)}j∈J of H such that every [[ř ∈ u]] is spanned
by a subset of {σ(ej)}j∈J .

THEOREM 7.4.4 (cf. [11]). If u is a quantum real in V Q(H), then Eu :R→
Q(H) defined by

Eu(λ) =
∧

λ<r[[ř∈u]]

is a resolution of the identity, i.e. Eu satisfies∧
λ∈REu(λ) = 0

∨
λ∈REu(λ) = 1 Eu(λ) =

∧
λ<µEu(µ) .

Hence, we have the spectral representation of the corresponding self-

adjoint operator on the Hilbert space H:
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THEOREM 7.4.5. Quantum real α in V Q(H) represents a self-adjoint oper-

ator on H.
A =

∫
λdEα(λ),

Conversely, if A is a positive self-adjoint operator on H,

A =
∫
λdE(λ)

then α∈ V Q(H) defined by Dα = {ř | r ∈Q} and α(ř) =
∧

r<sE(s) is a

Dedekind cut in V Q(H), and

A =
∫
λdEα(λ).

7.4.1 Representation of projections in V Q(H)

A projection on H is represented as quantum real in V Q(H). Let u be a

quantum real represented by the proposition p and Au be the corresponding

self-adjoint operator : Au =
∫
λdEu(λ). Then∫

λdEu(λ) = 0 · Eu(0) + 1 · (Eu(1)− Eu(0)) = Eu(0)
⊥.

Then Eu(0)
⊥ = p. For, if self-adjoint operator

∫
λdEu(λ) is a projection,

then

u(ř) =
∧

r<sEu(s) =


0, if r < 0,

p⊥, if 0 ≤ r < 1,

1, if 1 ≤ r,

which is equivalent to

[[u=T 1̌]] = [[u=T 0̌]]
⊥ = p.

Thus, projection is characterized as a real number u such that [[u=T 1̌]] =

[[u=T 0̌]]
⊥.

DEFINITION 7.4.3. For each p∈Q(H), we define p̂ in V Q(H) by

Dp̂ = DQ̌, p̂(ř) =


0, if r<0,

p⊥, if 0 ≤ r<1,

1, if 1 ≤ r
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THEOREM 7.4.6. If p∈Q(H), then p̂ ∈ V Q(H) satisfies

[[p̂=T 1̌]] = [[p̂=T 0̌]]
⊥ = p.

Conversely, if a Dedekind cut u in V Q(H) satisfies

[[u=T 1̌]] = [[u=T 0̌]]
⊥ = p,

then [[u = p̂ ⊂ 1]] = 1. It follows that p∈Q(H) is the range of projection Ap̂.

Proof. If p∈Q(H), then

(ř∈ p̂→T ř∈ 1̌) ∧ (ř∈ 1̌→T ř∈ p̂ ) =


1, r<0,

p, 0 ≤ r < 1,

1, 1 ≤ r,

(ř∈ p̂→T ř∈ 0̌) ∧ (ř∈ 0̌→T ř∈ p̂ ) =


1, r<0,

p⊥, 0 ≤ r < 1,

1, 1 ≤ r.

Therefore, [[p̂=T 1̌]] = [[p̂=T 0̌]]
⊥ = p.

Conversely, let u be a positive real in V Q(H) such that

[[u=T 1̌]] = [[u=T 0̌]]
⊥ = p.

We show [[u = p̂ ]] = 1. Since Du = {ř | r∈Q}, it suffices to show that

u(ř) =


0, if r<0,

p⊥, if 0 ≤ r < 1,

1, if 1 ≤ r.

If 1 ≤ r, then

p ≤ (1̌(ř)→T[[ř∈u]]) ≤ u(ř)

and

p⊥ ≤ (0̌(ř)→T[[ř∈u]]) ≤ u(ř)

It follws that u(ř) ≥ p ∨ p⊥ = 1. Similarly, if 0 ≤ r < 1, then p ≤ u(ř)⊥

and p⊥ ≤ u(ř). Hence, u(ř) = p⊥. If r<0, then p ≤ u(ř)⊥ and p⊥ ≤ u(ř)⊥.

Hence, u(ř) ≤ p ∧ p⊥ = 0
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THEOREM 7.4.7. If σ ∈ U and p ∈ Q(H), then σ : Q(H) → Q(H) is a

bijection preserving
∨

and ⊥, and

[[σ̂(p) = σ(p̂)]] = 1 for p∈Q(H).

Proof.

[[σ̂(p)=T σ(1̌)]] = [[σ̂(p)=T σ(0̌)]]
⊥ = σ(p).

Hence, by Theorem 7.4.6, [[σ(p̂) = σ̂(p)]] = 1.

DEFINITION 7.4.4 (in V Q(H)). A real number u is called a projection if

u=T 1̌↔ (u=T 0̌)
⊥.

Projections u, v in V q(H) are said to be orthogonal if

u=T 1̌↔ (v=T 1̌)
⊥.

LEMMA 7.4.8. For p, q∈Q(H), p ≤ q ⇐⇒ [[p̂ ≤ q̂ ]] = 1.

Proof. For r∈Q,

r<0 ∨ 1 ≤ r ⇒ [[ř∈ p̂ ]] = [[ř∈ q̂ ]],

0<r ≤ 1⇒ p ≤ q ⇔ [[ř∈ q̂]] = q⊥ ≤ p⊥ = [[ř∈ p̂]].

7.4.2 Operations on real numbers in V Q(H)

DEFINITION 7.4.5. For quantum reals u, v in V Q(H),

u ≤ v
def⇐⇒ ∀r∈Q(r∈v → r∈u)

u is said to be positive, if 0̌ ≤ u.

u≤T v
def⇐⇒ ∀r∈Q(r∈v→T r∈u)
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DEFINITION 7.4.6. For quantum reals u, v in V Q(H), u+ v is defined by

u+ v
def
= {r∈Q̌ | ∀s∈Q̌(r < s→T ∃r1, r2∈Q̌(s = r1 + r2 ∧ r1∈u ∧ r2∈v)}.

For positive quantum reals u, v in V Q(H), u · v is defined by

u · v def
= {r∈Q̌ | ∀s∈Q̌(r < s→T ∃r1, r2∈Q̌(s = r1 ·r2 ∧ r1∈u ∧ r2∈v)}.

LEMMA 7.4.9. Suppose that B is a complete Boolean sublattice of Q(H),
u, v are quantum reals in V B, and p∈B. Then

[[udp+ vdp = (u+ v)dp]] = [[udp · vdp = (u · v)dp]] = 1.

Proof.

((u+ v)dp)(ř) =
( ∧
s∈Q
r<s

[[∃r1, r2∈Q̌(s = r1 + r2 ∧ r1∈u ∧ r2∈u)]]
)
∧ p

= [
∧
s∈Q
r<s

(
∨

r1,r2∈Q
s=r1+r2

u(r1) ∧ v(r2))] ∧ p

=
∧
s∈Q
r<s

(
∨

r1,r2∈Q
s=r1+r2

udp(r1) ∧ vdp(r2)

= (udp+ vdp)(ř).

[[udp · vdp = (u · v)dp]] = 1 is proved similarly.

DEFINITION 7.4.7. Let u, v be real numbers in V Q(H). u, v are said to be

compatible, if {[[ř∈u]] | r∈Q} ∪ {[[ř∈v]] | r∈Q} is compatible.

LEMMA 7.4.10. u, v are compatible real numbers in V Q(H) if and only if

there exists a complete Boolean sublattice B of Q(H) such that u, v∈V B.

Proof. M = {[[ř∈u]] | r∈Q}∪{[[ř∈v]] | r∈Q} is compatible andM⊂Q(H).
Hence, B = M ′′ is a Boolean sublattice of Q(H) such that u, v∈V B, where

A′ = {p∈Q(H) | p |◦a for all a∈A}.

THEOREM 7.4.11 ([11]). Let B ⊂Q(H) be a complete Boolean sublattice

of Q(H). If u, v are quantum reals in V B, then u+ v and u · v are quantum

reals in V B.
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If u1, u2, v1, v2 are quantum reals in V B, then

[[u1 =T u2]] ∧ [[v1 =T v2]] ≤ [[u1 + v1 =T u2 + v2]],

[[u1 =T u2]] ∧ [[v1 =T v2]] ≤ [[u1 · v1 =T u2 · v2]].

Proof. Let [[u1 =T u2]] ∧ [[v1 =T v2]] = q. Then

[[u1dq = u2dq]] ∧ [[v1dq = v2dq]] = 1.

By using Lemma 7.4.9,

[[(u1 + v1)dq = (u2 + v2)dq]] = 1.

Hence,

q ≤ [[u1 + v1 = u2 + v2]].

Similarly,

q ≤ [[u1 · v1 = u2 · v2]].

THEOREM 7.4.12. If B is a complete Boolean sublattice of Q(H), u is

quantum real in V B, and p∈B, then

p ≤ [[u · p̂=T u]], and p⊥ ≤ [[u · p̂=T 0̌]].

Proof. p ≤ [[u=T u]] and p ≤ [[p̂=T 1̌]]. Hence, by Theorem 7.4.11,

p ≤ [[u · p̂=T u · 1̌]] and [[u · 1̌ = u]] = 1.

Therefore, p ≤ [[u · p̂=T u]].

p⊥ ≤ [[u=T u]] and p
⊥ ≤ [[p̂=T 0̌]]. Hence, by Theorem 7.4.11,

p ≤ [[u · p̂=T u · 0̌]] and [[u · 0̌ = 0̌]] = 1.

Therefore, p⊥ ≤ [[u · p̂=T 0̌]].
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THEOREM 7.4.13 ([11]). If u and v are mutually compatible quantum reals

in V Q(H), corresponding to self-adjoint operators Au, Av, respectively,

Au =

∫
λdEu(λ) Av =

∫
λdEv(λ),

then

Au+v =

∫
λdEu+v(λ) =

∫
λdEu(λ) +

∫
λdEv(λ) = Au + Av

Au·v =

∫
λdEu·v(λ) =

∫
λdEu(λ) ·

∫
λdEv(λ) = Au · Av

7.4.3 Quantum complexes in V Q(H)

{e⃗j}j∈J continues to be a fixed orthonormal basis of H, and pj be the projec-
tion on e⃗j for each j∈J . Let B be the complete Boolean algebra generated

by orthogonal projections {pj | j∈J}.
Since ei (π/2)I is a unitary operator such that ei (π/2)I(x⃗) = ix⃗,

{pj}j∈J ∪ {ei (π/2)Ipj}j∈J

is a set of mutually compatible projections in B.

DEFINITION 7.4.8. ei (π/2)I 1̌ is denoted by i, and ei (π/2)Iu for u ∈ RQ(H) is

denoted by i u.

ei (π/2)Iu
def
= i u.

DEFINITION 7.4.9. If u, v are compatible quantum reals, then u + i v rep-

resenting the pair 〈u, v〉 is called a quantum complex.

u+ iv is a complex number
def⇐⇒ u∈R ∧ v∈R ∧ u |◦v

The set of all quantum complexes in V Q(H) is denoted by CQ(H).

CQ(H) = {u+ i v | u∈RQ(H) ∧ v∈RQ(H) ∧ u |◦v}.

If u1, v1, u2, v2 are compatible quantum reals, then

(u1 + i v1) + (u2 + iv2)
def
= (u1 + u2) + i (v1 + v2)

(u1 + i v1) · (u2 + i v2)
def
= (u1 · v1 − u2 · v2) + i (u1 · v2 + u2 · v1)

(u1 + i v1) |◦ (u2 + i v2)
def⇐⇒ |◦{u1, v1, u2, v2}, i.e.

{u1, v1, u2, v2} is a mutually compatible set.
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If B is a maximal compatible subset of Q(H) and u, v are real numbers

in V B, then u+ iv ∈ V B.

7.4.4 Compact complex numbers in V Q(H)

A quantum complex in V Q(H) represents a normal operator u on H.
If {qj}j∈J is a complete orthogonal system in Q(H), then there exists

σ ∈ U such that each qj is the projection on σ(e⃗j).

qj(σ(e⃗k)) = δj,k σ(e⃗k) for j, k∈J.

Each qj will be represented in V Q(H) by a real number q̂j.

qj ≤ [[q̂j =T 1̌]] = [[q̂j =T 0̌]]
⊥.

LEMMA 7.4.14. If {aj}j∈J ⊂R and a complete orthogonal system {qj}j∈J
in Q(H), then there exists u in V Q(H) such that

qj ≤ [[u=T ǎj]] for each j∈J.

It follows that [[u∈TŘ]] = 1.

Conversely, if u∈V Q(H) satisfies [[u∈TŘ]] = 1, then there exists {aj}j∈J⊂
R and a complete orthogonal system {qj}j∈J such that

qj ≤ [[u=T ǎj]] for each j∈J.

Proof. If {ai}⊂R and {qi}i∈I is a complete orthogonal system, then quantum

real u in V Q(H) defined by

Du = {ř | r∈Q}, u(ř) =
∨
{qj | aj ≤ r}

satisfies qj ≤ [[u=T ǎj]]. Therefore, there exists u such that qj ≤ [[u=T ǎj]].

Conversely, if a quantum real u in V Q(H) satisfies [[u∈TŘ]] = 1, then

[[u∈TŘ]] =
∨
a∈R

[[u=T ǎ]] = 1.

{[[u=T ǎ]] | a∈R} is compatible and for a 6= b,

[[u=T ǎ]] ∧ [[u=T b̌]] ≤ [[ǎ=T b̌]] = 0.
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Hence, {[[u=T ǎ]] | a ∈ R} is a mutually orthogomal set. Therefore, there

exists {aj}j∈J⊂R and mutually orthogonal system {qj}j∈J such that

qj ≤ [[u=T ǎj]].

Immediately from the preceeding lemma we have the following theorem.

THEOREM 7.4.15. If αj = {aj + i bj}⊂C and {qj}i∈I is a complete orthog-

onal system, then there exists u in V Q(H) such that

qj ≤ [[u=T ǎj + i b̌j = α̌j]].

Hence, [[u∈T Č]] = 1.

Conversely, if u is a quantum complex in V Q(H) such that [[u∈T Č]] = 1,

then there exists {αi}i∈I⊂C and a complete orthogonal system {qj}j∈J such

that

qj ≤ [[u=T α̌j]].

DEFINITION 7.4.10. For {aj}⊂R and a complete orthogonal system {qj}j∈J ,
the quantum real u in V Q(H) such that qj ≤ [[u=T ǎj]] for each j∈J is denoted

by
∑

j∈J ǎj q̂j.

u =
∑
j∈J

ǎj q̂j
def
= ∀j∈J

(
qj ≤ [[u=T ǎj]]

)
.

DEFINITION 7.4.11. A quantum complex u is said to be compact if [[u∈T Č]] =
1.

u is a compact complex number ⇐⇒ [[u∈T Č]] = 1

Remark. If {q̂j}i∈I is a complete orthogonal system, then {ǎ | a∈C} ∪
{q̂j}j∈J is a compatible set of quantum complexes.

COROLLARY 7.4.16. For {aj}j∈J , {bj}j∈J ⊂C and a complete orthogonal

system {qj}j∈J ,

∑
j∈J aiej =

∑
j∈J bjej ⇐⇒ [[

∑
j∈J ǎj q̂j =

∑
j∈J b̌j q̂j]] = 1.
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7.4.5 Quantum complexes in the sheaf representation

Quantum complexes represent normal operator valued functions on U .

Let u+ iv be a quantum complex. {[[ř ∈ u]] | r ∈ Q}∪{[[ř ∈ v]] | r ∈ Q} is
a compatible subset of Q(H). Hence, there exists a unitary operator σ0 ∈ U
such that

(
{[[ř ∈ u]] | r ∈ Q} ∪ {[[ř ∈ v]] | r ∈ Q}

)
|◦ {σ0(pj) | j ∈ J}.

Let

Eu : R→ Q by
∧
λ≤r

[[ř ∈ u]]

Ev : R→ Q by
∧
µ≤r

[[ř ∈ v]]

Then Eu and Ev are resolutions of identity and

û =

∫
λEu(λ) v̂ =

∫
λEu(µ)

û+ iv̂ is a normal operator on H, where

λj = inf{r ∈ Q | σ0(pj) ≤ [[ř ∈ u]]} ∈ R,

µj = inf{r ∈ Q | σ0(pj) ≤ [[ř ∈ v]]} ∈ R.

f(σ0) = {λjσ0(pj) + i µjσ0(pj)}j∈J

For each σ ∈ U , f(σ) = (σσ−1
0 )f(σ0)(σσ

−1
0 )−1 is a normal operator on

H. Then f is a normal operator valued continuous function on U , which
represents the quantum complex u+ i v, and forms a sheaf of ring of normal

operator valued functions over U , i.e.

F (U) = {f(σ) | σ ∈ U} for U ∈ O(U)

form a sheaf Sh UC, where C is the set of complex numbers in a Boolean

valued universe.
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7.5 Propositional system

DEFINITION 7.5.1. For elements b, c of a complete lattice L, if b ≤ c,

b covers c
def⇐⇒ ∀x[(b ≤ x ≤ c)→ (x = b or x = c)]

a is an atom
def⇐⇒ a covers 0

A lattice L is said to be atomic if for every element b such that b 6= 0 there

exists at least one atom p such that p ≤ b.

Propositional system is a complete orthomodular lattice (p.39) Q sat-

isfying axioms A1 and A2, i.e.

C1 c⊥⊥ = c,

C2 c ∨ c⊥ = 1, c ∧ c⊥ = 0,

C3 b ≤ c =⇒ c⊥ ≤ b⊥.

P (ψ → φ) → (ψ |◦ φ), where ψ |◦ φ
def⇐⇒

(
ψ → (ψ ∧ φ) ∨ (ψ ∧ φ⊥)

)
A1 : Q is atomic, i.e. for every element b ∈ L such that b 6= 0 there exists

at least one atom p such that p ≤ b:

A2 : Let p∈Q is an atom and b ∈ Q.

If p ∧ b = 0, then p ∨ b covers b.

LEMMA 7.5.1. For a ∈ Q, let ā be the set of atoms ≤ a :

ā
def
= {p : atom | p ≤ a}

Then ⋃
i∈I ai =

∨
i∈I ai, (a)c = ¬a

DEFINITION 7.5.2. A symmetry transformation is a bijective mapping

of the propositional system onto itself which preserves the least upper bound

and the orthocomplimentation, i.e. automorphism:

Aut1 σ(
∨

i ai) =
∨

i σ(ai)
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Aut2 σ(a⊥) = (σ(a))⊥

If Q is a propositional system with symmetry transformations U , and

B is a maximal compatible subspace of Q, then Q has a sheaf structure of

Boolean lattice over U : Sh UB

Hilbert quantum set theory is developed on a universe whose truth value

set is a propsitional system, with symmetry transformations.
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